
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 1, January-February 2005

Cite this article as follows: Amar Ramdane-Cherif, Samir Benarif, Nicole Levy: “The Platform
Based-Agents to Test and Evaluate Software Architecture”, in Journal of Object Technology, vol.
4, no. 1, January-February 2005, pp. 67-82. http://www.jot.fm/issues/issue_2005_01/article1

The Platform Based-Agents to Test and
Evaluate Software Architecture

Amar Ramdane-Cherif, Samir Benarif and Nicole Levy, PRiSM, Université
de Versailles, Saint-Quentin en Yvelines, France

Abstract
Architecture conception is a difficult and time consuming process, requiring advanced
skills from the software architect. The tasks of an architect are alleviated if means can
be provided to generate architectures that can be evaluated with respect to functional
and non functional requirements. This paper discusses of an easier approach to
evaluate the software architecture. To achieve this goal, we orient our research to the
development of intelligent and autonomous platform based-agents in order to evaluate
and test the software architecture. The platform is oriented to intelligent system based-
agents, which is an emerging technology that is making computer systems easier to use
by allowing people to delegate work back to the computer. However, we exploit the
advantage of the multi-agents systems like the flexibility, the performance, the
parallelism and the high level of abstraction for the construction of our platform. We
propose in our paper, a multi-agents platform which can be used, in static mode, as a
tool to guide and help architect to make the right architectural choice during the design
phase process. In this phase; the architects are interested in the outcome of the
evaluation and have the power to make decisions that affect the future of the
project. This platform can also be used, in dynamic mode, as tool to show to the
architects different scenarios about the evolution and the behavior of one or several
quality attributes. Each quality attribute is given an estimated value, using qualitative or
quantitative assessment technique. Then, the platform offers the advantage to observe
the relationships and the influence between several quality attributes required for an
application. The platform offers the possibility to reconfigure dynamically the
architecture in order to maintain one or several quality attributes. These qualities are
represented by some scenarios grouped in some profiles that capture typical changes in
quality requirements.

1 INTRODUCTION

The architecture of complex software or system is a collection of hard decisions that are
very expensive to change. Successful product development and evolution depend on
making the right architectural choices to achieve the quality required. An unsuitable
architecture will precipitate disaster on a project. Performance goals will not be met.

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_01/article1

THE PLATFORM BASED-AGENTS TO TEST AND EVALUATE SOFTWARE ARCHITECTURE

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

Security goals will fall by the wayside. The customers will grow impatient because
the right functionality is not available, and the system is too hard to change. For this
reason, we based our research on the conception of a platform which will operate at the
top of the a software architecture. This platform must be able to know the mechanism of
this architecture, to interact and monitor the system of this architecture, to give the
important results about the quality attributes by testing and evaluating this architecture in
dynamic mode and to help the architect to take the correct choices. Thus, the platform can
play the role of managing the architecture and maintaining the quality required by the its
dynamic reconfigurations.

To construct this platform, we direct our research to the comprehension of the
architecture, the dynamic reconfiguration of an architecture and the multi-agents
approaches. The “architecture” term conveys several meanings, sometimes contradictory.
In our research we consider that architecture deals with the structure of the components
of a system, their interrelationships and guidelines governing their design and evolution
over time [1][2]. The architecture then becomes the basis of systematic development and
evolution of software systems. It is clear that a new architecture that permits the
dynamism reconfiguration, adaptation and evolution while ensuring the quality
management of an application is needed. In addition, the complexity of emerging
applications and trend of building trustworthy systems from existing, untrustworthy
components are urging quality concerns be considered at the architectural level.
Therefore, architecture analysis can be used to evaluate the influence of the design
decisions on important quality attributes. Software monitoring is a well-know technique
for observing and understanding the dynamic behavior of programs when executed, and
can provide for many different purposes [3][4]. Other purposes for applying monitoring
are: testing, debugging, correctness checking, performance evaluation and enhancement,
security, control, program understanding and visualization, ubiquitous user interaction
and dynamic documentation.

Recently, a number of new scenario-based software architecture evaluation methods
have been developed by different academic groups and published in form of bock or
doctoral dissertation theses. Many of these methods are refinement of Software
Architecture Analysis Method (SAAM) [5][6] or Architecture Tradeoff Analysis Method
(ATAM) [5][7]. They usually restrict themselves to a particular class of systems. For
example, Architecture Level Modifiability Analysis (ALMA) [8][9] method focuses on
the modifiability of business information system. Another newly developed approach, the
Family Architecture Analysis Method (FAAM) [10], assesses the interoperability and
extensibility of information system families. Actually, scarce tools supporting evaluation
session methods exist. For example, in the SAAM, the voting procedure invoked for the
scenario prioritization and modifiability estimates with respect to cost and effort to adapt
the architecture are the only techniques used. Newly, The ATAM session count a tool to
support the evaluation [10].

Our approach can be used as tools to support certain steps of all evaluation method
based-scenarios, precisely questioning techniques (scenarios) and measuring techniques
(metrics, simulations, prototypes and experiments) [11][12]. This paper covers following

INTRODUCTION

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 69

topics: In the first, we introduce our platform and describe its structure, the next section
we explain how the platform monitors the quality attributes of the software architecture
and interacts with the environment. So, we present an example of the monitoring of some
qualities and its application on real architecture. Finally, we finish this paper by
discussion and conclusion.

2 THE PLATFORM MULTI-AGENTS

In recent years, agents and Multi-Agent Systems (MAS) have become a highly active
area of Artificial Intelligence (AI) research. Agents have been developed and applied
successfully in many domains. MAS can offer several advantages in solving complex
problems compared to conventional computation techniques. The purpose of traditional
Artificial Intelligence is to perform complex tasks, thanks to human expertise. This often
assumes assimilation of many competencies to be subject of centralized programming.
Moreover, in such monolithic system, the consensus between various expertise is difficult
to model; indeed, the structure of communication between the experts is fixed whereas it
should depend on the considered problem. Thus, a formalization close to reality where
several people work together on a same problem is needed. Such formalism should
describe the participants and interactions between them. This approach is the paradigm of
the Distributed Artificial Intelligence (DAI). The DAI leads to the realization of systems
known as "multi-agent" systems allowing modeling the behavior of all the entities
according to some laws of social type. These entities or agents have certain autonomy and
are immersed in an environment in which and with which they interact. Their structure is
based on three main functions: perceiving, deciding and acting.

The conception of our agents is based on two descriptions. The first is a reasoning
view point of agents, it can be considered as a system of reasoning, aiming at determining
the possible actions, privileges, and coordination with the environment and other agents.
The second description is a cooperative view point of agents. It uses vowel approach, it is
based on four dimensions which are: Agent (A), Environment (E), Interaction (I), and
Organization (O) (see Figure 1). Facet (A) indicates the whole of the functionalities of
internal reasoning of the agent. The facet (E) gathers the functionalities related to the
capacities of perception and actions of the agent on the environment. Facet (I) gathers the
functionalities of interaction of the agent with the other agents (interpretation of the
primitives of the communication language, management of the interaction and the
conversation protocols). The facet (O) can be most difficult to obtain, it relates to the
functions and the representations of the capacities of structuring and management of the
relations between agents.

THE PLATFORM BASED-AGENTS TO TEST AND EVALUATE SOFTWARE ARCHITECTURE

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

Facet A Facet E

Facet O Facet I

Mental
State

Environment

Agent

Agent

Figure 1: Cooperation view point of the agent.

Our goals is a creation of an autonomous platform able to act on the software
architecture. While following a logical reasoning, we can see three layers in our platform,
one layer represents the intelligent part of the platform (decisional part), and another
layer represents the active part of our platform (reactive part). The third layer acts as link
between the decisional and the reactive parts of the platform (see Figure 2). This offers
the advantages of the division of the tasks and the specialization of the layers. Other
aspect of our problem is the dynamic nature of our architecture, indeed architecture does
not cease to evolve, to reconfigure and to extend. It is inconceivable to create a rigid and
static platform which can follow the evolution of this architecture. We must thus already
think of such a dynamic and evolutionary platform so that it can constantly reach and
follow the evolution of this architecture. We will consider that our software architecture
is a such board cut out in small pieces. We consider that we can extend this board as parts
are added. We have also the freedom to modify the parts and to make them move on the
board. While considering this example, we will establish specific rules to the platform
based multi-agents which we will build. We will consider that the available software
architecture is divided into localities, grouped; they form one or several zones. This
strategy will enable us to better control the characteristics of the modifiability and the
extensibility of the available architecture.

THE PLATFORM MULTI-AGENTS

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 71

C A C B

Superior Layer

Locality A

Zone 1

C A CB

Locality B Locality C

C C

Intermediate Layer

Reactive Layer

Planning by analysis of environment

Planning according to tasks

Centralized planning

Communication by protocol

Communication by
passage of message

Action / Perception

Multi-Agents Platform

C A

C B

C C

Message

Orders and information

Informations

User message

Connector

Component C

Component A

Component B

Normal User Super User

Superior Agent

Intermediate Agent

Reactive Agent

Create component or connector CB New component New connection

Figure 2: Structure of multi-agents platform

The architecture of our platform consists of three distinct layers.

The Higher Layer

The higher layer is the highest layer of the platform, it is thus, more evolved than the
others. This layer has the capacity to analyze information coming from architecture,
thanks to the facet E of its agents. Thus, it can evaluate the qualities of an architecture
constantly and intervene in a targeted way, since the agents have a facet A, implying the
reasoning. The facet O and I, of the agents enter in action when the agents of the
intermediary layer do not manage to find a solution to a problem. The agents of the
higher layer have the capacity to organize a group of agents in the intermediary layer
(implies a cooperation) or to utilize another agent of the higher layer (implies a
negotiation) in order to achieve the goal. The agents of this layer can constantly exchange
information relating to the zone which they control so that they always have a global and
complete architecture vision. Each agent of this layer controls a zone of architecture; it is
responsible for a group of agents of the intermediary layer.

THE PLATFORM BASED-AGENTS TO TEST AND EVALUATE SOFTWARE ARCHITECTURE

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

Intermediary Layer

As its name indicates it is a layer which is placed between the higher layer and the
reactive layer. Each agent of this layer takes care of several agents of the reactive layer, it
is responsible for a quite precise locality. The agent itself is connected to only one agent
of the higher layer. A set of agents of the intermediary layer forms what is called a zone.
The principal role of this layer is to take care of the good progress of the reconfigurations
imposed by the higher layer. It is a question of controlling and coordinating the agents of
the reactive layer in order to carry out and to achieve a goal. Another role of this layer is
the collection of information coming from the reactive layer in order to forward them to
the agent of the higher layer.

The Reactive Layer

This layer is the body of perception and of action of the platform. It is equipped with
purely reactive agents which act with simple stimulus coming from the intermediary
layer. The reactive agents belong to a locality depending on only one agent of the
intermediary layer whose they receive the plans. These agents answer to a centralized
planning and work in cooperation. The exchange between the reactive agents and the
agent of intermediary layer is simple. The perception induces sending simple information
toward the central agent, the action is the consequence of a stimulus or a simple
command.

3 MONITORING SYSTEM

Software monitoring is a well-know technique for observing and understanding the
dynamic behavior of programs when executed and can provide for many different
purposes. We adopt this system and adapt it to the agent approach. We think that the
utilization of agents increase the capability of the monitoring system because we add to it
the advantages of the multi-agents system such as :

• Autonomous monitoring of the architecture.
• Intelligent monitoring.
• Possibility to introduce a new exception or a test by adding a new planning in the

knowledge base of the agents.
• Parallel monitoring of components and their proprieties.
• Possibility to see several tests and the influence between them.
• Filtrate of critical information in the package of information for a higher

identification of the fault in an architecture.
• Evolve treatment part of monitoring by introducing various behaviors of agents

according to the environment (the information collected).
• Record of collected information in the database of agents for its future

exploitation (for example, graphic representation).

MONITORING SYSTEM

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 73

• Possibility to initiate different parameters of monitoring, and capacity to change
them at dynamical mode.

We decompose the monitoring system in two parts, the detection phase and treatment
phase. The first part of system monitoring consists in collecting information from the
system execution, detecting particular events or states using the collected data, analyzing
and presenting relevant information to the user. As the information is collected from the
execution of the program implementation, there is inherent gap between the levels of
abstraction of the collected events, states of the software architecture. For monitoring,
there are basically two types of monitoring systems based on the information collection:
sampling (time-driven) and tracing (event-driven) (see Figure 3.a). By sampling,
information about the execution state is synchronously (in a specific time rate), or
asynchronously (through direct request of the monitoring system). By tracing, on the
other hand, information is collected when an event of interest occurs in the system.
Tracing allows a better understanding and reasoning of the system behavior than
sampling.

The treatment part of monitoring occurs after detection phase, it reacts to the
collected information. The treatment intervenes in two cases, when event is detected by
agent or when state of component don’t respect the constraints imposed by the user. The
event occurs when exception is sent to monitor agent of reactive layer, this exception is
due at the abnormal behavior of components (internal or external exception). The
abnormal state of component is due to overtaking of limits imposed by the user (for
example, memory consumption out of fixed limits). The treatment of monitoring system
is an action of the platform, according its decisional part, two actions can occur. The
platform can recover the warning (event or abnormal state) by adding, deleting or
modifying components or connectors (for example by replacing the failure component by
adding another component with the same functionality). Another solution is that the
platform can recover the warning, by reconfiguring the interaction among components of
the architecture (for example, isolation of failure components by reorienting their
connections).

Detection Phase of the Monitoring System

a) The monitoring system in the case of state : The basic information is collected
(by sampling) by reactive layer (see Figure 3.b) and sent to the intermediate agent
(see Figure 3.c). The intermediate agent decrypts information by identifying the
origin of the message, the type of the information and the value of test (see Figure
3.d). The higher agent receives the message from the intermediate agent and takes
decision according to the nature of the message. If the value of the test respects
the constraint, the state of the components will be saved in the state of the
architecture knowledge base. If the value of the test does not respect the
constraint, the higher agent reacts by using its knowledge base (planning).

b) The monitoring system in the case of event: The component emits an event to
reactive agent (see Figure 3.b). The intermediate agent receives this information;
identifies the sender agent (by its knowledge base of reactive agents) and the

THE PLATFORM BASED-AGENTS TO TEST AND EVALUATE SOFTWARE ARCHITECTURE

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

name of the exception (see Figure 3.c). Then, it sends the message to higher agent.
The higher agent decrypts the message of its intermediate agent and starts
research procedure in order to identify the exception and find the solution in its
knowledge base (planning) (see Figure 3.d).

Figure 3: Detection phase of monitoring system

Description
of exception

Behavior and
knowledge of

agent

Behavior and
knowledge of

agent

Information:
Name of agent = 4
Behavior = abnormal
Name of failure = e
Value = null.

Exception e
Exception d

Information:
Name of agent = 1
Behavior = normal
Value = x.

Parameter of
monitoring

State of
architecture

Search

Save/collect

Collect

Save/collect

State of
platform

Agent A:
Intermediate agent

Agent B:
Intermediate agent

Agent A:
Intermediate agent

Agent B:
Intermediate agent

Agent 1:
Reactive agent

Agent 2:
Reactive agent

Agent 3:
Reactive agent

Agent 4:
Reactive agent

List and type
of reactive

agents

Behavior and
knowledge of

agent

List and type
of reactive

agents

Agent α : higher agent

Agent α : higher agent

Sa
ve

/c
ol

le
ct

/s
ea

rc
h

C
ol

le
ct

Save/collect/search

C
ollect

State of
architecture

Description
of exception

Decision and
behavior of

agent

Normal
behavior

Information:
Type of information = state
Behavior = normal.
Name of exception = null
Value = X.

Information:
Type of information = event.
Behavior = abnormal
Name of exception = e

Abnormal
behavior

Agent 1:
Reactive agent

Agent 3:
Reactive agent

Agent 4:
Reactive agent

Agent B:
Intermediate agent

Agent A:
Intermediate agent

Higher Agent

Sampling
State

Event

Internal
exception

External exception

Tracing

Message:
Name of agent = agent A.
Original agent = agent 1.
Type of Information = State
Name of object: component A.
Value = x.

Message:
Name of agent = agent B.
Original agent = agent 4.
Type of Information = exception
Name of object: component B.
Name of exception = e.

Sampling

a b

Abnormal
behavior

c d

MONITORING SYSTEM

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 75

Treatment Phase of the Monitoring System

The monitoring system in the case of state and event: The higher agent reacts to the
overtaking of constraints or events by using its planning in order to recover the fault or
respect constraints (see Figure 4.a). The platform can recover the fault generated from the
architecture by identifying the exception. The quality attributes are maintained by
respecting the constraints (performance constraint, availability constraint, etc.) imposed
by the user, so, the role of the platform is to monitor the architecture in order to verify the
respect of the all constraints.

In the two cases (the case of state and event), the strategy is the same one, the higher
agent takes decisions based on its knowledge base, organizes actions and sends the
planning to its intermediate agents. The intermediate agent uses the cooperation of
reactive agents to solve the problem and act on the architecture (see Figure 4.b). The
treatment process uses tow types of plans, the first plan consists to reconfigure the
architecture connections for finding temporary solution for the fault (disabled component
or connector), and the second plan recovers errors by addition or changing disabled
components or connectors.

Figure 4: Treatment phase of monitoring system

Description
of exception

Behavior and
knowledge of

agent

Behavior and
knowledge of

agent

Exception e
Exception d

Planning:
Actions.

Parameter of
monitoring

State of
architecture

Search

Save/collect

Collect

Save/collect

State of
platform

Agent A:
Intermediate agent

Agent B:
Intermediate agent

Agent A:
Intermediate agent

Agent B:
Intermediate agent

Agent 1:
Reactive agent

Agent 2:
Reactive agent

Agent 3:
Reactive agent

Agent 4:
Reactive agent

List and type
of reactive

agents

Behavior and
knowledge of

agent

List and type
of reactive

agents

Agent α : higher agent

Agent α : higher agent

Sa
ve

/c
ol

le
ct

/s
ea

rc
h

C
ol

le
ct

Save/collect/search

C
ollect

Planning:
Name of planning.
Directive.

Planning:
Name of planning.
Directive.

a b

Planning :
Actions.

THE PLATFORM BASED-AGENTS TO TEST AND EVALUATE SOFTWARE ARCHITECTURE

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

4 IMPLEMENTATION OF THE PLATFORM ON CLIENT/SERVER
ARCHITECTURE

The Problem

We realize our application by developing a software for a company specialized in
hydrocarbon industry, it intervene in different building sites in hostile and distant places.
This little company develops its activity and engages a lot of human resources, so the
leaders require to manage and estimate the resources needed and the scheduling of the
projects of the different sites. This information must be exchange between sites and the
direction. The developed software contains the personnel files, the state on the projects
(calculation of number of worked hours, days worked…etc.). The principal requirements
of the customer are performance and availability. We have used our platform to test and
maintain these quality attributes, materialized in different scenarios.

The Overview of the Software Architecture

We used to develop this software C++ and Access database, we dispose of two servers,
principal server (server A) and second server (server B) and the dispatcher of connections
(see Figure 5). The clients can connect to the data base by internal network (100 Mo/s
network card) and via internet (56 Kb/s modem). The client can consult the personnel
data base and perform the calculation on the server application.

In our application, the principal requirements of users in term of software quality are
availability and performance. By applying the ATAM method of evaluation, we develop
some scenarios. We present two of these scenarios. The first will be used to test and
evaluate the performance at dynamical mode, the second will be focused on the
availability of the architecture. We will show how the platform intervene to maintain
these quality attributes.

Figure 5: General functional view of architecture

C

B
Dispatcher

Server A

Server B

MULTI-AGENTS PLATFORM

Client A

IMPLEMENTATION OF THE PLATFORM ON CLIENT/SERVER ARCHITECTURE

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 77

The Performance Scenario

The first scenario is about the performance. The performance is the ability of a system to
allocate its computational resources, to request for services in a manner that will satisfy
timing requirements. The system must do so in the presence of competing requests (see
Figure 6). Stimuli trigger a computation to be initiated. For the performance, the stimuli
include external events such us message or user key strokes, internal events based on
state changes, and click interrupts. The performance architectural decisions include
various types of resources consumption. The resource types comprise for example:
processors, networks, buses and memory. The resource arbitration, also know as
scheduling, concerns policies for determining which of asset of pending resource requests
(from entities such as processes and messages) will be served. The resource allocation
concerns policies for moving resources demands in a manner that will achieve better
throughput or minimize the number of necessary resources. The resources consumption is
measured in terms such as execution time on processors or bandwidth for networks. The
response is characterized by measurable quantities such as latency, throughput, and
precedence.

Figure 6: Performance characterization

We use external stimuli to evaluate the performance of the software, the evaluator can
test the performance of the architecture via the platform by using its monitoring system.
The reactive agents execute a sampling on the critical software and hardware components
to collect information about the architecture. The constructed scenario monitors the
resources consumption of the software like memory size, the execution time. The metrics
evaluations give different values to help the architect to show the performance of its
architectural decisions. The platform monitors each software and hardware component
implicated in the performance of the architecture, all the information collected (by
reactive agents) and transmitted (by intermediate agents) to the higher agents will be
saved in its knowledge base. these information of test can presented by graphics (see
Figure 7).

Response

Throughput

Memory

Network

Uni-multi or
Distributed
processors

Execution time

Memory Size

Network Bandwidth

Architectural DecisionsStimuli

Source Arrival pattern

Internal Event

Clock Interrupt

External Event

Ressource
Allocation

Ressource
Arbitration

Ressource
Type

Resource
Consumption

Precedence Latency

THE PLATFORM BASED-AGENTS TO TEST AND EVALUATE SOFTWARE ARCHITECTURE

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

In addition the evaluator, can make another functionality of the monitoring which
consist to parameter the limit of the performance in the decisional part of the platform, so,
the platform can react to performance state of components if the values is over the
constraints by using modifiability of the architecture (for example, if principal server is
over its CPU charge, the platform can reorient task to the second server)

Figure 7: The monitoring of performance of the server A

The Availability Scenario

The important stimuli in an availability characterization are faults, in both hardware and
software components (see Figure 8). Such faults are the events that cause systems to fail.
We measure the system response by looking at measures such as reliability (the
probability of not failing over period of time), mean time failure, and steady state
availability.

Figure 8: Availability characterization

In our scenario, we suppose that the principal server breakdown (stimuli are hardware
faults), the client must continue to work on the software without interruption of its
functionalities and services, the detection and the treatment processes of monitoring
system follow these steps:

Response

Fault
Detection

Time
Failure Rate

Repair Rate

Failure Detection Time

Execution Time

Memory Size

Network Bandwidth

Software
Fault

Reliability

Architectural DecisionsStimuli

Hardware
Fault

Voting Software
Redundancy

Hardware
Redundancy

Retry Fault Recovery
Time

Availability

Memory available

Time disk

Time processor

Limit memory available Limit time processor

IMPLEMENTATION OF THE PLATFORM ON CLIENT/SERVER ARCHITECTURE

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 79

Step 1: The reactive agents of the platform monitor the architecture, precisely, the
servers and the dispatcher. The reactive agents collect the information from the server A
and send it to the intermediate agent, the information contain the abnormal of the
behavior (see Figure 9.a).

Step 2: The state of the server A is analyzed by the intermediate agent, and this

agent detects the exception and the name of the server failure (breakdown) and sends a
message to the superior agent (see Figure 9.b). The superior agent decrypts the message
and consults its knowledge base, so, it creates the planning in order to recover fault (see
Figure 9.c). The platform reacts automatically when the breakdown of server A is
detected.

Step 3: The planning of higher agent sends to the intermediate agent. The
intermediate agent uses reactive agents in cooperative mode to achieve its goals. A
reactive agent recovers the clients of breakdown server and reorients the connections to
the second server (server B), another agent disables the connector between dispatcher and
server A, other reactive agent parameters the dispatcher to do a unique connection to the
server B. Also, the client can continue to use database without problem, the platform find
solution in order to maintain the availability of software architecture.

Internet

Sampling

Clients
Server A

breakdown

Server B
Dispatcher

a

Multi-agents platform

Internet

Clients
Server A

Server B
Dispatcher

Failure
state

b

StateState

Multi-agents platform

Internet

Clients
Server A

Server B
Dispatcher

c

Generation of
planning

Multi-agents platform

Internet

Clients
Server A

Server B
Dispatcher

Parameter
Dispatcher

d
Connector
disabled

Multi-agents platform

Figure 9: Monitoring system of the platform on Client/Server architecture.

5 STRENGTHS OF OUR APPROACH

• The platform takes advantage of multi-agents system like flexibility, parallelism,
high level of interaction between agents.

• Autonomous monitoring of an architecture.
• Utilization of intelligent agents for reasoning part of the platform.

THE PLATFORM BASED-AGENTS TO TEST AND EVALUATE SOFTWARE ARCHITECTURE

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

• Capability to test several qualities at the same time and observe the interaction
and the influence of these quality attributes each other.

• The platform manages and maintains the quality attributes of the architecture.
• The platform gives metrics results of the quality tested, represented by graph or

values.
• Dynamic reconfiguration of the architecture.
• Overview of the architecture and its configuration.
• The platform can produce the report of different states of components and the

modifiability of the architecture during the application.
• Possibility to increase the ability of the platform, by adding new functionality in

its knowledge base.
• Portability of the multi-agents system.

6 CONCLUSION

The right architecture is the first step to success. The wrong architecture will lead to
calamity. We can identify causal connections between design decisions made in the
architecture and the qualities/properties that result downstream in the system. This means
that it is possible to evaluate an architecture, to analyze architectural decisions. The
architecture then becomes the basis of systematic development and evolution of
software/hardware systems. It is clear that a new architecture that permits the dynamism
reconfiguration while ensuring the use of software in multiple contexts and the ability of
software to support evolution and changing requirements in various contexts are needed.
This paper presents a new platform based multi-agents which monitors the global
architecture of a system and manages its provided quality attributes (in our case,
performance and availability). It will achieve its functional and non functional
requirements and evaluate and manage changes in such architecture dynamically at the
execution time. In this paper we have developed our generic platform and we have
applied and implemented it on the Client/Server architecture. We have showed by some
scenarios the dynamic reconfigurations for the improvement of the quality attributes. Our
approach can be extended to deal with other architectural “non-functional” quality
attributes in the context of developing complex and reliable systems, and to support
major method of evaluation based-scenarios.

REFERENCES

[67] Shaw, M., Garlan, D., Software Architecture. Perspectives on Emerging Discipline,
Prentice-Hall, Inc. Upper Saddle River, New Jersey, 1996.

[2] Dias, M.S., and Richardson, D.J., The role of Event Description in Description in
Architecting Dependable Systems. In proceeding of WADS: Workshop on
Architecting Dependable Systems. Orlando, USA 25 May 2002.

CONCLUSION

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 81

[3] Shroeder, B., On-line monitoring, IEEE Computer, vol. 28, n. 6, June 1995. pp. 72-
77.

[4] Snodgrass, R., “A Relation approach to monitoring complex systems”, ACM Trans.
Computer Systems, vol. 6, n. 2, May 1988, pp. 156-196.

[5] Paul Clements, Rick Kazman and Mark Klein, Evaluating Software Architectures:
Method and Case Studies, Addision Wesley, 2002.

[6] Rick Kazman, Len Bass, Gregory Abowd, and Mike Webb, SAAM: A Method for
Analyzing the Properties Software Architecture, Proceeding of the 16th
International Conference on Software Engineering, Sorrento, Italy, May 1994, pp.
81-90.

[7] ATAM: Method for architecture evaluation: ATAM – Architecture Tradde-off
Analysis Method report.

[8] Lassing, Nico, Ph.D. Thesis, architecture-level Modifiability analysis, Ph.D. thesis,
Free University Amsterdam, February 2002.

[9] Bengtsson, PerOlof, Ph.D. Thesis, architecture level modifiability analysis,
Department of software Engineering and Computer Science, Belkinge Institute of
technology, Sweden 2002.

[10] Stephan Kurpjuweit, Ph.D. Thesis. A family of tools to integrate software
architecture analysis and design. Final draft version, to be published 2002

[11] R. Kazman, G. Abowd, L. Bass, P. Clement, Scenario-based Analysis of Software
Architecture, IEEE Software 13, 6 (November 1996): 47-55.

[12] Len Bass, Paul Clements, Rick Kazman, Linda Northrop, Amy Zaremski,
Recommended Best Indistrial Pratice for Software Architecture Evaluation,
Technical Report, Software Engineering Institute, January 1997

About the authors

Amar Ramdane-Cherif received his Ph.D. degree from Pierre and
Marie university of Paris in 1998 in neural networks and IA
optimization for robotic applications. Since 2000, he has been associate
Professor in the laboratory PRISM, University of Versailles, Saint-
Quentin en Yvelines, France. His main current research interests
include: Software architecture and formal specification, dynamic
architecture, architectural quality attributes, architectural styles and

design patterns, E-mail: mailto:rca@prism.uvsq.fr

mailto:rca@prism.uvsq.fr

THE PLATFORM BASED-AGENTS TO TEST AND EVALUATE SOFTWARE ARCHITECTURE

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 1

Samir Benarif received his BS degree at the University of Science and
Technology Houari Boumediene (Algiers, Algeria) in electrical
engineering and his MS degree at the university of Versailles, Saint-
Quentin en Yvelines, France, respectively in 2000 and 2002. Since 2003
he has been studying for his Ph.D. at PRISM laboratory, University of
Versailles, France. His investigations and field interests concern, dynamic
architecture, architectural quality attributes, architectural styles and

design patterns.

Nicole Lévy is a professor at the University of Versailles, Saint-Quentin
en Yvelines, France. She holds a doctoral degree from the Nancy
University. She is Director of the ISTY and a research staff of the
PRISM Laboratory, Versailles, where she coordinates the SFAL
(Spécification Formelle et Architecture Logicielle) research group. Her
main research interests are formal and semiformal development

methods, formalization of styles and architectural patterns.

