
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No.2, March - April 2005

Cite this article as follows: David Johnson: “Association Implementation”, in Journal of Object
Technology, vol. 4, no. 1, March - April 2005, pp. 81-107.
http://www.jot.fm/issues/issue_2005_03/article1

Association Implementation

The Key to Efficient Persistence

David Johnson, Lecturer, West Coast College TAFE, W.A., Australia

Abstract

The Object-Relational (O-R) approach to persistence is alive and well. It is based upon
the proven and reliable relational database approach, and provides choice from a range
of well-supported Relational Database Management System (RDBMS) packages. Major
compiler and systems support players continue to offer increased features (e.g. object
data-type definition and storage support in Microsoft’s ADO.Net in Windows 2005),
which are supportive of the O-R approach and contribute to a healthy O-R future.
With the appropriate design techniques and persistence software support, the O-R
approach represents the fastest, most reliable way to develop efficient, scalable,
maintainable applications software. An added bonus is that the skill set of developers
transferring from Relational-Procedural to Object Oriented (OO) application
development is well suited to the O-R approach.
With appropriate persistence support software, business object mapping and
persistence can be automated, freeing application developers from the time-consuming
tasks of mapping objects to database tables and the (re)writing of database access
code. The O-R approach can be a SQL-free experience, allowing developers to
concentrate on CRUD (Create, Read, Update and Delete) access and processing of
individual or groups of business objects without having to worry about the underpinning
relational database framework being used to persist business object data.
The object-oriented application development becomes transformed into a simple 3-step
process:
1. Develop an Implementation Object Class Model,
2. Generate the Business Objects and Object Database for object persistence, and
3. Code and test the application based upon the Business Objects.
The key to success for this development process lies in the first step, ‘develop an
Implementation Object Class Model’, because the way in which object class
associations are implemented can significantly affect the performance of applications
that depend upon them. Conversely, any time and effort spent producing a good
business class design can be completely negated in terms of object access
performance due to poor association implementation.

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_03/article1

ASSOCIATION IMPLEMENTATION

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

The UML design process, which is pivotal to any OO development, places considerable
emphasis upon the identification and differentiation of associations between objects.
One significant weakness of the UML design process is the provision of too little support
for implementation planning too late in the development process.
This article tackles this problem by introducing some simple high-level implementation
semantics for association implementation using the UML Object Class diagram. It
discusses data structures and logic support to underpin various alternatives using an O-
R approach, and shows how implementation planning for associations can fit into the
application development cycle to form the basis of an agile, practical and targeted OO
application development methodology.

1 INTRODUCTION

UML Object Class diagrams represent object classes together with their public properties,
private and protected data structures, method headers, inheritance hierarchies and
associations. Implementation of the object class code from these diagrams involves the
coding of properties, private data structures, methods, and inheritance hierarchies,
together with business rule logic. These processes are well addressed in OO texts. The
ways to provide for persistence and to implement associations are less well documented.

Persistence relates to the way that object data is stored and retrieved. We shall be
exclusively considering object persistence using an O-R approach, with the data for each
leaf object class in the inheritance tree being stored in its own table. This approach is
sometimes referred to as horizontal partitioning. Other schemes are possible and are well
covered in the existing literature, but horizontal partitioning is simple to implement, does
not require cascading database calls to support inheritance, and, in combination with
object caching, results in fast object data access times and reduced network traffic.

To increase consistency between objects and applications it is advisable to provide a
unique ObjectId (Ambler’s OID) property for each object class, even when there is a
naturally occurring one (eg. CustomerId, AccountCode). The ObjectId, which should be
unique across object classes, is used to identify an object’s data in the object database.

A UML Object Class diagram, such as that below for the Car Rental/Servicing
application, represents data structures, associations and inheritance between object
classes.

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 83

Object Class Diagram for Hurtz Car Rental Application

Associations indicate that an object of one class needs access to other objects. For
instance, a HireBooking object needs access to the associated vehicle, a transaction,
customer, a DateRange (via inheritance), and possibly several driver objects. The
multiplicity (or ordinality) in each direction needs to be clearly shown for both ends of an
association. An ‘x’ should be used to indicate when one object does not need to know
about the other (eg. A HireBooking needs to have access to all registered drivers, but
each driver object does not need to know which HireBookings reference them). Business
Rules should be provided (possibly as attached notes) to justify the multiplicity shown
and/or any validation checks that need to be made.

A UML Object Class Diagram clearly defines data structures (i.e. public, private and
protected data members) and specific functionality (methods and internal functions)
internal to each object class, and external factors such as inheritance and associations
between object classes. The implementation of associations between object classes will
require additional data structures and/or functions. No object class can be coded and used
within an application until the way in which each association is to be implemented has
been determined.

As well as requiring specific data structures and/or functions to implement
associations, the implementation choice can have a major impact upon the processing
overheads and data access speed and efficiency. The main questions that need to be
addressed when determining the most appropriate way to implement each association
relate to :

ASSOCIATION IMPLEMENTATION

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

• Object retrieval: Is it Cached or Non-cached?
• Data return mechanism: Via Properties or Methods?
• Data type returned: As Objects or ObjectIds?
• Mapping technique: Use Foreign-Key or Index?

The key issues relating to these questions are addressed in the Section 2, and summarized
in Section 3 to provide practical guidelines to simplify the implementation process.

2 ASSOCIATION IMPLEMENTATION FACTORS

Object Retrieval: Cached or Non-cached

Cached retrieval allows the forward loading and storage of object data. The advantages
are reduced database access frequency (larger packages of data) with a consequential
reduction of network traffic, database server loads and marshalling overheads.

Caching increases probability that object data will become out of date in a multi-user
environment. This problem can be managed by the implementation of an appropriate time
stamp and time-locking regime.

As well as providing timed-locking of objects, some commercial O-R support
packages allow the access depth, and thus the depth of associated data, to be varied
dynamically with application code. Thus, when an application provides user browse and
select options, only the top level objects need to be loaded into cache (i.e. without any
dependent objects), and when more information is required about a specific objects, the
lower levels can be loaded, populating cache with deeper pyramids of object data.

Cached retrieval should be always be used on networked applications, and for the
rest of this article, write-through cached retrieval will be assumed to all object retrieval.

Data Return: Property or Method

Associations may be implemented as properties or as methods. However, because objects
are referenced via instance variables, it seems more appropriate to represent associations
as public variables (i.e. as properties).

Weak, less frequently used associations can be implemented as methods, but this still
requires provision of data structures (usually private) to access and/or store associated
object(s), as well as a method to access associated data and methods.

The method approach thus offers no savings in terms of data storage or access
efficiencies over the property approach, which is the recommended approach. The rest
of this article assumes a property approach to association implementation.

Returned Data Type: Objects or ObjectIds

Object data retrieval and instantiation overheads can be minimised by only loading
associated object data when frequent navigation of an association is required, and by

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 85

retrieving only the ObjectIds when infrequent navigation applies. Thus an application-
specific FIN Analysis, classifying expected association navigation frequency as either
Frequent, Infrequent or Never, is an important association implementation task. A FIN
Analysis table for 9 associations identified in the Hurtz Car Rental Object Class design
(provided earlier) is provided below.

Access Frequency Association
Name

Association
Object A

Association
Object B A to B B to A

Bookings Customer HireBooking Frequent Frequent
RegisteredDrivers Customer Driver Infrequent Never

AccountHistory Customer Transaction Infrequent Never
Drivers HireBooking Driver Infrequent Never
Cost HireBooking Transaction Infrequent Never

BookedDateRange Booking DateRange Frequent Never
Hirings HireBooking Vehicle Frequent Infrequent

Services ServiceBooking Vehicle Frequent Infrequent
UnavailDates Vehicle DateRange Infrequent Never

It is recommended a Frequent classification be assumed if in doubt. This reduces the
amount of special instantiation code that needs to be provided. Also, with the appropriate
O-R software support, the frequency classification can be changed relatively simply
before an application reaches the Release stage.

When only the ObjectIds of the dependent (i.e. associated) objects are loaded, as for
infrequently navigated associations, the application developer need to provide data
retrieval and object instantiation code if and when the association needs to be used.

When an association is implemented via an object property (multiplicity of 1) or as
an object-group property (multiplicity of m), the object property instantiation should be
placed within the property’s Get logic. As well as deferring instantiation until the object
is really needed, this encapsulation technique means that no additional logic needs to be
provided by the application to navigate the association.

Mapping Technique: Foreign-Key or Index

Foreign-Key mapping is the most commonly implemented association mapping
technique because it can be directly implemented using standard relational database
design and implementation techniques.

Associations with 1:m multiplicity are simply implemented as 1:m relationships
between the object class data tables, with a copy of the independent object’s primary key
(on the 1-side) is stored as a foreign key property in the dependent object (on the m-side).
The many side is thus retrieved by an SQL Select operation selecting all dependent
records with a foreign key corresponding to the independent’s primary key.

To maintain the integrity of the Object database, referential integrity needs to be
enforced on all Foreign-Key mapped associations. Also, because a change of foreign-key
reference on the 1-side is the only way the m-side can be changed, that the m-side of the
relationship must be a read-only property.

ASSOCIATION IMPLEMENTATION

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

In relational databases m:m relationships need to be converted into two 1:m
relationships via an associative entity. Similarly, m:m associations implemented using
Foreign-Key mapping require the creation of an associative object class.

Index mapping requires server-side and user-side logic to maintain separate indexes
for associated objects within the database. Many indexing schemes are available (inverted
indexes, balanced B-tree, ISAM etc.), but keeping in mind that index mapping is only
part of the association mapping picture, the simpler the scheme the better.

Advantages of Index mapping are that associative object classes are not needed to
implement m:m associations, that objects can be directly added or removed from the
association (i.e. they are not read-only as with Foreign-Key mapping), and the ability to
support multiple associations without a proliferation of unwanted foreign keys

The author is only aware of one commercial package, Design SCOPE’s ObServer,
which seamlessly supports both Foreign-Key and Indexed mapping of associations, and
allows the depth of associated data to be varied dynamically during application execution.

3 ASSOCIATION IMPLEMENTATION GUIDELINES

A summary of the recommendations for association implementation discussed so far are:
• Use cached retrieval.
• Represent associations as properties.
• Use access-frequency estimates to determine whether ObjectId or object

properties will be used for association implementation, as summarised below:

• When an association is implemented as an object property or as an object group

property, object instantiation should be placed within the property’s Get logic.
• Use Foreign-Key mapping for a 1:m associations.
• Use index mapping for m:x associations and for m:m associations where an

associative object is not needed to provide extra data and/or functionality.
A notation to assist the transition from UML Object Class diagram to Implementation
diagram, and some techniques to detail the data structures required to underpin the
planned implementation will now be discussed.

4 UML ASSOCIATION IMPLEMENTATION NOTATION

The recommended UML Association Implementation notation involves:

Association
Multiplicity

High Access
Frequency

Low Access
Frequency

1 Object Property ObjectId Property
m Group of Objects Property Group of ObjectIds Property

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 87

Angled brackets < > for object properties
curly brackets { } for ObjectId properties
round brackets () for object return via a method call
Cross hatch # for index mapping

This simple extension to the UML Object Class multiplicity notation concisely and
unambiguously covers all possible implementation patterns, as detailed below :

Mapping Technique Data Return Data Type Returned
Foreign-Key Index

String or numeric property ObjectId of one object {1} or 1{ } -
Business object property Object <1> or 1<> -
Group object property Group of ObjectIds {m} or m{ } {m#} or m{#}
Group object property Group of objects <m> or m<> <m#> or m<#>
Function method Object (1) or 1() -
Function method Group of objects (m) or m() -

UML Association Implementation Notation Summary

As both UML Object Class diagrams and Implementation diagrams are an important part
of the design artefacts, the Object Class diagram should be copied and then be extended
using the notation to create an intermediate Implementation Diagram (i.e. a work-in-
progress version), as shown below for the Hurtz Car Rental UML example using the
access frequencies listed earlier.

Intermediate Implementation Diagram for Hurtz Car Rental Application

ASSOCIATION IMPLEMENTATION

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

The implications of this design are that, for an access depth of 1, object data for all
associated HireBooking objects will be loaded into cache automatically as a Customer
object is loaded but only the ObjectIds of associated Transaction and Driver objects will
be available. Separate logic is required to retrieve data and to instantiate the associated
Transaction and Driver objects. However, with an access depth of 2, Vehicle and
DateRange object data for the associated HireBooking objects would be automatically
loaded into cache as well.

This notation is intended to allow various implementation scenarios to be quickly
and easily explored in conjunction with evolving screen prototypes and Use Case
diagrams and definitions. As the design starts to stabilise, the Implementation design can
be completed by adding property data structures to the Object Classes which are needed
to implement the association mappings.

For data structure definitions, square brackets [] are used to indicate properties of
groups of ObjectIds or objects. When Foreign-Key mapping is used the foreign key
property in the corresponding dependent (child) object needs to be identified as for the
Hurtz example below.

Implementation Diagram for Hurtz Car Rental Application

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 89

Examining some of the property definitions in this examples in more detail,
+Customer: Customer<> is an object property that is an instance of

the Object Class Customer
+Cost: Transaction{ } is an ObjectId property of Object Class

Transaction
+Bookings[] : HireBooking<Customer> is a group of HireBooking objects Foreign-

Key mapped via the Customer property
+AccountHistory[] : Transaction{ } is a group of index mapped Transaction

ObjectIds
Notice that association names tend to appear as property names on the independent side
of an association. Also it is good practice to, where possible, use singular names for
object class and property names, reserving plurals for associative objects and for
properties that represent groups of ObjectIds, objects or standard data types.

Once the supporting data structures have been added and cross-checked against the
mapping notation, the Implementation diagram is ready for coding and testing.

Below is a VB.Net code extract generated for HireBooking by Design SCOPE
ObServer.

ASSOCIATION IMPLEMENTATION

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

and an auto-generated CRUD form for edit/browsing HireBooking objects.

5 IMPLEMENTATION OF MANY:MANY ASSOCIATIONS

When using Foreign-Key mapping, many:many associations must be resolved by the use
of Associative Objects and two 1:m associations in a similar way that associative entities
are used in Relational Database design. For example, consider the association between
Lecturer and Subject object classes wherein :

• a Lecturer object needs to know which Subjects the Lecturer can teach, and
• the Subject object needs to know which Lecturers can teach it.

The m: m association would initially be represented as:

To implement this m:m association using Foreign-Key mapping, an associative object,
LecturerSubject, must be added, as shown below.

Vehicle object property

DateRange object property

Group of Driver ObjectIds property Customer object property

Object group properties

Transaction ObjectId property Scrollbar to select required
HireBooking from an object

group (12 in this group)

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 91

The resulting object class structure and processing examples are shown below:

As with associative entities in Relational Database design, it may be appropriate and
useful to attach other properties (eg LastTaughtDate and NumberOfTimesTaught) to the
associative objects such as LectureSubject.

Index mapped many:many associations, however, can be directly represented
without the use of an Associative Object as shown below.

with the corresponding object class property structure and usage example shown below:

Object Class Properties

Lecturer<>
 Id : String
 Name: String
 CanTeach[] : LecturerSubject<Who>

Subject<>
 Id : String
 Name : String
 TaughtBy[] : LecturerSubject{What}

LecturerSubject<>
 Id : String
 Who : Lecturer{}
 What : Subject<>

Processing Examples

Code to add the names of all subjects that a particular lecturer
(myLecturer) can teach to a list box lstCanTeach.

Dim LectSubject as LecturerSubject
For each LectSubject in myLecturer.CanTeach
 LstCanTeach.Items.Add LectSubject.What.Name
 Next

Code to add the names of all lecturers who can teach a

particular subject (MySubject) to a list box lstTaughtBy.
Dim LectSubjId as String
For each LectSubjId in mySubject.TaughtBy
 Dim LectSubject = new LecturerSubject(LectSubjId)
 Dim Lecturer = new Lecturer(LectSubject.Who)
 LstTaughtBy.Items.Add Lecturer.Name
 next

Coding many:many Foreign Key Mapped Associations

Matching foreign
key properties

ASSOCIATION IMPLEMENTATION

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

Coding many:many Index Mapped Associations

Apart from the savings in terms of storage and maintenance overheads of an extra
associative object, the above example demonstrates the savings in code simplicity when
compared with the corresponding code for the associative object. Also, the TaughtBy[]
property of the Subject object can be directly changed and replaced, whereas for Foreign-
Key mapping this property’s contents requires the changing of foreign key entries within
purpose-specific associative LectureSubject objects.

6 THE COURSE INFORMATION EXAMPLE

The Hurtz example has been used to introduce the concepts, the notation and to
demonstrate its use. However, design is not an exact science, and one textbook-styled
example cannot fully address the design problems to be encountered in practice.

For instance, it can be difficult to recognise a close-to-optimal solution, let alone
create one. Similarly, feasible solutions developed using theoretically correct
interpretations and assumptions may result in unduly complex and inefficient
implementations.

The Course Information application was developed to maintain Course Information
for my college’s IT handbook. It will be used to provide some practical advice and
guidelines that may prove useful to help overcome problems that will arise with real
world applications. Below is an extract from the handbook for the combined C117/C119
course.

Object Class Properties

Lecturer<>
 Id : String
 Name : String
 CanTeach[] : Subject<>

Subject<>
 Id : String
 Name : String
 TaughtBy[] : Lecturer{}

Processing Examples

Code to add the names of all subjects that a particular
lecturer (myLecturer) can teach to a list box lstCanTeach.

Dim Subject as Subject
For each Subject in myLecturer.CanTeach
 LstCanTeach.Items.Add Subject.Name
 Next

Code to add the names of all lecturers who can teach a
particular subject (MySubject) to a list box lstTaughtBy.

Dim LecturerId as String
For each LecturerId in mySubject.TaughtBy
 Dim Lecturer = new Lecturer(LecturerId)
 LstTaughtBy.Items.Add Lecturer.Name
 next

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 93

Course Information Booklet Extract

C117 Certificate III in Information Technology (Software Applications)
C119 Certificate III in Information Technology (Network Administration)

Curriculum hours: 540 One semester full time or equivalent part time

COURSE SCHEDULE

Skill Set Names SIN TPN Training Package (TP) Unit of
Competency (UOC) Names

Core or
Elective

Hrs

User and Technical
Documentation

C1080 ICAITD128A Create user and technical
documentation

CoreBoth 20

Provide Advice to Clients C1050 ICAITS031B Provide advice to clients CoreBoth 30

Office Advanced

(Word Advanced,
Excel Advanced,

Access Advanced)

C4535

C4532

C4533

ICAITU126B

ICAITU018C

ICAITU019C

Use advanced features of
computer applications

Develop macros & templates for
clients using standard products

Migrate to new technology

CoreBoth

C117Core
C119Elect
C117Core
C119Elect

40

40

30

Customising Software

C4534 ICAITU028C Customise packaged software
applications for clients

C117Core
C119Elect

40

Introduction to Web
Programming

C1029

C4470

ICPMM65DA

ICAITB137A

Create Web Pages with
Multimedia

Produce basic client side scripts

ElectBoth

ElectBoth

50

30
Intro to Programming VB C4570 ICAITB166A Create Utility Programs ElectBoth 30

Introduction to
Networking

C4500

C1074

C4499

C4495

C1047

C1053

ICAITS120C

ICAITS121A

ICAITS020C

ICAITI101B

ICAITS025B

ICAITS034B

Connect Internal hardware
Components

Administer network peripherals

Install and optimise system
software

Install and manage network
protocols

Run standard diagnostic tests

Determine and Action Network
Problems

C117Elect
C119Elect
C117Elect
C119Core
CoreBoth

C117
Elect

C119 Core
C117 Core

C119Core

30

20

20

20

20

40

Provide Advice to Clients– 30 hrs

C1050
Analyse client support issues
Provide advice on software, hardware and network
Obtain client feedback

Introduction to Web Programming – 40 Hours

C1029
Identify the Tools and Parameters of Web Page Design
Produce Web Pages
Validate and Prepare for Distribution

C4470
Construct a Script using Basic Syntax
Write Scripts using Methods, Functions and Events
Test Scripts and Debug
Create Objects for Dynamic Web Pages

Office Advanced – 70 hrs

C4535
Manipulate data
Access and use support resources
Configure the computing environment

C4532
Determine macro and template requirement
Develop macro or template for client
Provide client support for macro or template

C4533
Apply existing knowledge and techniques to
 new technology
Apply advanced functions of the technology to
 solve organisational problems
Apply new functions of upgraded technology

ASSOCIATION IMPLEMENTATION

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

The Course Information Example: Developing the Logical Object Class
Model

The purpose of the Logical Object Class design is to develop a compact, unambiguous
model that provides objects with access to all the data and with all the functionality they
need to service the target application(s).

All properties, methods and associations identified for an object class should be in
response to, and part of the answer to, the one basic question :

“What does an object of this class need to know and be able to do?”

This question should be asked time and time again in the object class design process.
What an object needs to know relates to its internal and exposed (property) data

structures, and what it needs to be able to do relates to its internal and exposed (method)
code-specific behaviour. Object data (inclusive of associated objects) and object
functionality are the essential aspects of object class design.

The early stage of Object Class design involves the development of the Domain
Model. Although ultimately important, functionality is only a minor concern for Domain
Modelling. It is quite easy to add/modify method logic at any stage. Similarly,
consideration of how the data is to be stored and retrieved from a database is of little
concern for the Domain Model, and should be left until the implementation design.

For the Course Information application, some properties were identified as common
to the Course, DeliveredCourse, Skillset and Subject objects, and were thus placed in
an abstract Object Class named DescriptionBase, as in the Domain Model below.

Logical Object Class Model (Domain Model)

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 95

Unless significant processing or flexibility advantages can be identified, there can be
many feasible design alternatives. However, some of the tell-tale signs that a feasible
design is a poor choice or is incomplete, and should thus not be implemented are:

• The design does not provide a good, comfortable fit to the data.
• The design is overly complex, with some team members having difficulty coming

to grips with the design.
• Difficulty in reconciling particular application objects with Object Classes.
• Properties exist that do not fit comfortably into any specific Object Class.

The process of bouncing ideas between the Object Class design, the Use Case Model and
the prototype until they all agree and are fully supportive of each other is strongly
recommended. Only when this process stabilises, and the design becomes much simpler,
more comprehensive and more robust that the commencement of the implementation
planning can be contemplated.

Some may, quite rightfully, argue that some associations represent and should thus
be shown as aggregation in the final domain design, as below.

Although correct in theory, in practice such detail will have no bearing upon either the
implementation or object usage. The author thus feels that the time can be better spent on
other aspects of the design, such as the design implementation. However, should you
believe the careful delineation between types of association to be useful, then certainly no
harm will result from adding it to your Object Class design.

The Course Information Example: Developing the Implementation Model

Below is a FIN (Frequent, Infrequent, Never) Analysis table for the 7 associations
identified in the Object Class design (i.e. the Domain Model).

Access Frequency Association
Name

Association
Object A

Association
Object B A to B B to A

ConsistsOf Course DeliveredCourse Infrequent Frequent
Delivers DeliveredCourse SkillSet Frequent Infrequent
Groups SkillSet Subject Frequent Frequent
CoreFor Course Subject Frequent Infrequent

ElectivesFor Course Subject Frequent Infrequent
PreRequisites Subject Subject Frequent Never

PreRequisitesFor Subject Subject Infrequent Never

While a FIN table provides a neat summary of access frequency for documentation
purposes, in practice it is usually easier to work on the evolving Implementation diagram
(initially just a copy of the Object Class diagram), showing the relative navigation

ASSOCIATION IMPLEMENTATION

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

frequencies by the < >, { } and x notations. This notation is quick and easy to add and
change, and provides a more understandable visual format for frequency allocation.

An important source of information about access paths and probable frequencies is
the pseudocode or Action diagram logic from the Use Case definitions and/or a close
examination of the processing requirements and patterns of the prototype screens. If in
doubt, err towards an assumption of frequent access because this minimises any extra
code required to instantiate an object from an ObjectId, but it may mean that object data
might be automatically loaded into cache when you don’t need it.

Implementation Modelling involves the two stages. The first is the addition of the
navigation frequencies to the Object Class diagram to create an Intermediate
Implementation diagram, and the creation and checking of a FIN table. The second is the
addition of the data structures supporting the association mappings to the object classes to
complete the Implementation Model, such as that shown below.

Implementation Model 1 (Using Index and Foreign Key Mapping)

Once the Implementation model has been established, a useful technique is to represent
the design as a text-based file. A text-based file has a small foot-print and requires no
special graphical support for editing or display, and facilitates the massaging the
inheritance tree because the object class data structures and evolving methods are neatly
grouped within the inheritance hierarchy.

A text-based Implementation Model, such that for Implementation Model 1 as shown
in the next figure, contains all the information represented in the graphical UML styled
Implementation Model. It is a very compact representation, allowing even quite complex

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 97

designs to be represented on an A4 page. Furthermore, it is easy to maintain and modify
with any text editor, and is much closer to our destination, the code.

Text-Based version of Implementation Model 1

The treeing has been provided in the text-based example above to highlight the Object
Class hierarchy. Method headers can be added after the data structures (properties and
private data) declarations using the same level of indentation. Pseudocode logic for the
methods is indented under the method headers.

Implementation Model 1 assumes the availability of Index mapping support, whereas
Implementation Model 2, as shown in the next figure, relies entirely upon Foreign-Key
mapping. It introduces two additional associative object classes - PreRequisite to support
the reflexive m:m Subject associations, and CourseSubject.

For even such a small-scale application as that represented by Implementation Model
2, the increased complexity created simply by not using Index mapping is quite apparent.
As well as being visually more complex, the increased number of associative object

DescriptionBase <Abstract>
+LocalId : String
+Description : String
+Hours : Integer
Course< >

+TPN : String
+Aims : String
+EntryReq : String
+DelCrse : DeliveredCourse{}
+CoreSubjects[] : Subject<#>
+ElectiveSubjects[] : Subject<#>

DeliveredCourse< >
+Department : String
+Manager : String
+Courses[] : Course<DelCrse>
+SkillSets[] SkillSet<DelCrse>

SkillSet< >
+Coordinator : String
+DelCrse : DeliveredCourse{}
+Subjects[] : Subject<SkillSet>

Subject< >
+TPN : String
+EntryReq : String
+SkillSet : SkillSet<>
+CoreIn[] : Course{#}
+ElectiveIn[] : Course{#}
+PreRequisite[] : Subject<#>
+PreRequisiteFor[]:Subject{#}

Delivers

{1}

<m>

Pre-Requisite<m>

Consists Of
{1}

<m>

Pre-RequisiteFor
{m}

Associations

ASSOCIATION IMPLEMENTATION

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

classes, and association support data structures within object classes, will contribute to
more persistence overheads and less efficient processing.

Implementation Model 2 (Using Foreign Key Mapping only)

Caveat emptor (user beware) : Innovative, technically correct designs do not necessarily
translate into good implementations. Below is an example of an Implementation Model
that uses a variety of techniques to implement the logical design. Implementation Model
3 is fine in theory, making use of a range of techniques. However, in practice it would
result in inefficient processing and produce applications that are difficult to maintain.

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 99

Implementation Model 3 (Caveat Emptor)

The Course Information Example: Coding from the Implementation Model

Once the implementation patterns have been decided, the supporting data structures and
methods need to be added to the object classes before they can be used in the application.

Before the object class code is created, a careful check should be made of the
Implementation Model to ensure that there is a support data structure in the
corresponding object class for each side of each association (except for multiplicity x).

With an O-R development support package such as ObServer, both the object class
code and the object database are generated automatically (you just select the
programming language and relational database package) from an implementation design.
An extract of the code generated for the object class SkillSet is shown below for VB.Net.
Business Rule related validation and any encoding logic is placed in the ValidateProperty
routine.

ASSOCIATION IMPLEMENTATION

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

Code Generated for SkillSet Object Class

7 PERSISTENCE SUPPORT OVERVIEW

So far an implementation-planning notation has been introduced, and the data structures
required to support the options chosen discussed. This section looks at the architecture
requirements to efficiently and transparently support persistence over a network.

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 101

The diagram below shows typical 3-tier deployment for Windows and Web
applications.

All SQL and stored procedure calls to access the relational database should be placed

in a Persistence Object.
For Windows applications the Persistence Object can be located on each client PC,

or be shared over a LAN. The object cache should be created and managed in the
Persistence Object’s address space.

Direct calls to the Persistence Object to select, lock and/or batch-update groups of
objects should be available from the Windows application.

Web applications use Thin Business Objects, with Business and Persistence object
support on the Server-side. Server-side caching is via the Persistence Object, but Client-
side caching tends to be less sophisticated, with thin object data being stored as required
in data structures and controls within the Web application itself.

While the above diagram shows typical extremes, many variations are possible. To
maximise deployment flexibility and application scalability, the Object Server should
only be accessed via the Persistence Object, which is separate to the Business Objects.

8 BODI BUILDING : AN OO DEVELOPMENT METHODOLOGY

The two most popular Application Development methodologies are RUP (the Rational
Unified Process which consists of the 4 phases Inception, Elaboration, Construction and
Transition) and MSF (the Microsoft Solutions Framework which consists of the 5 stages
Envisioning, Planning, Developing, Stabilizing and Deploying).

ASSOCIATION IMPLEMENTATION

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

Unfortunately neither RUP nor MSF factor in implementation planning. Thus the
Business Object Definition and Implementation (BODI) process has been developed. It
consists of four stages (Requirement Analysis, Business Object Definition, Application
Coding and Testing, and Release Gearing), with a separate pass is required for each
versioned release of an application. The table below compares the three approaches.

MSF RUP BODI

Envisioning Inception Requirement Analysis
Planning Elaboration Business Object Definition
Developing and Stabilizing Construction Application Coding and Testing
Deploying Transition Release Gearing

The diagram below shows how the BODI building process integrates elements of UML
design into a coherent, practical Object Oriented Application Development methodology.

Object Oriented Application Development Cycle

Requirement Analysis involves the parallel, three-way, interactive development of the
Use Case diagram, the User Interface prototype and the Object Class diagram to :

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 103

• Identify the main processing requirements for each User interface.
• Build user interface prototypes and basic application navigation.
• Identify object classes for the application and their navigable associations.

The output for the Requirement Analysis stage is:
• UML Object Class Diagram (variously referred to as the logical or Domain

Model).
• UML Use Case Diagram.
• Use Case Definitions for each Use Case.
• Business Rules approved and signed off by the user.
• GUI Prototype for the application approved and signed off by the user.
• A prototype, preferably signed off by the user.

The Business Object Definition stage involves the following tasks:

• Develop the Implementation Object Class Model.
• Code and test Object Class code
• Generate the object database schema.
• Create a pre-documented Application Shell in readiness for Coding and Testing

by :
1. Creating a new copy of the signed-off the GUI prototype,
2. Removing any quick-and-nasty prototype code, and
3. Copy-and pasting pseudocode logic from Use Case definitions to pre-document

the application’s Event Handlers and so act as a guide for coding.
Once Business Object Definition tasks have been completed, coding and testing of the
application can commence with a high expectation of success.

9 BODI BUILDING : ADDING AGILITY

Agile application development involves a series of small-scale, executable-focused
activities to build an evolving application. It is a “testing first, immediate execution,
racing down the chain from analysis to implementation in short cycles” (Stephen Mellor
2003) approach to application development.

The Agile approach places emphasis upon keeping the development ball rolling
without becoming bogged down in a quagmire of design detail. Although executable
focussed, Agile developers need enough design activities to be able to develop business
object classes, to improve the user interface (the all-important evolving executable), and
to generate some other deliverables such as user documentation and training resources.

Agile application development needs an operational context that can provide
interaction between agile design and code activities without stifling the creative process.
The diagram below represents one such operational context. It shows inter-related agile
development activities as balloons arranged in three loose levels. Each balloon is

ASSOCIATION IMPLEMENTATION

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

anchored to a particular stage of the BODI Object Oriented application building process
covered in the previous Section.

Operational Context for Agile Development Activities

The only two rules that need apply are that you move from left to right within a level of
balloons, and that all balloons attached to a particular stage must be completed (or
popped) before moving on to another balloon in another stage.

The lower level balloons represent the development history of the Object Class
design.

The top level of balloons represents the life-cycle of the prototype to application. For
the agile purists, it is the executable “chain moving from analysis to implementation in
short cycles”, supported by and supporting other design-related agile development
activities. For design-led application development proponents, it provides more agility
and focus than they would expect from within an object oriented application development
lifecycle.

The balloon labelled “Replace vapourware with Coding Templates” is a major
transformation point for the executable. By this stage the prototype executable would
have served its purpose, which is to develop and prove the application concept and to
help advance other agile development activities. Only the static elements providing the

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 105

look and feel of the GUI shell of the prototype, as signed-off by the client, are carried
forward. The user interface event handlers are, in effect, gutted and refurbished. All quick
and nasty prototype vapourware code is removed, being replaced with coding templates
derived from activity diagram or pseudocode logic as identified in Use Case definitions.

Coding templates are high-level (as opposed to statement-by-statement code level)
logic descriptors or pseudocode, which can be cut-and-pasted into the prototype as
comments to document the application and to act as a guide for coders. They will
eventually become headers for sections of code or be recycled as code statements
(nothing is wasted). And because they refer to business and user interface object names,
properties and methods, they provide a far better guideline to coders than the (fr)agile
prototype code.

There is no fixed order for the development activities, and the operational context is
not overtly prescriptive. Other balloons representing other tasks (eg. the development of
state and collaboration diagrams) can be added in for specific projects as required. The
Operational Context and BODI Development methodology are complementary, with
BODI offering consistency between applications, and the other offering flexibility.

10 SUMMARY

Associations are implemented by the addition of properties and/or methods to object
classes. However, because the associated object(s) represent an extension of an object’s
data structure, it is preferable to define them as properties rather than methods.

For medium to heavy usage associations, cached retrieval supporting the pre-loading
of object data should be used for Windows applications. For networked applications,
cached retrieval should be mandatory.

With caching comes access granularity (frequency versus volume of access), which
can have a major effect on the performance of networked applications. By allowing the
access depth of dependent objects to be changed dynamically under program control,
access granularity can be adjusted to suit specific retrieval requirements and to tune
applications to particular load conditions.

Association implementation planning is essential for the development of efficient
object persistence. It requires A FIN analysis to classify the expected frequency of use of
each association in each direction as ‘frequent’, ‘infrequent’ or ‘never’. These
classifications are reflected in the Implementation diagram by the < > notation for
frequent associations and { } for infrequent associations, to be coded as object and
ObjectId properties respectively, or groups thereof.

Assuming the availability of cached retrieval with both Foreign-Key and index
mapping, in the absence of other performance factors, it is recommended that Foreign-
Key mapping be used for 1:m associations, and that index mapping be used for m:m
(where use of an associated object class is not appropriate) and m:x associations.

ASSOCIATION IMPLEMENTATION

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

The approach to application development presented in this article emphasises the
development of the Logical and Implementation Object Class Models together with the
evolving prototype executables. Application development, up to and including the
Application Coding and Testing stage of the BODI Application Development process
(see Section 8), reduces to three simple steps:

1. Requirements Analysis : Develop the Object Class design, and then add
annotation and data structures to create an Implementation Object Class Model.

2. Business Definition : Generate the Business Objects and Object Database for
object persistence. Some commercial packages automate this process, requiring
only the addition of logic for application-specific business rules.

3. Code and Test the application.

This 3-step approach allows tight coding specifications referring to business and screen
objects to be available soon after the Requirements Analysis, and certainly by the end the
Business Definition step. Apart from the increased speed of development, the early
availability of such specifications provides considerable coordination and control
advantages for team-based application development and code outsourcing.

Agile development, while potentially freeing the code-acholic from the shackles of
design, can become a nightmare if there is no recognition that some agile code can be
quite fragile code. In particular, agile code in the prototype, used to develop and prove
the concept to the client, is often poorly structured, poorly documented, quick-and-nasty
code. Such prototype code should be jettisoned, leaving behind the GUI shell ready to
receive the application code based upon efficient, well-designed business objects.

The operational context described provides the developer with agility by providing a
number of small inter-related targeted tasks, and flexibility in terms of task sequencing.

O-R based persistence objects should represent a high level of abstraction that
encapsulates the underlying relational support logic. Relational-specific application code
involving datasets, record sets, tables, table joins, rows, or columns should not be
required to access and/or to update object data. It is persistence without sequel (SQL),
with the closest that application developers need to come to using SQL being SQL-styled
requests to retrieve groups of objects (e.g. Get Client where Client.Balance > 200).

With the appropriate O-R support software, there is no need to map objects to a
RDBMS, produce code to support database access, or to become involved with relational
database issues that can be detrimental to the OO design process. It allows application
developers to concentrate upon the retrieval, display and CRUD processing of business
objects (individually or as groups) without the need for additional relational-specific
code.

As an added bonus, the persistence object’s high level of abstraction provides a
hedge against technology change, allowing easier transfer to database technologies of the
future.

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 107

REFERENCES

[Agarwal95] Shailesh Agarwal, Christopher Keene, and Arthur Keller: Architecting
Object Applications for High Performance with Relational Databases,
http://www-db.stanford.edu/pub/keller/1995/high-perf.pdf

[Ambler98] Scott Ambler: Building Object Applications That Work – Your Step-by-Step
Handbook for Developing Robust Systems with Object Technology, New
York, SIGS Books/Cambridge University Press, 1998

[Ambler00a] Scott Ambler: Mapping Objects to Relational Databases, White Paper, July
2000, http://www.ambysoft.com/mappingobjects.html

[Ambler00b] Scott Ambler: The Design of a Robust Persistence Layer for Relational
Databases, White Paper, Nov 2000,
http://www.ambysoft.com/persistencelayer.pdf

[Bellware04] Bellware, Scott: 15 Seconds : Object-Relational Persistence for .NET, 15
Seconds, January 2004, http://www.15seconds.com/Issue/040112.htm

[Booch et al.00] Booch G, Rumbaugh B,Jacobson I: The Unified Modeling
Language User Guide, Addison –Wesley, Massachusetts, April 2000.

[Booch96] Grady Booch, Object-oriented Analysis and Design with Applications, 2nd
ed., The Benjamin/Cummings Publishing Company, 1996.

[Chou et al.00] Shih-Chien Chou and Jen-Yen Jason Chen, “Process Program
Development Based on UML and Action Cases, Part 1: the Model”, in
Journal of Object-Oriented Programming, vol. 13, no. 2, pp. 21-27, 2000.

[Faure et al.93] Dennis de Champeaux, Douglas Lea, and Penelope Faure, Object-
Oriented System Development, Addison Wesley, Harlow, England, 1993.

[Jacobson et al.99] Jacobson I, Booch G., Rumbaugh J. The Unified Software
Development Process, Addison Wesley, Harlow, England, 1999

[Johnson96] David Johnson, Programming by Design, Prentice Hall, 1996.

[Meyer97] Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall, 1997.

http://www-db.stanford.edu/pub/keller/1995/high-perf.pdf
http://www.ambysoft.com/mappingobjects.html
http://www.ambysoft.com/persistencelayer.pdf
http://www.15seconds.com/Issue/040112.htm

ASSOCIATION IMPLEMENTATION

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

About the author
David Johnson is a Lecturer in the Information Technology Section at the
Joondalup Campus of the West Coast College of TAFE, Perth, West
Australia. David teaches UML design and Object Oriented Application
development. David’s interest in Object Oriented design and programming
started in 1994 when he conducted an industry survey for TAFE WA to
determine future IT skill requirements for TAFE graduates. Over the past
five years he has been involved in the development of Design SCOPE’s

ObServer system. David’s E-Mail address is : Johnsd@west_coast.training.wa.gov.au

mailto:Johnsd@west_coast.training.wa.gov.au

