
Vol. 4, No. 2, March–April 2005

Accessing Objects Locally in Object-Oriented
Languages

Keehang Kwon, Dept. of Computer Eng., DongA University, South Korea

We propose method invocation constructs that allow objects to be accessed locally
in object-oriented languages. The major construct is the expression of the form O.E
where O is an object and E is an expression. This construct has the following opera-
tional semantics: add the object O to the program context in the course of evaluating
E. Thus, the object O is available only in the course of evaluating E. Consequently,
the program context consists of only the currently active objects and thus is managed
in a memory-efficient way. Finally we compare this notion with cache systems.

1 INTRODUCTION

Most object-oriented languages[AC96, Meyer] – Java, C#, etc– lack devices for
accessing objects locally when they invoke a method. Lacking such a device, it is
cumbersome for a programmer to specify the exact unloading times of an object
from the program context during execution. Consequently, programs are executed
as a monolithic collection of objects in this context.

We consider an example to illustrate this aspect. Let us assume that the objects
Ai, for 1 ≤ i ≤ 8, are defined as below.

object Ai.
var w.
a(X) = Ai+1.a(X).
...
end Ai

The object A9 is defined as below with its field w being initialized to 9.

object A9

var w = 9.
a(X) = X ∗ X
b(X) = X + w.
end A9

Cite this article as follows: Keehang Kwon: ”Accessing Objects Locally in Object-Oriented
Languages”, in Journal of Object Technology, vol. 4, no. 2, March–April 2005, pp. 151–156,
http://www.jot.fm/issues/issues 2005 03/article4

http://www.jot.fm/issues/issue_2005_03/article4
http://www.jot.fm

ACCESSING OBJECTS LOCALLY IN OBJECT-ORIENTED LANGUAGES

Now the attempt to evaluate the expression A1.a(2)+A9.b(3) proceeds as follows:
it first loads the objects A1, . . . , A9 into the program context, evaluates the first
argument A1.a(2), evaluates the second argument A9.b(3) and then add the two
results, all from the same program context. The evaluation steps for the first and
second arguments are shown below.

A1, . . . , A9 ?− A1.a(2) % first argument
...

A1, . . . , A9 ?− A9.a(2)
A1, . . . , A9 ?− 2 ∗ 2

A1, . . . , A9 ?− A9.b(3) % second argument
A1, . . . , A9 ?− 3 + A9. w
A1, . . . , A9 ?− 3 + 9

In the computation above, there are much redundancies in the program context. For
instance, none of the objects A1, . . . , A8 are needed in the program context when
the second argument A9.b(3) is evaluated.

This paper introduces constructs that cope with this redundancy. The major
construct is the expression of the form O.E where O is an object and E is an
expression. This one has the following intended semantics: the object O is intended
to be added to the program context in the course of evaluating E. Hence, the object
O will be unloaded from the program context after the evaluation of E is done. This
expression thus supports the idea of accessing objects locally. Another construct is
of the form (private x\ O).E and has the following intended semantics: the variable
x in O is intended to be replaced with a new name before evaluating O.E. This
expression thus supports the idea of private constants.1

In this paper we present the syntax and semantics of this extended language,
and show some examples of its use. The remainder of this paper is structured as
follows. In the next section, we describe a modification to the method invocation
expression. In Section 3, we present some examples. Section 4 concludes this paper.
In particular, we discuss how the notion of accessing objects locally makes cache
replacement algorithms redundant.

2 THE LANGUAGE

Most object-oriented languages use the qualified expression (o.f)(a), which stands
for method invocation of f in an object o with argument a. The main drawback of
this expression is that the object o will remain in the program context even after
f(a) is evaluated.

In this paper, we propose a new construct for method invocation: namely o.(f(a))

1These two constructs are motivated from Miller’s work in the logic programming paradigm
[Mil89b, Mil89a].

152 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 2

2 THE LANGUAGE

instead of (o.f)(a). Its meaning is the following: add o to the program context in the
course of evaluating f(a). This construct naturally incorporates a notion of locality
for the object o.2 This new construct also applies to a field name. The notation
o. w means the following: add o to the program context in the course of evaluating
w. In the sequel, we assume that field names are prefixed by an underline for the

reason of convenience.

The object calculi to be considered is described by E- and O-formulas given by
the syntax rules below:

E ::= c | x | w | f(E, . . . , E) | O.E

O ::= an object | private x\ O

In the rules above, c, x, w respectively represents a constant, a variable and a field
name. In the object-calculi to be considered, E-formulas are expressions and a list
of O-formulas will constitute programs.

The notion of evaluating an expression is presented below. In describing the
idea of an evaluation, we write [t1/x1, . . . , tn/xn]e to denote the application of a
substitution {〈xi, ti〉|1 ≤ i ≤ n} to a term e.

The rules for evaluating expressions in our language are based on “call-by-value”
mechanism in the sense that the arguments of a function are evaluated first. In
describing the rules, it is assumed that E cannot be a variable as all variables
should have been bound to a value before being evaluated.

Definition 1 Let E be an expression and let P be a list of objects. Then the notion
of evaluating 〈P , E〉 is defined as follows:

(1) If E is a constant c, then c.

(2) If E is a field name w and o is the most recently added object that has a field
name w, then it is the value of w in o.

(3) If E is f(E1, . . . , En), ri is the value of evaluating 〈P , Ei〉, and the newest
method f defined in P is of the form f(x1, . . . , xn) = E1, then evaluate
〈P , [r1/x1, . . . , rn/xn]E1〉.

(4) If E is O.E1 and O is private x1\ . . . private xn\ O1, then evaluate 〈[a1/x1, . . . ,
an/xn]O1 :: P , E1〉 where each ai is a new name and :: is the list constructor.

In the above rules, the symbols . and private x\ provide scoping mechanisms:
they allow, respectively, for the augmentation of the program and the introduction

2If f is defined in o, this new definition will override the old one (if any) in the program context.

VOL 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 153

ACCESSING OBJECTS LOCALLY IN OBJECT-ORIENTED LANGUAGES

of new names in the course of evaluating an expression. The private construct in O-
formulas provides a means for information hiding. Notice that method invocation of
the form o1.(o2. . . . (on.(f(a)) . . .) is also allowed. This expression means that it will
add o1, o2, . . . and finally on to the program context in the course of evaluating f(a).
This expression provides a form of dynamic inheritance. For instance, o1.(o2.(f(a)))
allows that o2 inherits o1 in the course of evaluatingf(a).

3 EXAMPLES

We reconsider the example in Section 1 to illustrate the dynamic aspect of the new
method invocation construct. Let us assume that the objects Ai, for 1 ≤ i ≤ 9, are
defined as before.

The attempt to evaluate the expression A1.a(2) + A9.b(3) proceeds as follows:
it evaluates the first argument A1.a(2), evaluates the second argument A9.b(3), and
then add the two results, all from the empty program context. The evaluation steps
for the first argument are shown below. The initial context is empty, but dealing
with A1.a(2) causes A1 to be added to it. The expression to be evaluated now is a(2).
There is only one definition for a in the context and a(2) is replaced with A2.a(2).
The object A2 is therefore added to the program context and the expression to be
evaluated reduces to a(2). There are two definitions for a in the context and the
one in A2 is used as the newest definition overrides the previous ones. Continuing
with the evaluation attempt, it eventually computes the result which is 2 ∗ 2.

?− A1.a(2) % evaluating first argument
A1 ?− a(2) % A1 is loaded into program context
A1 ?− A2.a(2)

A2, A1 ?− a(2)
A2, A1 ?− A3.a(2)

...
A9, . . . , A1 ?− a(2)
A9, . . . , A1 ?− 2 ∗ 2

The evaluation steps for the second argument are similar as shown below. Note that
the initial context is empty, but dealing with A9.b(3) causes A9 to be added to it.
The expression to be evaluated now is b(3). There is only one definition for b in the
context and b(3) is replaced with 3 + w. There are a field name w in A9 in the
context and its initial value is 9. It eventually computes the result which is 3 + 9.

?− A9.b(3) % evaluating second argument
A9 ?− b(3)
A9 ?− 3 + w
A9 ?− 3 + 9

154 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 2

4 CONCLUSION

In the computation above, it is easily observed that there are no redundancies in the
program context. For instance, the computation uses only A9 to evaluate A9.b(3).

The constuct considered causes objects to be added dynamically to the program.
Expressions must therefore be evaluated relative to particular program contexts.
Regarding implementation, this is not a practical scheme and can be improved
upon by noting that program contexts change in a stack-disciplined fashion. Thus
program contexts can be implemented using the program stack which permits the
incremental addition and subsequent retraction of objects.

Our language permits method names to be made private to an object using
the private construct. This allows for the hiding of a method name in the object.
The names of the method names listed then become unavailable outside the object.
An example of the use of this construct is provided by an expression of the form
(private b\ A9).a(3). This has the effect of adding A9 — after replacing b with a
new name — to the program before evaluating a(3).

4 CONCLUSION

We have examined a new construct for method invocation in object-oriented lan-
guages. The program context in our execution model maintains only the active parts
of the program. Similarly the notion of a cache tries to maintain the active parts
of the program. Hence it is interesting to compare our execution model with the
model that employs the notion of cache.

In both models, objects enter the program context “on demand”. Hence, there
is no difference in both models regarding the time for loading an object. The real
difference lies in the times for unloading an object from the program context. Cache
systems rely on “guessing” — via cache replacement algorithms such as LRU, FIFO,
etc— for unloading an object. On the other hand, programmers in our language can
specify the exact unloading time for an object. Consequently, the execution model
no longer has to rely on those ad-hoc replacement algorithms and memory can be
managed in a more efficient way.

5 ACKNOWLEDGEMENTS

This paper was supported by DongA university research fund in 2001.

REFERENCES

[AC96] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag,
1996.

VOL 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 155

ACCESSING OBJECTS LOCALLY IN OBJECT-ORIENTED LANGUAGES

[Meyer] Bertrand Meyer. Object-Oriented Software Construction. 2nd edition.
Prentice-Hall, 1997.

[Mil89a] Dale Miller. Lexical scoping as universal quantification. In Sixth Inter-
national Logic Programming Conference, pages 268–283, Lisbon, Portugal,
June 1989. MIT Press.

[Mil89b] Dale Miller. A logical analysis of modules in logic programming. Journal
of Logic Programming, 6:79 – 108, 1989.

About the authors

Keehang Kwon is an associate professor at DongA university, Korea. He can be
reached at keehang0@yahoo.co.kr.

156 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 2

mailto:keehang0@yahoo.co.kr

