
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 1, January-February 2005

Cite this article as follows: Pawel Kalczynski: “A Java Implementation of the Branch and Bound
Algorithm: the Asymetric Traveling Salesman Problem”, in Journal of Object Technology, vol. 4,
no. 1, January-February 2005, pp. 155-163. http://www.jot.fm/issues/issue_2005_01/article5

A Java Implementation of the Branch
and Bound Algorithm: The Asymmetric
Traveling Salesman Problem

Pawel Kalczynski, University of Toledo, USA

Abstract
This paper offers a description of a Java implementation of the branch-and-bound (BnB)
algorithm for the Traveling Salesman Problem with asymmetric cost matrix (ATSP). A
generic interface for solving minimization problems with BnB is proposed and the results
of computational experiments for ATSP with random cost matrices are given for
different problem sizes (50, 100, 150, 200, 250, and 300 cities).

1 INTRODUCTION

Branch and bound (BnB) is a set of enumerative methods applied to solving discrete
optimization problems. The original problem, also referred to as a “root problem” is
bounded from below and above. If the bounds match, the optimal solutions have been
found. Otherwise the feasible region i.e., the space in which the argument of the problem
function f(x) is confined by explicit constraints, is partitioned into subregions. The
subregions constitute feasible regions for subproblems, which become children of the
root problem in a search tree. The principle behind creating relaxed subproblems
(relaxations) of the original problem, the process also known as “branching,” is that
unlike the original problem, the relaxations can be solved within a reasonable amount of
time. If a subproblem can be optimally solved, its solution is a feasible, though not
necessarily optimal, solution to the original problem. Therefore, it provides a new upper
bound for the original problem. Any node of the search tree with a solution that exceeds
the global upper bound can be removed from consideration, i.e., the branching procedure
will not be applied to that node. The tree is searched until all nodes are either removed or
solved. BnB is guaranteed to reach the optimal solution, provided that it exists.

The Traveling Salesman Problem (TSP) is a graph theory problem of finding the
shortest path a salesman can take through each of n cities visiting each city only once.
This path is also referred to as the most efficient Hamiltonian circuit.

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_01/article5

A JAVA IMPLEMENTATION OF THE BRANCH AND BOUND ALGORITHM: THE ASYMETRIC

TRAVELING SALESMAN PROBLEM

156 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

In the traditional TSP, the cost of traveling (e.g. distance) between any two cities does not
depend on the direction of travel. Hence, the cost (distance) matrix C(n×n) representing
the parameters of the problem is symmetric, i.e., the elements of the matrix cij = cji for all
i=1,…,n and j=1,…,n.

A generalized version of the TSP, known as Asymmetric TSP or ATSP, assumes the
asymmetric cost matrix. To illustrate the practical application of ATSP let us imagine a
mailman who works in the mountains and must visit all his customers in the shortest
time. Each element of the cost matrix cij represents the time it takes to get from home i to
home j. Depending on whether he goes uphill or downhill, the traveling time between the
two homes may be significantly different.

Solving larger instances of TSP or ATSP optimally has fascinated researchers since
the early computers first appeared at universities. Because the problem is combinatorially
explosive in nature (there is n! possible solutions), efficient mathematical models had to
be developed first.

The application of BnB to TSP was originally proposed by Little et al. [Little1963].
Later, the techniques of patching cycles have been refined by many researchers, including
Zhang, whose BnB algorithm [Zhang1993] is the most efficient, to the best of our
knowledge. An excellent overview of the existing heuristics for ATSP can be found in
[Johnson2002]

This paper revisits some 20-year-old algorithms and contributes to the field of object
technology by offering a description of the model and implementation of a generic
package for solving discrete minimization problems with the branch and bound method.
In particular, the package is implemented for and tested on the Traveling Salesman
Problem with asymmetric cost matrices.

The following section of this paper offers the description of the generic model of the
branch and bound method. Section 3 presents the BnB framework for solving ATSP.
Section 4 contains computational results for different problem sizes of ATSP followed by
a brief summary.

2 BRANCH AND BOUND PACKAGE

The proposed Branch and Bound Package implemented with Java can be used to solve
various discrete minimization problems. The package was modeled according to the
general description of BnB [Balas1985] adopted to the OOP approach.

Let P denote any (abstract) problem. Let Pi.value denote the optimal solution to the
instance Pi of problem P. Further, let R be the relaxation of P such that the Ri.value
bounds Pi.value from below. It is important that Ri.value may be computed (or
approximated from below) at all stages. Further, let us define a branching rule for
breaking up the feasible set of the currently analyzed instance of the relaxation Ri.

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 157

Finally, let us define a rule for choosing the next relaxed problem to be processed
(selection rule). Then the branch and bound algorithm [Balas1985] is given by:
Step 1. Put Pi on the list of active problems. Initialize the upperbound at u=∝. Set

CurrentBestSolution = null.
Step 2. If the list is empty, stop: the solution associated with u is optimal (or if u=∝, Pi

has no solution). Otherwise choose a subproblem Pi according to the subproblem
selection rule and remove Pi from the list.

Step 3. Solve the relaxation Ri of Pi and let li=Ri.value. If li≥u then return to Step 2. If li<u
and the solution of Ri is also a valid solution of Pi then set
CurrentBestSolution=Ri.solution and u=Ri.value and goto Step 5.

Step 4. (optional) Use a heuristic to make Ri.solution feasible for Pi. If the value found is
lower than u then set CurrentBestSolution=Ri.solution and u=Ri.value.

Step 5. Apply the branching rule to Pi, i.e. generate new subproblems Pi1, Pi2, … , Piq
place them on the list and go to Step 2.

In general, the better (more constrained) the relaxation R and the branching method, the
better is the performance of the branch and bound method. Simple approaches prove
inefficient for larger instances of TSP (see [Wiener2003] for instance).

Based on the above algorithm we propose an object model of a generic branch and
bound minimization method based on two classes i.e., BnB and
OptimizationProblemComparson, and two interfaces i.e., OptimizationProblem
and OptimizationProblemSolution. Figure 1 presents the UML diagram of the
model with its ATSP extension.

OptimizationProblem interface is the central part of the package. In the proposed
model all problems to be solved, i.e., the original (root) problem and its relaxations, are
required to implement this interface. The methods do not need further explanation.
Listing 1 presents the code of the interface.

Listing 1. OptimizationProblem Interface
public interface OptimizationProblem
{
 public OptimizationProblem getRelaxation();
 public int getProblemSize();
 public double getValue();
 public OptimizationProblemSolution getSolution();
 public boolean isValid(OptimizationProblemSolution ops);
 public OptimizationProblem[] branch();
 public void performUpperBounding(double upperbound);
} // of interface

A JAVA IMPLEMENTATION OF THE BRANCH AND BOUND ALGORITHM: THE ASYMETRIC

TRAVELING SALESMAN PROBLEM

158 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

Figure 1. UML Class Diagram for BnB for ATSP

OptimizationProblemSolution is a “dummy” interface that does not contain any
methods. It was introduced for the purpose of consistency of the package. The solution to
the optimization problem may have different forms. For example, in the case of TSP or
ATSP it is an array of integers representing the optimal assignment. Hence the object that
contains the solution to the specific problem must implement
OptimizationProblemSolution.

The Java code for BnB class is listed in Appendix 1. The private method
selectProblem() uses the OptimizationProblemComparison object to compare two
optimization problems and sort the activeproblems Vector. Because the Comparison
interface implemented by the OptimizationProblemComparison is not part of
standard Java code we show the code of OptimizationProblemComparison in
Listing 2, in order to enable the reader to implement its counterpart for a similar
vector-sorting class, if Microsoft’s util package is not available.

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 159

Listing 2. OptimizationProblemComparison Class

public class OptimizationProblemComparison
 implements com.ms.util.Comparison
{
 public int compare(Object problem1, Object problem2){
 OptimizationProblem p1 =

(OptimizationProblem)problem1;
 OptimizationProblem p2 =
 (OptimizationProblem)problem2;
 if(p1.getValue()<p2.getValue()) return 1;
 if(p1.getValue()>p2.getValue()) return -1;
 return 0;
 }
} // of class

3 BRANCH AND BOUND FOR ATSP

The AP may be solved in polynomial time O(n3) by a well-known Hungarian
algorithm[Carpaneto1980a]. Because the branching scheme used in this implementation
forces some arcs to the solution and excludes others, the original assignment problem is
converted to the Modified Assignment Problem (M.A.P.), which can be solved with the
Hungarian algorithm provided some changes are (temporarily) applied to the cost matrix.
In particular [Carpaneto1980b], in order to:

• force inclusion of arc (i,j) to the solution, all elements in jth column of matrix C
(except for item in row i) are substituted with a very large number

• force exclusion of arc (i,j) from the solution, the element cij is substituted with a
very large number.

Because solving ATSP with BnB requires finding multiple solutions to the Modified
Assignment Problem, efficient implementation of M.A.P. is a critical issue. The
modification proposed by Carpaneto and Toth [Carpaneto1980b] decreases the
complexity of solving M.A.P to O(n2) in approximately 40% of cases analyzed. However,
in order to keep the BnB class generic, we used the original Hungarian algorithm with the
modified cost matrix in the implementation.

4 COMPUTATIONAL EXPERIMENTS

Without the loss of generality, we assume that M (a large positive number) is at each
element of the diagonal of the cost matrix C. This assumption ensures that the relaxed
problems (M.A.Ps) are more constrained, and this makes BnB converge faster.

For the purpose of the experiment, the elements of the cost matrix C are real
numbers randomly selected from [0,10] with the Ranlux random number generator
[James1996]. All computations are performed on a single-processor PC (Intel Celeron

A JAVA IMPLEMENTATION OF THE BRANCH AND BOUND ALGORITHM: THE ASYMETRIC

TRAVELING SALESMAN PROBLEM

160 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

1.8MHz, 256MB RAM). The computational results presented in Table 1 were averaged
over 100 solved instances.

Table 1. Computational Results for ATSP

n avg (max)
time [s.]

avg (max)
M.A.P. calls

50 0.3 (1.3) 44 (197)
100 6.1 (32.9) 93 (538)
150 44.8 (147.4) 191 (853)
200 150.1 (925.6) 261 (1245)
250 327 (3027.8) 285 (3212)
300 606.6

(3251.7)
304 (2382)

Figure 2 illustrates an attempt to describe the time complexity of the proposed method
with a function. Although the problem is NP-hard, the average computing time appears to
increase with the square function of n.

Average computing time (with trendline)

y = 0.0137x2 - 2.4628x + 99.575
R2 = 0.9974

-100
0

100
200
300

400
500

600
700

0 100 200 300 400

n (cities)

tim
e

(s
ec

on
ds

)

Figure 2. Average ATSP Computing Time

Notice that the Assignment Problem serves as a good lower bound for the ATSP.
However, it is a poor relaxation for the traditional (symmetric) TSP [Balas1985].

5 SUMMARY

The original implementation of the presented BnB method for ATSP was done with
Fortran back in the 1980s. With object oriented features offered by contemporary

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 161

programming environments, such as Java, the implementation becomes self-contained
and sharable, still remaining very efficient even on a personal computer.

It is relatively easy to extend the presented single-threaded version to a multi-
threaded one, since the only shared-for-write element is the activeproblems Vector in
the BnB class. This is because each instance of M.A.P. stores its local copy of the
(modified) cost matrix. For the maximum problem size that can be potentially handled
with the proposed implementation, the amount of memory allocated for data is not a
critical issue.

Finally, the proposed implementation of BnB may be applied to other problems, not
necessarily related to TSP.

REFERENCES

[Balas1985] E. Balas, P. Toth: Branch and Bound Methods, in The Traveling Salesman

Problem, E.L. Lawler, et al., Editors. 1985, John Wiley & Sons Ltd.:
Chichester. p. 361-401.

[Carpaneto1980a] G. Carpaneto, P. Toth: "Solution to the Assignment Problem", ACM
Transactions on Mathematical Software, vol. 6, pp. 104-111, 1980a.

[Carpaneto1980b] G. Carpaneto, P. Toth: "Some New Branching and Bounding Criteria
for the Asymmetric Travelling Salesman Problem", Management Science,
vol. 26, no. 7, pp. 736-743, 1980b.

[James1996] F. James: "RANLUX: a Fortran implementation of the high-quality
pseudorandom number generator of Luscher", Computer Physics
Communications, vol. 97, no. 3, pp. 357, 1996.

[Johnson2002] D.S. Johnson, et al.: Experimental Analysis of Heuristics for the ATSP,
Chapter 10, in The Traveling Salesman Problem and its Variations, G. Gutin
and A.P. Punnen, Editors. 2002, Kluwer Academic Publishers: Dordrecht.

[Little1963] J.D.C. Little, et al.: "An algorithm for the traveling salesman problem",
Operations Research, vol. 11, pp. 972-989, 1963.

[Wiener2003] R. Wiener: "Branch and Bound Implementations for the Traveling
Salesperson Problem Part 2: Single threaded solution with many inexpensive
nodes", Journal of Object Technology, vol. 2, no. 3, pp. 65-76, May-June
2003. http://www.jot.fm/issues/issue_2003_05/column7

[Zhang1993] W. Zhang: "Truncated branch-and-bound: A case study on the asymmetric
traveling salesman problem", Proceeding of the AAAI 1993 Spring
Symposium on AI and NP-Hard Problems. Stanford, CA, 1993

http://www.jot.fm/issues/issue_2003_05/column7

A JAVA IMPLEMENTATION OF THE BRANCH AND BOUND ALGORITHM: THE ASYMETRIC

TRAVELING SALESMAN PROBLEM

162 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

About the author

Dr. Pawel J. Kalczynski is an Assistant Professor of Information Systems
in the College of Business Administration at the University of Toledo. He
is a co-author of the monograph “Filtering the Web to Feed Data
Warehouses,” Springer-Verlag London, 2002. He can be reached at
Pawel.Kalczynski@utoledo.edu.

APPENDIX 1

import java.util.*;
import com.ms.util.VectorSort;

public class BnB
{
 private OptimizationProblem P;
 private double U;
 private OptimizationProblem currentbest=null;
 private Vector activeproblems;

 static double M = Double.MAX_VALUE/1000;
 private long nodesGenerated = 0;
 private double elapsedTime = 0;
 private OptimizationProblemComparison opc;

 public BnB(OptimizationProblem problem){
 this.P = problem;
 int n = P.getProblemSize();
 activeproblems = new Vector(n*n,n);
 activeproblems.addElement(P);
 U = M;
 this.opc = new OptimizationProblemComparison();
 }

 public OptimizationProblem solve(){
 OptimizationProblem Pi;
 OptimizationProblem Ri;
 double Li;
 Date d0 = new Date();

 while(activeproblems.size()>0){
 Pi = selectProblem();
 Ri = Pi.getRelaxation();
 Li = Ri.getValue();
 if(Li<U){

mailto:Pawel.Kalczynski@utoledo.edu

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 163

 if(P.isValid(Ri.getSolution())){
 U = Li;
 this.currentbest = Ri;
 } else {
 // optional upper bounding
 Ri.performUpperBounding(U);

 // Branching
 OptimizationProblem[] subPs =

 Ri.branch();
 for(int k=0;k<subPs.length;k++){
 this.activeproblems.addElement(subPs[k]);

 this.nodesGenerated++;
 } // of for(k)
 }
 } // of if better lower bound
 } // of while(non-empty)

 Date d1 = new Date();
 this.elapsedTime =

 (double)(d1.getTime()-d0.getTime())/1000;
 return currentbest;
 } // of solve

 private OptimizationProblem selectProblem(){
 OptimizationProblem selected;

 //Sort the vector by the value
 VectorSort.sort(this.activeproblems, opc);

 //Select the best element and remove it from the list
 selected =
 (OptimizationProblem)this.activeproblems.lastElement();

 this.activeproblems.removeElementAt(this.activeproblems.size
()-1);

 return selected;
 } // of selectProblem()

 public double getElapsedTime(){
 return this.elapsedTime;
 }

 public long getNodeCount(){
 return this.nodesGenerated;
 }

} // of class

