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A key aspect of successfully using UML is understanding the semantics of the nota-
tions. UML 2 will increase the already substantial collection of notations supported
by UML 1.x. At the same time, this will augment the difficulty users experience in
understanding semantics. In this paper we propose that while the diverse notations
may render concepts differently, the concepts can often be considered semantically
equivalent. This gives rise to an architecture where two single abstract syntaxes
(structure and behaviour) underpin UML 2’s seven concrete syntax. Because there a
fewer semantically distinct concepts, this makes UML both easier to understand and
substantially easier to implement.

1 INTRODUCTION

A characteristic of languages is that the richer they become, the more difficult they
are to use. UML 2 promises to delivery a number of new language constructs
that enable a broader range of specifications to be constructed. A key issue in
successfully using UML 2 is understanding the semantics of the augmented language.
For example, what is the meaning of a class diagram in terms of a component
diagram, or what is the meaning of a state machine in terms of an activity diagram.
These are not easy questions to answer and involve understanding the semantics of
each individual construct.

The current approach to defining UML is to define an abstract syntax for each
of the notations (see [3]). Each abstract syntax is associated with a concrete syntax
that defines the rendering of the notations to the user, as illustrated in figure 1.
This approach is also followed in the dominant submission to UML 2 superstructure
[4]. Because every concrete syntax construct has a construct in the abstract syntax,
there are as many semantic units to understand as there are concrete constructs.
Consequently, comprehending the semantics of UML is (and will be) non-trivial.

The approach proposed in this paper is to generalise the abstract syntax of UML
2 such that there is no longer an abstract syntax for each concrete syntax, rather a
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Figure 1: The current approach to defining UML

single abstract syntax is shared by many concrete syntaxes. This generalisation is
motivated by the observation that there are many semantically equivalent constructs
across diverse UML notations, for example join action is common to both state
machines and activity diagrams. An overview of the resulting architecture is shown
in figure 2. From this it can be seen that two abstract syntaxes underpin the
spectrum of concrete syntaxes. Structure abstract syntax deals with notations such
as class diagrams and component diagrams and behaviour abstract syntax deals
with notations such as state machines activity diagrams and sequence diagrams. The
consequence of this generalisation is that overall size of the abstract syntax definition
is reduced. This means that there are fewer distinct semantics to understand, and
a significant smaller definition to implement.
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Figure 2: The proposed approach to defining UML

It should be noted that it is still necessary to define the semantics of the fewer
abstract syntax concepts. The approach we have taken to this is described in [1]. In
this, the abstract syntax is mapped down to a kernel of primitive concepts [2] each
of which has an associated model-based semantics. Although this detail is outside of
the scope of the paper, we observe that this mapping is greatly simplified by having
fewer abstract syntax concepts to define the mapping for.

This paper describes the two abstract syntax models, the (almost complete)
concrete syntax for five of the concrete syntaxes. Due to space limitations we do
not describe the concrete syntax for collaboration and use case diagrams and only
the important constraints are included in presented models. The paper is now
structured as follows. Sections 2 and 3 presents the structure and behaviour abstract
and concrete syntax model respectively. Finally in section 4 we summarise our
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2 STRUCTURE

conclusions.

2 STRUCTURE

Currently UML enables the definition of structural models using class diagrams.
UML 2 augments this with the capability of modelling component diagrams. Com-
ponent diagrams are used to express architectural level definitions of systems and
are particularly used within the context of systems engineering. In the following
sub-sections we demonstrate how a unification can be leveraged between class di-
agrams and component diagrams. This unification is enabled by the treatment of
components as classes and a component’s ports as attributes of a class.

Abstract Syntax

STRUCTURE 
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Definition for AbstractSyntax::Structure package 

Classes 

Association 
associations    
end  

Attribute 

Figure 3: Structure abstract syntax

Figure 3 illustrates the abstract syntax for structure. The treatment of Class and
its Features is conventional, the important difference is the addition of Connection
which relates two Attributes. Syntactically, a Connection binds the type of the
related Attributes:

context Connnection inv:
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self.source.type = self.target.type

This constraint is mirrored in the semantic domain (not shown) and ensures that
the values of the two Attributes are appropriately bound (see [2] for more details
of the semantic domain and the role it plays in our approach to modelling). The
semantic domain constraint must also takes into account the direction of Connection
and whether the Connection is inverse to that direction.

Only connectable attributes can be connected:

context Connection inv:
self.source.connectable and self.target.connectable

Packages, PackagedElements and Connections have a self association called role.
This is a generalised version of UML 1.x role mechanism which enables candidate
scenarios of the model element to be specified [5][195-203]. All model elements in
the structure (and behaviour) abstract syntax have a role mechanism either directly
or derived through generalisation1. The relationship between a role and and a
roleOwner is that the former can only constrain the semantics of the latter. The
precise constraint for this association is dependent on the model element, in the case
of class this is:

context Class inv:
self.role->forAll(role | role.memberStructuralFeature->excluding(
role.memberStructuralFeature->select(s | s.isKindOf(Constraint))->forAll(
feature | self.memberStructuralFeature->exists(feature.roleOwner))) and
self.role->forAll(role | self.memberStructuralFeature->select(s |
s.isKindOf(Constraint))->forAll(constraint |
role.memberStructural->exists(constraint)))

Roles effectively create a parallel model mirroring the composition hierarchy of the
roleOwner. A Package role must have PackagedElement roles for its role owners
PackagedElements, and a Class role must have StructuralFeature roles for its role
owners StructuralFeatures, and so on.

Class diagram

The concrete syntax for Class diagram is shown in figure 4 and describes how a
ClassBox can be the target of AttributeLines,AssociationLines and a Generalisa-
tionLines. A ClassBox contains compartments for its Operations ’s and Attribute’s
strings. The mapping between the Class diagram model and Structure model is
depicted in 5.

1The repeating role pattern alludes to templates which are the means by which the definition
presented in this paper has been specified, see [2] for more details.
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CLASS

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.2 – JANUARY 2003 51

7.2  MODEL

Figure 7-1 Definition for ConcreteSyntax::Class package

7.2.1  Classes 

AttributeCompartment
associations   

containedAttributeString The string within the AttributeCompartment. 

ClassBox
associations   

containedAttributeCompartment The contained AttributeCompartment.

containedClassCompartment The contained ClassCompartment.

containedOperationCompartment The contained OperationCompartment. 

ClassCompartment
associations   

containedClassBox The contained ClassBox.

OperationCompartment
associations   

containedOperationString The contained OperationString.

UML2Super::ConcreteSyntax::Class
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OperationString AttributeString
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*

2

*2
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*
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Figure 4: Class diagram concrete syntax

CLASS
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7.4  ABSTRACT SYNTAX MAPPING

Figure 7-2 The AbstractConcreteMapping::Class Package

7.5  EXAMPLE

UML2Super::AbstractConcreteMapping::Class

AttributeLine Attribute

GeneralisationLine Generalization

ClassBox Class

AttributeString

OperationString

Attribute

Operation

AttributeLine Attribute

GeneralisationLine Generalization

ClassBox Class

AttributeString

OperationString

Attribute

Operation

AssociationLine Association

1*

views

1*
views

1*
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1*
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1*
views

1*

views

Class1

boolean  attribute1
boolean  Operation1 ()

Figure 5: Class diagram abstract syntax mapping

Figure 6 describes a vending machine as an instance of the class concrete syntax
definition. As can be observed from this example, our class model conforms to the
conventional UML 1.x definition.
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Figure 6: Class diagram of a vending machine

Component diagram

Component diagrams describe systems as components and the relationship between
the systems as connectors. When two systems are related via a connector, this
specifies that data sent by one system is available to the other system (depending
on the direction of connection). The concrete syntax model for component diagrams
is shown in figure 7 and the mapping to the abstract syntax model is shown in figure
8. PortBoxes must map onto attributes which are Connectable:

context PortBox inv:
self.views.connectable = true

The nesting of components is unfolded onto classes and their attributes. Given
a ComponentBox A which contains a ComponentBox B, A and B are mapped to
Classes and the class representing A must have an attribute of type B :

context ComponentBox inv:
self.containedComponentBox->forAll(ccb | self.views.owned->includes(sf |
ccb.views = a and a.isKindOf(Attribute)))

The equivalence of component and class models is concretely demonstrated by
the component diagram illustrated in figure 9 which is semantically equivalent to
the vending machine shown in figure 6. Those attributes in figure 6 which are shown
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COMPONENT

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.2 – JANUARY 2003 47

6.2  MODEL

Figure 6-1 Definition for ConcreteSyntax::Component package

6.2.1  Classes

ComponentBox
associations   

containedComponentBox The contained ComponentBoxes.

containedPortBox The contained PortBoxes.

ConnectorLine
associations   

port The PortBoxes connected by the ConnectorLine.

6.2.2  Well-formedness Rules

6.2.3  Operations

UML2Super::ConcreteSyntax::Component
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PortBox ConnectorLine

ComponentBox

PortBox ConnectorLine

*

1

2 *
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*
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*
0..1
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Figure 7: Component diagram concrete syntax
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6.3  GRAPHICAL REPRESENTATION

6.4  ABSTRACT SYNTAX MAPPING

Figure 6-2 Definition for AbstractConcreteMapping::Component package

SYMBOL GRAPHICS NOTES 
Component Box 

Component

 

 

Pin Box 
 

 

Connection Line  
 

 

 

UML2Super::AbstractConcreteMapping::Component

ComponentBox

PortBox

ConnectorLine

Class

Attribute

Connection

ComponentBox

PortBox

ConnectorLine

Class

Attribute

Connection

1*

views

1*

views

1*

views

Figure 8: Component diagram abstract syntax mapping

as ports in figure 9 have their boolean connectable value set to false (not concretely
rendered).
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Figure 9: Component diagram of the vending machine

VMBank

LeftVM/VM RightVM/VM
PowerPower

Dispenser
Control

Figure 10: A Scenario of the vending machine’s component diagram
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Figure 10 presents an example of the usefulness of the role mechanism for describ-
ing scenarios. In this, a bank of two vending machines is described, each machine
being a particular scenario of the original machine. Figures 9 and 10 demonstrates a
powerful aspect of the recursive treatment of roles, which is that the same concrete
syntax can be used to describe both types and roles of types since they are the same
model element (the basic type is a role whose roleOwner is self).

3 BEHAVIOUR

In our definition of behaviour, a single abstract syntax model is used as a basis for
use case, collaboration, state machines, activity diagrams and sequence diagrams.
In this paper we deal only with state machines and activity diagrams.

Abstract Syntax

The abstract syntax of behaviour illustrated in figure 11 can be broadly considered
in two parts. The first part is a hierarchy of actions (which is made explicit in the
lower half of figure 11) some of which have sub-actions. The second part is relations
between actions such as Flow and Transition.

At first sight, treating State as a type of Action may seem unconventional since
the conventional interpretation is that it represents a static property of a system
(i.e. the value of slots and objects) at a particular point in time. Our approach
extends this property with dynamic aspects by defining a state to be an action for
two reasons:

1. In UML, state machine states have dynamic properties. For example, a state
state specifies an entry action, exit action and may continuously execute a do
action until the exit action is invoked. Thus, it is natural and convenient to
treat a state as an action.

2. State machines and activity diagrams share many concepts (for example join
and fork) the our superstructure proposal provides a common abstract syntax
model for both these and other behavioural notations. This unification is
leveraged by treating state machine states as actions.

The formal definition of the semantics of behaviour is outside of the scope of
this paper. However, informally the semantics is built around the ability to pre-
empt execution. Each Action has a boolean flag which denotes whether it can be
prematurely terminated. When a pre-emptable action is related by a type of flow,
the action does not need to complete its execution before the flow can be executed.
A transition’s effect Action cannot be pre-empted, an additional constraint captures
this:
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BEHAVIOUR 
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Definition for AbstractSyntax::Behaviour package 

Classes 
Figure 11: Behaviour abstract syntax

context Transition inv:
self.effect.preemptable = false

As with the definition of structure, figure 11 includes a generalised version of
UML 1.x’s role mechanism. This enables scenarios to be described over any be-
havioural model based on the abstract syntax.

State machine diagram

The concrete syntax for state machines is shown in figure 12 and the associated
abstract syntax mapping in figure 13. A top level state machine State is owned by
a Class, only Regions can own sub-States:
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context CompositeAction inv:
self.subaction->forAll(sa | sa.isKindOf(State) implies
self.isKindOf(Region)

A State has invariants which must hold true during the lifetime of its execution. The
nesting of States results in the propagation of invariants down the state hierarchy:

context State inv:
self.subregion->forAll(sr | sr.subaction->forAll(sa | sa.isKindOf(State)
implies (self.invariant->forAll(i | sa->includes(i)))))

A Transition is semantically a type of guarded Flow (the guard is denoted by the
trigger in figure 11). Because of the pre-emption semantics, States are not concerned
with checking whether a Transition can fire. It is the responsibility of the Transition
to ensure that when it fires that source States are terminated. The entry and exit
actions of States are not pre-emptable:

context State inv:
self.entry.preemptable = false and self.exit.preemptable = false

Therefore when a Transition pre-empts a State, the entry and exit actions will
always execute.

STATEMACHINE 

Summary 
 

Definition 

UML2Super::ConcreteSyntax::StateMachine

StateBox

StateSymbol

RegionCompartment

StateDiagram

PseudoStateSymbol

ForkSymbol

JunctionSymbol
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2* end
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containedInternalTransitionCompartment
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*
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0..1
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Definition for ConcreteSyntax::StateMachine package 

Classes 

ChoiceSymbol 
associations    
views  

FinalSymbol 
associations    
views  

ForkSymbol 
associations    

views  

History Symbol 

Figure 12: State machine concrete syntax
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STATEMACHINE 
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Definition for AbstractConcreteMapping::StateMachine package 

Classes 

Well-formedness Rules 

Operations 

Figure 13: State machine abstract syntax mapping

In the current model there is an ingredient of non-determinism. A Transition
can occur when the Transition’s guard is enabled, but there is no semantic which
ensures a Transition will definitely occur when enabled. This is consistent with
UML 1.x.

Figure 14 describes the behaviour of the Dispenser component of a vending
machine as an instance of state machine concrete syntax definition. This serves
to demonstrate the conventional consideration of state machines in the presented
definition.

Activity diagram

Activity diagrams share many common features with state machine diagram. Activ-
ity state and state machine state are semantically equivalent, transitions are a kind
of flow with some added detail (see figure 11) and both fork and join actions are
common to both types of diagrams. The homogenous nature of state machine dia-
grams and activity diagrams is reflected in the mapping of activity diagram concrete
syntax (figure 15) as shown in figure 16 with concepts shared by the state machine
concrete syntax (figure 12).

Figure 17 illustrates the use of the activity diagram in describing the behaviour
of the vending machine. Unlike component diagrams and class diagrams it does not
make sense to show the same model viewed by these alternative notations, during
the design of systems they are usually used mutually exclusively. What figures 14
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Dispense

Idle Available
Check

[prodq>0

[prodq=0]

SelectItem

Figure 14: State machine of the vending machine

and 17 do demonstrate is that the sharing of semantics between state machines and
activity diagrams. For example, the Junction symbol in figure 17 has precisely the
same underlying abstract syntax and semantics as that in the state machine of figure
14.
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ACTIVITY

2U CONSORTIUM UML 2.0 SUBMISSION VERSION 0.2 – JANUARY 2003 56

8.2  MODEL

Figure 8-1 Definition for ConcreteSyntax::Activity package

8.2.1  Classes

ActionBox
associations   

containedActionSymbol The contained ActionSymbols.

containedFlowLine  The contained FlowLines.

containedPinBox The contained PinBoxes.  

ActivityDiagram
associations   

ownedSwimLane The owned SwimLanes.

ConnectorLine
associations   

end The connectorLine end’s.  

UML2Super::ConcreteSyntax::Activity

ActivityDiagramSwimLane

ActionSymbol

PseudoActionSymbolActionBox

JoinSymbol ForkSymbol

InitialSymbol

JunctionSymbol

FinalSymbol ChoiceSymbol InitialSymbol

FlowLine

* 1* 0..1

owningActivityDiagram

ownedSwimLane

*

0..1 containingSwimLane

containedActionSymbol*

0..1

containingSwimLane

containedFlowLine
2*

flowend
*

0..1

containingActionBox

containedActionSymbol*

0..1

containingActionBox

containedFlowLine

Figure 15: Activity diagram concrete syntax

ACTIVITY
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8.4  ABSTRACT SYNTAX MAPPING

Figure 8-2 Definition for AbstractConcreteMapping::Activity package

UML2Super::AbstractConcreteMapping::Activity
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Figure 16: Activity diagram abstract syntax mapping
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Product
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Money

Figure 17: Activity diagram of the vending machine

4 CONCLUSION

The next generation of UML is an important step in enabling model oriented soft-
ware engineering. In order for it to cater for diverse requirements UML 2 must
contain new notations not currently found in UML 1.x. We have argued that this
does not necessarily mean introducing fundamentally new abstractions (new seman-
tics). Instead the new abstractions can be considered as new syntax which share a
semantic underpinning with existing notations. The abstract syntax presented here
is substantially smaller than UML 1.x even though it supports the new notations
required by UML 2.0. The models described in this paper have been implemented
by Tata Consultancy Services (TCS) in their Mastercraft tool. The vending machine
model shown throughout the paper have been modelled using Mastercraft, adding
weight to the presented approach.

Because of the unification of abstract syntax, and interesting aspect of the pre-
sented approach is that new concrete syntaxes can be formed consisting of a hybrid
of the distinct concrete syntaxes. For instance, it is possible to have a behavioural
notation that combines aspects of state machines, activity diagrams and sequence
diagrams. We intend to explore this avenue as future work.
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