
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 1, January-February 2005

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification, Part 16: Rules of
Extension and the Typing of Inheritance”, in Journal of Object Technology, vol. 4, no. 1, January-
February 2005, pp. 13-25. http://www.jot.fm/issues/issue_2005_01/column2

The Theory of Classification
Part 16: Rules of Extension and the
Typing of Inheritance

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the sixteenth article in a regular series on object-oriented type theory for non-
specialists. Earlier articles have built up λ-calculus models of objects [1], classes [2],
inheritance [3, 4] and generic template types [5]. Classification describes the way in
which typed objects fit into a hierarchy of classes, which nest inside each other [3].
Inheritance is the short-hand mechanism for definining a subclass by extension from
another class, specifying only the additions and modifications to the base class [4].
Previously, we have modelled the inheritance of type [3] and implementation [4] and
combined both of these in a model of typed inheritance [6]. We showed how short-hand
inheritance expressions can be simplified to yield a canonical subclass definition that is
type compatible with the base superclass from which it was derived. Further aspects of
inheritance have included method combination [7], mixin inheritance [8] and inheritance
among generic classes [5].

The current article examines the mechanism of inheritance in more detail, looking at
the constraints on what may or may not be added to a class during inheritance. Most
object-oriented languages have restrictions on the types of overriding methods, to ensure
that the resulting subclass is still type compatible with the superclass. This requires more
precise rules about the typing of ⊕, the inheritance operator. Previously, we thought of ⊕
as a polymorphic map override operator that could combine two maps of any types,
irrespective of the types of the fields. We now require inheritance to be properly typed, in
the second-order F-bounded λ-calculus, so that we can restrict the kinds of extension that
are deemed legal. The extended type resulting from inheritance is shown to be an
intersection type [9].

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_01/column2

THE THEORY OF CLASSIFICATION, PART 16: RULES OF EXTENSION AND THE TYPING OF

INHERITANCE

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

2 MERGING RECORDS AND RECORD TYPES

In the Theory of Classification, we model objects as simple records of functions,
representing their methods, and object types as the corresponding record types, containing
the signatures of these methods. This leads to a model of inheritance based on record
union with overriding, denoted by the operator ⊕. Intuitively, this creates a longer record
by combining two shorter records:

derived = base ⊕ extra
in which the derived result contains the union of all the fields of base and extra, but fields
from extra are preferred over any identically-labelled fields from base in the result [3].
This right-handed preference of ⊕ models the notion of overriding in object-oriented
languages, in which the derived class may replace some of the methods present in the
base class with redefined versions supplied in the extra extension.

So far, we have always used ⊕ in a context where the replacement fields have the
same types as the original versions. As a consequence, we have been able to construct
Derived record types using simple set union ∪ to merge the two sets of type signatures in
the corresponding Base and Extra type-records:

Derived = Base ∪ Extra
We think of objects as sets of maplets from labels to functions, and object types as
corresponding sets of maplets from labels to function types. It is reasonable to think of
the merger of two record types as the set union of their respective sets of maplets, since
any fields with identical labels will also have identical types.

Merging in the subtyping model

In the subtyping model [10], we must consider the possibility that fields of different types
may be merged. This is because the record subtyping rule allows fields to be replaced by
subtype fields. In this case, we cannot use ∪ to merge the record types. The following is a
plausible definition of a record subtype by extension:

Vehicle = {owner : → Person, home : → Location}

Car = Vehicle ⊕ {home : → Garage, range : Litres → Kilometres}
= {owner : → Person, home : → Garage, range : Litres → Kilometres}

That is, we wish to obtain the subtyping relationship Car <: Vehicle. According to the
record subtyping rule [10], this requires Car to have at least as many fields as Vehicle (it
has one more) and requires any replacement fields to be subtypes. The field home : →
Location is replaced by home : → Garage, so the subtyping condition is only met if

MERGING RECORDS AND RECORD TYPES

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 15

Garage <: Location, which is plausible. We use ⊕, rather than ∪, to combine the two
record types, because we wish the right-hand types of any common fields to be retained
in the result.

The above model could be used in languages like Java and C++, which are based on
types and subtyping. However, in these languages, a replacement method is typically
expected to have exactly the same type as the method it replaces. In more recent versions
of C++, the type of this is allowed to be more specific in the result of a replacement
method. The overriding rules of Trellis are closest to the subtyping model, allowing both
method argument and result types to change in accordance with the function subtyping
rule [10].

Merging in the subclassing model

In the subclassing model, we merge generators and type generators, rather than objects
and object types [3, 4]. A curious thing happens when merging records according to the
(F-bounded) parametric model: the parameters are instantiated or replaced before any
record combination occurs. This means that references to different parametric types on
the left and right hand sides become unified before record combination. As a result,
record combination always merges records whose common fields have the same types.
The following illustrates a simple type generator example, in which a (somewhat
simplified) Integer-class generator is defined by extension from a Number-class
generator:

GenNumber = λσ.{plus : σ → σ, equal : σ → Boolean}

GenInteger = λτ.(GenNumber[τ] ∪ {minus : τ → τ, equal : τ → Boolean})
 = λτ.{plus : τ → τ, minus : τ → τ, equal : τ → Boolean}

We obtain the subclass relationship: ∀τ. GenInteger[τ] <: GenNumber[τ]. This is
achieved by making sure that GenInteger has more fields than GenNumber and that the
common fields are typed in terms of parameters which can be unified before record
combination occurs. In the inner type-record combination expression, GenNumber[τ]
causes the substitution of {τ/σ} in the body of GenNumber, such that the record types on
both sides of the union ∪ have field types which refer to the self-type uniformly as τ;
and, in particular, the common field equal has the same type: τ → Boolean on each side
of the union.

In fact, it is always the case, in the subclassing model, that self-type parameters are
unified before record combination. Likewise, generic type parameters may be unified
before combination [5] (see also 5.4 below). So, the simpler union ∪ of type-records
appears to be all that we need in the subclassing model.

THE THEORY OF CLASSIFICATION, PART 16: RULES OF EXTENSION AND THE TYPING OF

INHERITANCE

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

3 SUBSETS, SUBTYPES AND TYPE INTERSECTIONS

Throughout this series, we have been careful to distinguish the notation for the subset ⊆
and subtype <: relationships. This is because the relationship between the two depends on
whether we are thinking about the set of values in a concrete type, or the set of type
signatures in a record type. These two set-theoretic constructions are different, and they
correspond to different subtyping relationships.

Concrete versus abstract representation

The fundamental relationship is that types may be modelled as sets. When we assert that
an element is of a particular type, this is equivalent (in the model) to asserting that the
element is a member of a particular set:

x : T ≡ x ∈ T “x is of type T means that x is in the set T”
From this it follows that a subtype may be modelled as a subset:

S <: T ≡ S ⊆ T “S is a subtype of T means that S is a subset of T”
In the universe of types, we want to show that if x : S and S <: T, then x : T also. In the
universe of sets, x ∈ T follows from x ∈ S and S ⊆ T, by the definition of the subset
relationship:

S ⊆ T ≡ ∀x . x ∈ S ⇒ S ∈ T “S is a subset of T means that if x is in S,
 then x is also in T”

This is the fundamental relationship, which applies to types defined concretely as sets.
When we move to defining types abstractly, in terms of their syntactic signatures, then
the relationship is different. A record type with more signatures denotes a subtype of a
record type with fewer signatures. For example, if the following record types are defined:

S = {plus : Integer → Integer, minus : Integer → Integer}

T = {plus : Integer → Integer}
then it is clear that S is the larger record type and contains the signatures of T, which we
express as T ⊆ S in the universe of signature-based types. However, it is also clear that S
denotes a subtype of T, because every object that satisfies the interface S will also satisfy
the interface T. The record subtyping rule (see [10]) expresses this fact.

Intensional versus extensional definition

There are grounds for confusion here: in one model, we say: S ⊆ T; but in the other
model, we say: T ⊆ S. The difference is that, in the first model, we are comparing sets of

SUBSETS, SUBTYPES AND TYPE INTERSECTIONS

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 17

values, but in the second model, we are comparing sets of type signatures. To see how
these both ultimately reflect the same subtyping relationship, we have to distinguish the
intensional and extensional definitions of a type.

• The extension of a type is the enumeration of the set of elements that it contains,
for example, the Boolean type has the extension: {false, true}

• The intension of a type is the enumeration of the set of properties that characterise
the type, for example, the (existentially defined [1]) Boolean type has the
intension:

Boolean ≡ ∃b.{not : b → b, and : b × b → b, or : b × b → b,
 implies : b × b → b}

followed by a set of axioms defining the meanings of these operations.
To unify the concrete and abstract views of a type, it is easiest to imagine the extension of
the type, that is, the set of values (or objects) populating the type. This is the usual view
adopted in type theoretical treatments. In object-oriented programming, we usually
characterise a class intensionally, that is, by its properties (type signatures). From this, we
have to imagine the extension of the class, that is, the possible set of objects which could
populate it.

Intersection types

Here, we try to establish the relationship between intensional (signature-based) types and
extensional (value-based) types. Earlier, we modelled type extension as the union of type-
records: Derived = Base ∪ Extra. In terms of sets of signatures, this means that Base ⊆
Derived and Extra ⊆ Derived, that is, both Base and Extra contain a subset of the
signatures of Derived, which is a longer record type. By the record subtyping rule [10], a
longer record type with more field signatures is a subtype. According to this, the direction
of the subtyping relationship is contravariant with the direction of the signature subsets:
Derived <: Base and also Derived <: Extra. This is a fundamental property of type
hierarchies: the larger the interface, the smaller the set of objects which may satisfy it.

From this, we may reason about the extensions of each type. Instances of the Derived
type may also be considered instances of the Base type (and instances of the Extra type),
by the subtyping rule of subsumption. So, the extension set of the Base type is larger than
that of the Derived type; likewise the extension set of the Extra type is larger than that of
the Derived type. Since elements of the Derived extension are also members of the Base
and Extra extensions, the membership of the Derived extension is precisely the
intersection of the memberships of the Base and Extra extensions.

For this reason, the kinds of types created by merging signature-based types are
sometimes known as intersection types. Instead of writing: Base ∪ Extra (in the world of
signatures), we write: Base ∧ Extra (in the world of sets), to denote the intersection of the
Base and Extra types. Much of the fundamental research on this was done by
Compagnoni and Pierce in the mid-1990s [9, 11]. They developed a type system called

THE THEORY OF CLASSIFICATION, PART 16: RULES OF EXTENSION AND THE TYPING OF

INHERITANCE

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

“System Fω∧”, pronounced “System F-omega-meet”, a higher-order type system with
intersection types.

4 CONSTRAINING THE INHERITANCE FUNCTION

Many object-oriented languages have strict rules about method overriding, during
inheritance, because they wish to preserve type compatibility (either subtyping, or
subclassing) in the derived type. In C++ or Java, any replacement method must have
exactly the same type as the original method it replaces. This imposes a constraint on the
inheritance function, which we should like to capture in the model. We shall try to
capture this constraint in a general enough way that it will apply both to the first-order
subtyping model of inheritance, as found in Java, and also in the second-order
subclassing model of inheritance, which is a more appropriate general model for object-
oriented programming, in which polymorphic classes and simple types are actually
distinct notions.

The extend inheritance function

Inheritance is only well-defined if the Extra record provides fields whose types “merge”
with the types of the Base record. This “merge” condition is expressed as a constraint Μ
between the two record-types in the following F-bounded, second-order definition of the
inheritance function extend, which we shall now use in place of the earlier unconstrained
⊕ map override operator:

extend : ∀Base. ∀(Extra Μ Base). Base → Extra → (Base ∧ Extra)
= λBase. λ(Extra Μ Base). λ(base : Base). λ(extra : Extra).
 { label a value | (label ∈ dom(base) ∪ dom(extra)) ∧
 (label ∈ dom(extra) ⇒ value = extra(label)) ∧
 (label ∉ dom(extra) ⇒ value = base(label)) }

This definition says that: “extend takes two type arguments, Base and Extra, where Extra
must satisfy the type-merge condition with Base, then two record arguments, base : Base
and extra : Extra, and constructs a result by merging the two records, which has the
intersection type (Base ∧ Extra). The result is a map of label-value pairs, such that the set
of labels is the union of the domains of base and extra, and the values are preferentially
taken from extra, if the label is present in extra, otherwise taken from base.” (Note that
base(label) maps to the value opposite label in the base map [4]).

Readers will note that the body of extend is identical to the body of ⊕ in earlier
articles [4]. These two functions are essentially the same, except that extend is now
properly-defined in the second-order λ-calculus, with type arguments (Base and Extra) as
well as value arguments (base and extra). The type arguments were conveniently omitted
from the earlier definition of ⊕, which we imagined could be applied directly to two
record values. We can retrospectively define the operator ⊕ in terms of extend:

CONSTRAINING THE INHERITANCE FUNCTION

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 19

∀β. ∀ε. ⊕ β, ε = extend [β,ε]
This creates a simply-typed version of ⊕ for each pair of records we wish to combine.
Really, ⊕ is just a short-hand for extend with two types already supplied.

The Μ type-merge condition

The all-important type-merge condition Μ is a constraint that restricts the record-types
that are allowed to be substituted for the Extra type argument. Although this is a rather
special condition, constructed for the purpose of typing inheritance, it is syntactically no
different from other kinds of restriction, such as the F-bound: ∀(τ <: F[τ]), which restricts
a type τ to be a subtype of some generator expression. Here, we restrict Extra to range
over those record types whose field-types enter into a particular relationship with the
types of the Base fields. The constraint Μ is defined as follows:

∀Base. ∀Extra. Extra Μ Base ::=
 ∀label ∈ dom(Base) ∩ dom(Extra). Base(label) = Extra(label)

This says: “For all types Base and Extra, the type-merger condition Extra Μ Base is
defined as being satisfied if, for all common fields in Base and Extra with identical
labels, the corresponding types are also equal”.

For this, we must assume that the notion of “type equality” is well-defined. In full,
this might be expressed by a whole set of rules. For the model of inheritance used in the
Theory of Classification, we require the following kinds of type equality:

t = t -- identity of simple types

τ = τ -- identity of type parameters

(S × T) = (S × T) -- equality of product types, where S, T ::= t | τ

(S → T) = (S → T) -- equality of function types, where S ::= t | τ | T × T
 and T ::= t | τ

where t is a simple type, τ is a type parameter, and S, T are metavariables ranging over
simple types and type parameters. (Type rules sometimes use metavariables like this to
save having to repeat the same rule for simple types and parametric types).

Constrained typed inheritance

The result of extend is well-defined if Extra Μ Base (“Extra merges with Base”). This
rule constrains inheritance just enough to behave exactly like typed inheritance in Java,
but disallows certain other kinds of inheritance For example, the Trellis-style of
inheritance in section 2.1 is now ruled out by the type-merge condition, because a field is
replaced by a field which has a different type. The Base and Extra records have the types:

THE THEORY OF CLASSIFICATION, PART 16: RULES OF EXTENSION AND THE TYPING OF

INHERITANCE

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

Base = {owner : → Person, home : → Location}
Extra = {home : → Garage, range : Litres → Kilometres}

and the common labels in dom(Base) ∩ dom(Extra) ⇒ {home}. However, when we
compare the corresponding types, we find that: Base(home) ⇒ Location and Extra(home)
⇒ Garage. So, we establish that common field-types are not identical: Base(home) ≠
Extra(home), and therefore that Μ is not satisfied. To pass the type-merge condition, the
Extra record would have to redefine the home field with the same type: home : →
Location, as in Java.

By deliberate design, the same type-merger rule allows the kind of unions of type-
records we require for the merger of parameterised record types, which are used in the
subclassing model of inheritance. Repeating the example from section 2.2:

GenNumber = λσ.{plus : σ → σ, equal : σ → Boolean}

GenInteger = λτ.(GenNumber[τ] ∪ {minus : τ → τ, equal : τ → Boolean})
 = λτ.{plus : τ → τ, minus : τ → τ, equal : τ → Boolean}

The Base and Extra records have the following types, after the parameter substitution
{τ/σ}:

Base = {plus : τ → τ, equal : τ → Boolean}
Extra = {minus : τ → τ, equal : τ → Boolean}

and the common labels in dom(Base) ∩ dom(Extra) ⇒ {equal}. When we compare the
corresponding types, we find that: Base(equal) ⇒ τ → Boolean, and: Extra(equal) ⇒ τ
→ Boolean. Intuitively, these two types are identical; formally we would need to appeal
to the equality of two function-types (see 4.2) based on the identity of the two argument
type parameters τ and the identity of the two simple Boolean result types. Ultimately, the
condition Μ is satisfied, so this is a legal extension.

5 VARIATIONS ON TYPED INHERITANCE

The standard “reference” model of inheritance consists of the extend inheritance function
and the Μ type-merger constraint. This allows a record to be extended only if overriding
fields have the same types as in the original fields they replace. The resulting intersection
type is always a record-type consisting of the union of the signatures of the Base and
Extra record types, since common fields have the same types. We now consider a number
of object-oriented languages and examine how their models of typed inheritance differ
from this reference model.

VARIATIONS ON TYPED INHERITANCE

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 21

Inheritance in Smalltalk

Smalltalk is not strongly typed. However, certain rules are still observed about
inheritance. A method can only override another method if its untyped “signature” is
structurally similar, for example, the method at:put: always has the structural form:

at: anIndex put: anItem
Any method in a descendant class must have the same name and structural form in order
to override this method. So, the “arity” of method arguments and results is always
preserved, although nothing can be said about the individual types of each argument or
result. Smalltalk can distinguish product types σ × τ from basic types τ, but apart from
this, all basic types (and parameters, considering that self has an F-bounded parametric
type) are indistinguishable, and so must be considered equivalent. So, for Smalltalk, we
should have to redefine the notion of type equality to allow s = t = σ = τ for all simple
types s, t and all parameters σ, τ.

Inheritance in Trellis

The type-merger condition above is too restricting to describe inheritance in Trellis.
Trellis allows full subtyping in its overriding rules, that is, methods may be replaced by
other methods whose arguments have more general types and whose results have more
specific types, according to the contravariant and covariant parts of the function
subtyping rule. To handle Trellis, we should modify our definition of Μ:

∀Base. ∀Extra. Extra Μ Trellis Base ::=
 ∀label ∈ dom(Base) ∩ dom(Extra). Extra(label) <: Base(label)

This now allows field types in the Extra record to be subtypes of common fields in the
Base record. The resulting intersection type Base ∧ Extra may contain finer intersections
of field types, for example, the extension of Vehicle in 2.1:

{owner : → Person, home : → Location} ∧
 {home : → Garage, range : Litres → Kilometres}
⇒ {owner : → Person, home : → (Location ∧ Garage),
 range : Litres → Kilometres}
⇒ {owner : → Person, home : → Garage, range : Litres → Kilometres}

requires the nested intersection: Location ∧ Garage = Garage. (Constructively, Garage is
the largest type which is a subtype of both Garage and Location).

Inheritance in Java and C++

The original type-merger condition describes exactly the constraint on inheritance in
Java, in which all replacement methods must have exactly the same types as the methods
they replace. This strict equality nearly describes the condition in C++, apart from the
relaxation that applies to returned self-types. We can express this relaxation as:

THE THEORY OF CLASSIFICATION, PART 16: RULES OF EXTENSION AND THE TYPING OF

INHERITANCE

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

∀Base. ∀Extra. Extra Μ C++ Base ::=
 ∀label ∈ dom(Base) ∩ dom(Extra).
 ∀σ. Base(label) ≠ (σ → Base) ⇒ Base(label) = Extra(label) ∧
 ∀σ. Base(label) = (σ → Base) ⇒ Extra(label) = (σ → Base ∧ Extra)

saying that replacement methods must have the identical types unless they return the self-
type, in which case methods of the function type: σ → Base must be replaced by methods
of the function type σ → (Base ∧ Extra). The resulting intersection type Base ∧ Extra
will be a subtype of Base.

C++ may also have type parameters in its method signatures, if the template class
mechanism is used (and so will Java, from version 1.5 onward). The notion of type
equality must therefore allow for the comparison both of exact types and type parameters
(see 4.2).

Inheritance in Eiffel

The overriding rules of Eiffel allow methods to be replaced by methods whose arguments
and results are both uniformly specialised. This is not legal within a simple subtyping
regime; but Eiffel is not based on the subtyping model of inheritance. Elsewhere, Eiffel
implicitly evolves the self-type (the type of current) under inheritance and anchors other
types to the self-type, especially in binary methods1 such as the infix “+” method in the
Numeric class:

infix “+” (arg : like current) : like current
Because of this, it is tempting to think of Eiffel as following the F-bounded subclassing
model of inheritance, in which “like current” is actually a parametric type σ of the kind:
∀(σ <: GenNumeric[σ]). Eiffel also has generic and constrained generic parameters:

class SortedList [T → Comparable] … end
which are exactly the same notion as F-bounds. Think of the constrained type parameter
T as a parametric type: ∀(τ <: GenComparable[τ]). So, it makes most sense to think of
Eiffel as belonging to the second-order family of languages, along with Smalltalk and
Flavors.

This being the case, the reference definition of type-merge is adequate to capture
Eiffel’s model of inheritance. You simply have to imagine that all Eiffel class-types are
in fact parametric types, which are only fixed when object instances are created. The
model of inheritance unifies all the type parameters before combining the records. We
illustrate this with a parametric version of the example from 2.1 above:

1 A binary method is one which accepts an argument of the same type as self. It is binary in the sense that it
deals with two objects of the same type.

VARIATIONS ON TYPED INHERITANCE

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 23

GenVehicle = λ(π <: GenPerson[π]).λ(θ <: GenLocation[θ]).
 λσ.{owner : → π, home : → θ}

GenCar = λ(π <: GenPerson[π]).λ(θ <: GenGarage[θ]).
 λ(ρ <: GenLitres[ρ]).λ(κ <: GenKilometres[κ]).
 λσ.(GenVehicle[π,θ] ∪ {home : → θ, range : ρ → κ})

= λ(π <: GenPerson[π]).λ(θ <: GenGarage[θ]).
 λ(ρ <: GenLitres[ρ]).λ(κ <: GenKilometres[κ]).
 λσ.{owner : → π, home : → θ, range : ρ → κ}

The subclass generator GenCar reintroduces all the parametric types used within the
class, and substitutes these new parameters inside the body of the parent generator,
through the application: GenVehicle[π,θ] before merging this adapted record with the
record of extra methods. So, all common fields have the same types before record
combination is computed, and the simple union of signatures is all that is required. The
notion of type equality must allow for equality of simple types (such as Eiffel’s Integer
and Real types) and equality of type parameters for all class-types (see 4.2). Simons first
proposed a unified parametric model of Eiffel’s type system in 1995 [12], in which the
self-type, anchored types, constrained generic types and ordinary class-types were all
modelled using F-bounded parameters.

6 CONCLUSION

In this article, we have revisited the notion of typed inheritance. The Theory of
Classification describes two models of inheritance, one a first-order model based on
subtyping (Java, C++) and the other a second-order model based on subclassing
(Smalltalk, Eiffel). Objects are modelled as records, or maps from labels to methods, so
inheritance may be modelled as map union with override. Previously, the classical
function override operator ⊕ was used without any constraints on the types of the records
being combined. Here, we have introduced an F-bounded second-order definition of the
inheritance function, called extend, with a constraint Μ on the type of extension that may
legally be combined with any record.

We showed how, in the reference model, the constraint merely has to ensure that
replacement fields have the same types as the fields they replace. This works for Java-
style inheritance (first order) and also for Eiffel-style inheritance (second-order) in which
field types may be parametric as well as simply-typed. Variations on this allow
replacement fields to be subtypes (Trellis), or a mixture of type-equal and subtype fields
(C++). One observation emerging from this is that the ability to replace fields with
subtype fields is not a frequent requirement in object-oriented languages. The subclassing
model of inheritance only requires type-equality, because all the field types are unified
prior to combination, whether by parameter unification [3], or instantiation [5]. Simons
and Bruce were the first to note the poor match between simple subtyping and natural

THE THEORY OF CLASSIFICATION, PART 16: RULES OF EXTENSION AND THE TYPING OF

INHERITANCE

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

models of inheritance [13, 14]. This is what originally motivated the Theory of
Classification.

REFERENCES

[1] A J H Simons, “The theory of classification, part 3: Object encodings and
recursion”, in Journal of Object Technology, vol. 1, no. 4, September-October
2002, pp. 49-57. http://www.jot.fm/issues/issue_2002_09/column4

[2] A J H Simons, “The theory of classification, part 7: A class is a type family”, in
Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 13-22.
http://www.jot.fm/issues/issue_2003_05/column2

[3] A J H Simons, “The theory of classification, part 8: Classification and inheritance”,
in Journal of Object Technology, vol. 2, no. 4, July-August 2003, pp. 55-64.
http://www.jot.fm/issues/issue_2003_07/column4

[4] A J H Simons, “The theory of classification, part 9: Inheritance and self-reference”,
in Journal of Object Technology, vol. 2, no. 6, November-December 2003, pp. 25-
34. http://www.jot.fm/issues/issue_2003_11/column2

[5] A J H Simons, “The theory of classification, part 13: Template classes and
genericity”, in Journal of Object Technology, vol. 3, no. 7, July-August 2004, pp.
15-25. http://www.jot.fm/issues/issue_2004_07/column2

[6] A J H Simons, “The theory of classification, part 11: Adding class types to object
implementations”, in Journal of Object Technology, vol. 3, no. 3, March-April
2004, pp. 7-19. http://www.jot.fm/issues/issue_2004_03/column1

[7] A J H Simons, “The theory of classification, part 10: Method combination and
super-reference”, in Journal of Object Technology, vol. 3, no. 1, January-February
2004, pp. 43-53. http://www.jot.fm/issues/issue_2004_01/column4

[8] A J H Simons, “The theory of classification, Part 15: Mixins and the superclass
interface”, in Journal of Object Technology, vol. 3, no. 10, November-December
2004, pp. 7-18. http://www.jot.fm/issues/issue_2004_11/column1

[9] A Compagnoni and B Pierce, “Multiple inheritance via intersection types”,
Technical Report ECS-LFCS-93-275, University of Edinburgh, (Edinburgh: LFCS,
1993).

[10] A J H Simons, “The theory of classification, part 4: Object types and subtyping”, in
Journal of Object Technology, vol. 1, no. 5, November-December, 2002, pp. 27-35.
http://www.jot.fm/issues/issue_2002_11/column2

[11] A Compagnoni, “Subtyping in Fω∧ is decidable”, Technical Report ECS-LFCS-94-
281, University of Edinburgh, (Edinburgh: LFCS, 1994).

http://www.jot.fm/issues/issue_2002_09/column4
http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2003_07/column4
http://www.jot.fm/issues/issue_2003_11/column2
http://www.jot.fm/issues/issue_2004_07/column2
http://www.jot.fm/issues/issue_2004_03/column1
http://www.jot.fm/issues/issue_2004_01/column4
http://www.jot.fm/issues/issue_2004_11/column1
http://www.jot.fm/issues/issue_2002_11/column2

CONCLUSION

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 25

[12] A J H Simons, “Rationalising Eiffel’s type system”, Proc. 18th Conf. Tech. Object-
Oriented Lang. and Sys., eds. R Duke, C Mingins and B Meyer, (Melbourne :
Prentice Hall, 1995), 365-377.

[13] A J H Simons, “A language with class: The theory of classification exemplified in
an object-oriented language”, PhD Thesis, University of Sheffield (Sheffield,
Department of Computer Science, 1995).

[14] K B Bruce, A Fiech and L Petersen, “Subtyping is not a good “match” for object-
oriented languages”, Proc. European Conf. Obj-Oriented Prog. 1997, pub. LNCS
1241, (Jyväskylä: Springer Verlag, 1997) 104-127.

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Science, University of Sheffield, where he
leads object-oriented research in verification and testing, type theory
and language design, development methods and precise notations. He
can be reached at a.simons@dcs.shef.ac.uk.

mailto:a.simons@dcs.shef.ac.uk

