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All non trivial applications consist of many sources, which usually depend on each
other. For this reason, a change to some sources may affect the compilation of other
(unchanged) sources. Hence, the recompilation must be propagated to the unchanged
sources that depend on the changed ones, in order to obtain the same result a global
recompilation would produce.
Most IDEs (Integrated Development Environments) provide smart dependency check-
ing; that is, they automate the task of finding these dependencies and propagating
the recompilation when an application is rebuilt.
In this paper we study the problem of extracting dependency information from Java
sources and propose an encoding of these dependency information as regular expres-
sions. This encoding is both compact to store and fast to check.
Furthermore, our technique detects a particular kind of dependencies, which we call
ghost dependencies, that popular tools, even commercial ones, fail to detect. Because
of this failure, some required recompilations are not triggered by these tools and the
result of their incremental recompilations is not equivalent to the recompilation of all
sources.

1 INTRODUCTION

Most modern languages provide a mechanism called separate compilation, which
avoids the need to recompile all sources each time a change is made.

Because sources usually depend on each other, recompiling only new/changed
sources is not enough to obtain the same result a global recompilation would produce.
A simple way to obtain the same result is to recompile, along new/changed sources,
all unchanged sources which depend, directly or indirectly, on the new/changed ones.

This cascading recompilation mechanism, which is probably the most common
form of incremental recompilation, is implemented by defining a dependency relation
between source files. The most known tool for dealing with this kind of dependencies
is make [3], which constructs a graph, based on an input file conventionally called
makefile, and then performs a depth-first search of this graph to determine what
work is necessary.

This solution usually triggers some useless recompilations, that is, recompilations
which are not necessary in order to obtain the same result a global recompilation
would produce. In previous work we have presented a compilation strategy for Java
[1, 8, 9, 10] which is optimal from the theoretical point of view, but rather expensive
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to implement. An effective trade-off seems to be the use of such a strategy as a
refinement of a less precise (but faster) strategy. For these reasons, in this paper we
study how a cascading recompilation scheme can be applied to Java.

While in some languages, like C and C++, separate compilation requires the
dependencies to be explicitly provided by the user1, the Java mechanism allows the
compiler to infer most of the dependencies. Indeed, inside a Java source file we do
not find references to other source files, but only references to names.

Although at first sight Java rules for inferring dependencies might seem quite
simple, they are not. Because the dot notation is used to name many different kinds
of things (types, packages, fields and so on), its semantics is context dependent
and tricky. This fact is sometimes surprising to programmers, who occasionally get
unexpected name resolutions. Indeed, a peculiarity of Java is the fact that adding a
new source may affect the compilation of unchanged sources, as a newly introduced
type may alter the way names have to be interpreted.

We deal with this aspect by introducing a level of indirection in how dependencies
are handled: instead of keeping information “source S1 depends on source S2” we
keep information equivalent of “source S1 depends on set of names N”. Hence, S1

depends on any source declaring names in N (since those declarations may affect
the compilation of S1).

Failing to take this peculiarity into account prevents from providing a cascading
recompilation equivalent to global recompilation. Yet, popular tools, like Eclipse,
Javamake [2], JBuilderX and Jikes, seem to fail, according to the results of our tests.
Indeed, as we show in the following by means of some examples, their incremental
recompilations are not equivalent to global recompilation.

The rest of the paper is structured as follows. In Section 2 we recall how Java
compilation works. In Section 3 we introduce a model of Java dependencies, con-
sidering both the apparent dependencies and the not-so-apparent ones, which we
call ghost dependencies. By means of some examples, we show why incremental re-
compilations provided by most tools are not equivalent to global recompilation. In
Section 4 we show how an incremental recompilation scheme, which takes all kinds
of dependencies into account, can be built. In Section 5 we discuss implementation
issues, in particular how regular expressions are perfectly suited for modeling ghost
dependencies. Finally, in Section 6 we draw some conclusions.

2 HOW JAVA COMPILATION WORKS

In this section we recall how Java compilation works, emphasizing the issues which
make inference of dependencies hard.

Consider the following example (for clarity, we always put at the beginning the

1By means of #include directives, which contain explicit filenames (although compiler switches
like “-I” and “-L” complicate the matter further).
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names of source files as single-line comments):

// File: A.java

class A {

B aB ;

}

File A.java cannot be compiled in isolation, as it refers, in declaring its field aB, to
a type named B whose declaration is unknown. If the binary file B.class is present,
then it is used by the compiler to get the information about type B. Indeed, in Java
a binary file is required to define exactly one type, say T, and to be named after it,
that is, T.class (except that dots “.” in type names are replaced by the character
“$” in filenames).

Standard Java compilers take also the guess of relating the source file B.java, if
present, with the binary file B.class. That is, when they need type information for
a type called B, they look for both B.java and B.class and use the newer one (if the
source is chosen, then it is recompiled too). Though this scheme seems reasonable, it
does not work properly, as type B, if it is not public, can be declared in a file with
any name; that is, B.java is as good as everything but B.java. The rationale
for allowing declarations of non-public classes inside files with unrelated names is
probably historical: before the introduction of inner/nested classes in JDK 1.1,
allowing non-public classes to be in arbitrarily named files was a convenient loophole
to allow to declare auxiliary and main classes together. For example, defining a
ListNode class inside a file defining a (public) List class. Although programmers
can (and should) now use inner/nested classes for such purposes, the file related
rules were never changed, presumably for the sake of backwards compatibility.

In other words, there is a mismatch between sources and binaries, as each source
can declare many types, while a binary can contain only one type. Furthermore, if
a source file contains the declaration of a public type T, then the source has to be
named T.java, otherwise there are no restrictions on the filename. On the other
hand, as said before, a binary containing a type T has always to be named T.class

(otherwise either it would not be found by the Java Virtual Machine or an exception
would be thrown by the verifier).

Thus, the compilation of a source generates one or more binaries: each type
declared in the source is translated into its own binary file. For instance, consider
the following file:

// File: A_and_B.java

class A {}

class B {

class Inner {}

}
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The compilation of file A and B.java produces three files: A.class, B.class and
B$Inner.class, corresponding to class B.Inner. Therefore, given the name of a
type, say C, we can easily determine the name of its corresponding binary, C.class,
but there is no way to determine which sources2 might declare it (if the standard
compiler cannot find C.java, then it assumes there is no source declaring C and
gives up).

Note that if one of the top-level classes (that is, A or B) were public, then the
file would have to be named after the public one, that is, A.java or B.java. This
means that either A or B can be made public, renaming the source file too, but not
both, unless their declarations are split in two distinct sources named A.java and
B.java.

Many programmers are in the habit of declaring a single top-level type per file,
despite the declared access modifier, naming the file after the type it declares. This
is certainly a good convention, which we strongly recommend, but it is not a rule
enforced by Java, so we cannot rely on this for finding which are the dependencies
between Java sources. Relying on this convention, as Javamake [2] does, simplifies
some issues but limits the applicability of the method.

For instance, consider the following files:

// File: A.java

class A {

static double i = new B().j ;

public static void main(String [] args) {}

}

// File: X.java

class B {

int j = 0 ;

}

// File: Y.java

class B {

double j = 0 ;

}

Both files X.java and Y.java declare a class named B. Each of them is self-contained,
and they can be (separately) compiled into B.class. On the other hand, the file
A.java declares a class named A and refers to class B. Because in these sources class
B is declared twice, the compilation of all three sources together fails. Yet, using
common compilers, as Sun’s javac, we can successfully compile:

2Given a generic set of sources, more than one file might declare the same type; of course, that
is an error condition and such sources cannot be compiled together.
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• X.java, then A.java, then Y.java. In this case if we try to run A, then we
get an exception NoSuchFieldError as A tries to access the int field j which
is not present in class B. The point is that the binary file B.class, which
A.java has been compiled with, has been replaced by the compilation of the
apparently unrelated source Y.java.

• Y.java, then A.java, then X.java. This case is the opposite of the previous
one: A cannot be run because the last compilation (of X.java) overwrote
B.class (generated by the compilation of Y.java).

• A.java and X.java together, then Y.java. Same outcome of the first case.

• . . .

Because the filename of a source hardly gives any information about which types
are declared within, we need to parse each source file in order to know which types
it declares.

3 THE MODEL

In this section we introduce a model of Java dependencies. This model allows us to
describe precisely which are all the dependencies that have to be taken into account
to obtain a cascading recompilation which is equivalent to a global recompilation.

Set

• I the set of all legal Java identifiers; that is, any non-empty sequence of letters
and digits, which begins with a letter and is not a reserved keyword; note that
the underscore “ ” is considered a letter in Java. Examples of id ∈ I are: A4,
String and I am an identifier.

• N the set of all Java names; that is, non-empty sequences of dot separated
identifiers. A simple name is a name without dots, that is, an identifier. Ex-
amples of n ∈ N are: String, java.lang.String and myPackage.myClass.
In the following we use the metavariables t , p and n for, type, package and
generic names respectively.

• S the set of all Java sources; that is, all strings which respect the grammar of
Java.

We call

• simple name of a name its last identifier; that is,
simpleName(id1. · · · .idn) = idn.
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• head of a name its first identifier and tail the rest of the sequence; that is,
head(id1. · · · .idn) = id1 and tail(id1. · · · .idn) = id2. · · · .idn. The tail of a
single identifier is undefined, that is, tail(id) = ⊥.

• provides(s), for s ∈ S, the set of top-level type names that s declares. We
also write, abusing the notation, provides(aFilename.java) with the mean-
ing provides(aFilename.java) = provides(s) where s is the content of
aFilename.java in the current compilation context (we formalize compila-
tion contexts in Section 4).

As an example, given the following class declarations

// File: Foo.java

package p ;

class A {

class Inner {}

}

class B {}

provides(Foo.java) ={p.A, p.B}. Inner types are not included in provides be-
cause their declaration is always syntactically enclosed inside the declaration of their
outer type, hence an inner type t is recompiled if and only if the top-level type con-
taining the declaration of t is recompiled.

We say that a source s1 directly depends on another source s2 if s1 “refers to” a
name contained in provides(s2); that is,

dirDepends(s1, s2) = refersTo(s1) ∩ provides(s2) 6= ∅

We say that a source s1 depends on sn if there exists a chain s1, s2, . . . , sn such
that ∀i ∈ {1, . . . , n− 1}, si directly depends on si+1.

We have introduced the notion of dependency here because we believe it is quite
intuitive and it should give the reader an idea of what we are aiming at, but this
definition is incomplete until we give a precise meaning to the function refersTo.
Packages, inner classes and import declarations complicate the model; we briefly
illustrate why before introducing the formal definition of refersTo.

Packages and Inner classes

Packages are a means for grouping names in separate name spaces, which helps to
prevent conflicts. If a type named t is declared inside a package P, then its fully
qualified name is P.t and the source file declaring t must reside in a directory called P
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(if a package is called X.Y then the file must reside in Y, which must be a subdirectory
of X, and so on).

Inner classes are classes declared inside other classes; if a class C is declared inside
a top-level class Outer, then the fully qualified name of C is Outer.C. If Outer is
declared inside a package P, then the fully qualified names of Outer and C are,
respectively, P.Outer and P.Outer.C.

This immediately shows a source of ambiguity: if a source s contains a name
n = A.B.C, what it refers to? If we knew n refers to a type, then the possibilities
would be:

• A could be a top-level type (declared in the current package or in an explicitly
imported one), B an inner type of A and C an inner type of A.B; in this case s
would depend on (the sources declaring) A.

• A could be a package name, B a top-level type contained in A and C an inner
type of A.B; in this case s would depend on (the sources declaring) B.

• A.B could be a package name, and C a top-level type contained in A.B; in this
case s would depend on (the sources declaring) C.

Because we are interested in finding all sources a source s might depend on, we
conservatively say that s depends on them all.

Moreover, if we do not know that the name A.B.C actually refers to a type, then
there are even more possibilities, as just a prefix of A.B.C could be a type:

• A.B.C could be a package name. However, this case is not significant, as
package names can appear in legal Java sources only at specific points (the
package and import declarations) which we handle in a special way discussed
below.

• A could be a package name, B a top-level type contained in A and C a non-
private static member of B.

• A could be a top-level type (declared in the current package or in an explicitly
imported one), B a non-private static member of A and C a non-private static
member of the type of B (since Java allows accessing static fields of a type via
any expression of that type — see 15.11.1 of [5]).

The last point is extremely peculiar and important: in that case A.B would be an
expression of a certain type t , the declared type of field B, hence the source s would
depend on both:

• the source declaring A;

• the source declaring t .
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However, the latter dependency can be derived from the former, because if the source
defining A, say sA, declares a field of type t , then sA directly depends on the source
defining t , say st . Of course, B could be an inherited field, but, in this case, sA would
directly depend on the file defining its direct superclass, say sSuperA, so the reasoning
can be repeated there (up to the hierarchy, until the superclass declaring field B is
found).

Analogously, if a source s contains a name A.B.C.D.E, then it could depend on
the source defining A, A.B, A.B.C, and so on.

This reasoning brings us to the following definition, which models that the de-
pendencies between sources are induced not only by names, but by their prefixes;
that is, all the non-empty sequences that can be obtained from a name leaving out
some identifiers at the end.

Given a name n = id1. · · · .idn, set

prefixes(n) = {id1, id1.id2, id1.id2.id3, . . . , id1. · · · .idn}

We also extend prefixes to set of names in the natural way:

prefixes({n1, . . . , nk}) =
⋃

i∈{1,...,k}

prefixes(ni)

Do we really need to keep track of all these dependencies? After all, when a
source s is compiled, all names it contains are resolved, hence we know what each
name is actually referring to. Unfortunately, encoding just current dependencies
would not work, as leaving out potential dependencies would mean not being able
to respond correctly to all possible changes in other sources.

For instance, suppose to have the following files:

// File: A/B.java

package A ;

public class B {

public int answer = 0 ;

}

// File: Test.java

class Test {

public static void main(String [] args) {

System.out.println(new A.B().answer) ;

}

}
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In this context the name A.B in Test.java refers to class B in package A, which is
declared in the file A/B.java. Hence, excluding standard classes, that would be the
only dependency of Test.java.

Yet, if we add the following source file:

// File: A.java

class A {

static class B {

public int answer = 42 ;

}

}

and we recompile all three files, then the name A.B changes its meaning3, referring to
the nested class B of class A. So the only dependency of Test.java becomes A.java.

Hence if, in the first place, we had set the only dependency of Test.java to be
A/B.java, then afterward we could not detect that Test.java has to be recompiled
due to the addition of A.java.

This point is tricky: of course, before introducing A.java it does not make any
sense to say that Test.java depends on A.java; even more, any file declaring A may
affect the compilation of Test.java. In summary, besides actual dependencies, like
the one between Test.java and A/B.java, there are “hidden” potential dependen-
cies, which we call ghost dependencies, between Test.java and all files, existing or
future, which declare something that may affect the compilation of Test.java.

We deal with this aspect by introducing a level of indirection in how dependencies
are handled: instead of keeping information “source S1 depends on source S2” we
keep the information “source S1 depends on a set of names N”. Hence, S1 depends
on any source s declaring names in N (since those declarations may affect the
compilation of S1).

Failing to take ghost dependencies into account prevents from providing a cas-
cading recompilation equivalent to global recompilation. Yet, popular tools seem to
make this exact mistake and do not get this kind of dependency right:

• Eclipse 2.1.3 (http://www.eclipse.org/),

• Javamake 1.3.2 (http://www.experimentalstuff.com/Technologies/JavaMake/),

• JBuilder X (http://www.borland.com/jbuilder/) and

• Jikes4 1.21 (http://www-124.ibm.com/developerworks/opensource/jikes/),

3When a name can be interpreted as both a type name and a package name, the former inter-
pretation is chosen — see 6.5.4.1 of [5].

4We have tested the “++” incremental compilation. Re-generating a makefile, using -M, after
the addition of A.java works correctly, of course.
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the latest available at the time of writing, do not recompile Test.java after the
addition of A.java, so the result of their recompilations is not equivalent to the
recompilation of all sources.

Import declarations

Let us now consider import declarations. There are two kinds of import declarations:
single type and on demand. In the former case, a fully qualified type name is
specified. The effect of such declarations is to make available the types they specify
as simple names. For instance, after the following declaration:

import java.util.Vector;

the simple name Vector refers to java.util.Vector (when it is not shadowed or
obscured by other declarations contained in the same file, see 6.3.1 and 6.3.2 of [5]).

So, a single type import of a name n1 may affect the resolution of a name n2

if simpleName(n1) = head(n2) as, in this case, n2 can stand for n1.tail(n2), when
tail(n2) 6= ⊥, or for n1, when tail(n2) = ⊥. Note that it is an error to have two
distinct single type import declarations for the same simple name5, so single type
import declarations cannot create ambiguity by themselves.

The second kind of import declaration is also known as star import. This kind
of declaration imports all the public names of a package or type, making them
available, for the compilation unit, as simple names. For instance,

import java.util.*;

allows to use simple names as Vector or List instead of their corresponding fully
qualified names java.util.Vector and java.util.List.

So, after an import declaration import n.*; the effect is that all names n ′ in
type declarations6 can be interpreted both as n ′ and n.n ′.

Star imports are another source of ghost dependencies. If two packages, say
p1 and p2, are imported, then any name n can be interpreted, in addition to sim-
ply n, as p1.n and p2.n. This fact is exploited in the following example, which
is based on the example given by Todd Turnidge in Susan Eisenbach’s web page
http://www.doc.ic.ac.uk/̃ sue/packages.html.

5Unless they refer to the same type, in which case one of them is simply ignored — see 7.5.1 of
[5].

6Import declarations have no effect on each other.
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// File P1/A.java

package P1 ;

public class A {}

// File P2/Foo.java

package P2 ;

class Foo {}

// File Test.java

import P1.* ;

import P2.* ;

class Test {

A anA ;

}

These source files can be successfully compiled and it is easy to see that Test.java
depends on P1/A.java, as the former names A which is resolved to P1.A, declared
by the latter. Note that class Foo is not really required to make our point, but we
had to put its source into directory P2 to make javac happy (otherwise we get the
error “package P2 does not exist”) — other compilers do not require this.

If we add now the following file:

// File P2/A.java

package P2 ;

public class A {}

then the compilation of Test.java becomes undefined, as the simple name A is now
ambiguous (it could be both P1.A and P2.A).

We have tried this example with the aforementioned tools and, in this case,
only Eclipse correctly finds the ambiguity. The other tools do not propagate the
compilation of the new file P2/A.java to the unchanged file Test.java, so their
incremental recompilations terminate successfully.

Formal Definition

Now that we have seen all the meanings a name can have, we can formalize what
“a source refers to a name” means.
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Definition 1 If a source file s ∈ S

• declares types inside package p ∈ N ∪ {ε}, where ε represents the name of the
unnamed package (we define ε.n = n) ;

• imports the names NOnDemand ⊆ N by on demand import declarations;

• imports the names NSingleT ⊆ N by single type declarations;

• contains the (neither obscured nor shadowed) names NBody ⊆ N in the body.

Then we say that s refers to all names in the set

refersTo(s) = RDecls ∪ ROnDemand ∪ RSingleT

where:

• RDecls = prefixes(NOnDemand) ∪ prefixes(NSingleT )

• ROnDemand = {n1.n2|n1 ∈ NOnDemand ∪ {p}, n2 ∈ prefixes(NBody)}

• RSingleT = {n1.tail(n2)|n1 ∈ NSingleT , n2 ∈ prefixes(NBody),
simpleName(n1) = head(n2), tail(n2) 6= ⊥}

That is,

• RDecls contains just the prefixes of imported names because import declarations
have no effect on each other.

• ROnDemand contains all combinations of a star imported name and the prefixes
of names contained in the body. Note that the current package is considered
implicitly star imported.

• RSingleT contains all combinations of single type imported names and the tails
of names in the body that are affected by the corresponding import declaration.
Names which are single identifiers (that is, the ones such that tail(n2) = ⊥)
are not included here because their “expansion” due to a single type imported
name n corresponds to name the n itself, hence it is contained in
NSingleT (⊆ RDecls ).

4 AN INCREMENTAL RECOMPILATION SCHEME

In this section we show how function dirDepends can be used to build an incre-
mental recompilation scheme; that is, how we can determine which files have to be
recompiled after some changes.
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First of all, let us recall the definition of dirDepends (from page 82)

dirDepends(s1, s2) = refersTo(s1) ∩ provides(s2) 6= ∅

and introduce compilation contexts, which model the fact that sources are stored
in a filesystem. A compilation context is a (partial) map from filenames to their
corresponding sources; if F is the set of all filenames, ranged over by f , then a
compilation context is:

cc : F → S

Given a compilation context cc we derive from dirDepends the following new
relation:

→cc= {(f1 →cc f2) | dirDepends(s1, s2), s1 = cc(f1), s2 = cc(f2)}+

with the meaning that if (f1 →cc f2) holds, then the compilation of f1 may be
affected by a change in f2 (the + denotes the transitive closure).

We also define the set

requires(f, cc) = {f ′|(f →cc f ′)}

of all sources a file f depends on in a compilation context cc. Conversely, all sources
that depends on f in cc are:

requiring(f, cc) = {f ′|(f ′ →cc f)}

Given two compilation contexts ccold and ccnew, the set of (new and) changed
files is defined as:

changed(ccold, ccnew) = {f |ccnew(f) 6= ⊥, ccold(f) 6= ccnew(f)}

The condition ccold(f) 6= ccnew(f) covers also the case where a new filename has been
introduced in ccnew, as in this case ccold(f) = ⊥. We give an abstract definition here;
of course, an implementation would derive which files are new or changed storing,
and then comparing, timestamps.

The set of deleted files is defined as:

deleted(ccold, ccnew) = {f |ccold(f) 6= ⊥, ccnew(f) = ⊥}

Of course, if the current compilation context is ccnew and the last compilation
was successfully performed in compilation context ccold, then all the sources in
changed(ccold, ccnew) need to be (re)compiled. Let us now analyze which possibly
unchanged sources have to be recompiled as well.

For each new/changed or deleted file f ∈ changed(ccold, ccnew)∪deleted(ccold, ccnew)
we trigger the (re)compilation of all files that might depend on it:

(requiring(f, ccold) ∪ requiring(f, ccnew)) \ deleted(ccold, ccnew)

that is:
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• the sources that depended on f in the old context — these are the “standard”
recompilations found by existing tools;

• the sources that currently depends on f — this is needed for dealing with
ghost dependencies ;

• . . . as long as these sources are still there , .

Note that generally requiring(f, ccold) 6⊆ requiring(f, ccnew), because some decla-
rations contained within f or f itself could have been removed. On the other hand,
in addition to trivial cases where f has changed, the inclusion requiring(f, ccold) ⊇
requiring(f, ccnew) does not hold even when ccold(f) = ccnew(f) = s , as we showed
in previous examples. Indeed, this (wrong) assumption is what makes the examined
tools fail in our examples.

5 IMPLEMENTATION

In this section we consider how to implement:

• the function provides;

• the function refersTo and

• the test refersTo(s1) ∩ provides(s2) 6= ∅.

In implementing functions provides and refersTo, two things are to be consid-
ered. The former is how to collect all the names, which is an easy task. The latter
is how to represent these sets of names, using an encoding which is compact but
allowing a fast intersection test (needed by dirDepends on which the incremental
recompilation scheme is built).

The sets of names corresponding to both functions, provides(s) and refersTo(s),
can be easily found visiting the syntax tree of s . Javac, for instance, uses the pattern
visitor [4], which permits to add new kinds of visit without changing the classes for
representing syntax trees. Because sets provides(s) and refersTo(s) can change
only when s changes, the parsing steps needed to keep their representation up to
date are basically free. Indeed, we need to parse only new and changed sources,
that is, those sources that would be parsed anyway (in any incremental recompila-
tion mechanism) to be (re)compiled.

However, the most interesting part of implementation is the way sets are repre-
sented. Using regular expressions [7] we found an encoding which is both compact
and allows to quickly7 check whether two sets intersects.

7Although we do not have actual benchmarks yet, our assumption is based on the fact that
matching regular expressions is fast.
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Given a set of names N we denote with [[ N ]]S its representation as a string,
defined as

[[ {n1, . . . , nk} ]]S = #n1# . . . #nk#

That is, we concatenate8 all names into a single string, keeping them separate by the
special character “#” (any character which cannot be contained in a name would
do).

Given a set of names N , we denote with [[ N ]]R its representation as regular
expression (we discuss the details of this translation below).

Given two sources, say s1 and s2, we encode the set provides(s2) with the
string str = [[ provides(s2) ]]S and the set refersTo(s1) with the regular expres-
sion R = [[ refersTo(s1) ]]R. With these representations, the test refersTo(s1) ∩
provides(s2) 6= ∅ corresponds to checking whether a substring of the string str

matches the regular expression R.

For readability, we enclose regular expressions between “�” and “�” and use
the syntax of Java regular expressions [6] except that we pretend the period is not
a metacharacter and do not escape it (that is, we use just �.� instead of �\.�
to represent the single character “.”).

Because, for any s , the set refersTo(s) = {n1, . . . , nk} is finite, we could rep-
resent it using a long alternation � n1|n2| . . . |nk �, but such an encoding would
be rather space consuming. Since one of our goals is to keep the representation as
compact as possible, we have examined the pieces that make up refersTo(s) trying
to find the best encoding for each case.

For instance, sets produced by function prefixes can be compactly represented
using the quantifier “?” (which stands for “once or not at all”).

Given a name n = id1.id2. · · · .idn, then we define [[ prefixes(n) ]]R as:

� id1(.id2(.id3(· · · (.idn)? · · · )?)?)? �

For instance, [[ prefixes(A.B.C.D) ]]R = r, with r =� A(.B(.C(.D)?)?)? �. Let us
decompose r from the outside inward: �AX?� means “A or A followed by X”; in
our case X =� .B(.C(.D)?)? � which we can write as X =� .BY ? �. Hence, X
means “.B or .B followed by Y ”, so the set r describes is:

• A or

• A followed by:

– .B, that is, A.B or

– .B followed by Y , that is, A.B Y

8In any order (the order is immaterial because of the way we use these strings).
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Repeating this reasoning on Y and so forth, we can see that r encodes all and only
the elements of prefixes(A.B.C.D).

Set unions are translated using the alternation operator “|”, that is,

[[ S1 ∪ S2 ]]R = � [[ S1 ]]R| [[ S2 ]]R �

Before defining the translation of set refersTo(s) = RDecls∪ROnDemand∪RSingleT ,
defined in Definition 1, let us consider the translation of its subsets RDecls , ROnDemand

and RSingleT first. In what follows we assume to be in the context of Definition 1, so
we do not repeat the meaning of variable names here.

The translation of set RDecls is straightforward:

[[RDecls ]]R = � [[ prefixes(NOnDemand) ]]R | [[ prefixes(NSingleT ) ]]R �

The translation of set ROnDemand depends on p; if p = ε, that is, type declarations
are contained in the unnamed package, the translation is:

[[ROnDemand ]]R = � ( [[NOnDemand ]]R.| ) [[ prefixes(NBody) ]]R �

otherwise it is:

[[ROnDemand ]]R = � ( [[NOnDemand ]]R|p). [[ prefixes(NBody) ]]R �

The translation of set RSingleT is more complex. Given NSingleT = {n1, . . . , nk},
we partition RSingleT into:

RSingleT =
⋃

i∈{1,...,k}

Si, where:

Si = {ni.tail(n)|n ∈ prefixes(NBody), simpleName(ni) = head(n), tail(n) 6= ⊥}

In order to obtain a more compact translation, we rewrite Si as:

Si = {ni.tail(n)|n ∈ prefixes({n ∈ NBody , simpleName(ni) = head(n), tail(n) 6= ⊥}) =
{ni.n|n ∈ prefixes(tail({n ∈ NBody , simpleName(ni) = head(n), tail(n) 6= ⊥}))

The former simplification corresponds to calculating the prefixes after having se-
lected the names, instead of calculating all prefixes and then selecting the names
(because the selection is driven by the head of the names, the order of these two
operations is immaterial). The latter simplification corresponds to taking the pre-
fixes of the tails instead of vice versa; because of the condition tail(n) 6= ⊥, which
avoids the undefined expression prefixes(⊥), the order is immaterial in this case
too.

Hence,

[[ Si ]]R =� ni. [[ prefixes(tail({n ∈ NBody , simpleName(ni) = head(n), tail(n) 6= ⊥})) ]]R �

92 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11



6 CONCLUSIONS

and

[[RSingleT ]]R =� [[ S1 ]]R| [[ S2 ]]R| . . . | [[ Sk ]]R �

The topmost translation requires a little adjustment to work correctly; that is,
the whole set refersTo(s) = RDecls ∪ ROnDemand ∪ RSingleT is translated into:

� # [[RDecls ]]R| [[ROnDemand ]]R| [[RSingleT ]]R# �

In this case we have to delimit the final expression with a couple of “#”s. These
characters ensure that matches of partial names do not influence intersection tests.
Consider, for instance, provides(s1) = {A.B.C} and refersTo(s2) = {B, B.C}. Al-
though their intersection is clearly empty, if we omitted the delimiting “#”s then we
would get two unwanted matches (wrongly representing a non-empty intersection).
Indeed,

• [[ {A.B.C} ]]S =“#A.B.C#” and

• R = [[ {B, B.C} ]]R =� B(.C)? �.

Hence, R has two matches: “#A. B .C#” and “#A. B.C #”. With the delimiters,
instead, we force R to match only whole names and we get no unwanted partial
matches.

6 CONCLUSIONS

This paper can be seen as a self-contained analysis of dependencies in Java, but
also as a follow-up of our previous work [1, 8, 9, 10], where we have given a type
system, for a substantial subset of Java, that can be fruitfully used to implement a
selective recompilation strategy. Our strategy is both sound and minimal, that is,
its result is equivalent to global recompilation of all sources; yet, our strategy never
triggers useless recompilations (i.e., recompilations which produce binaries equal to
the existing ones).

While from a theoretical point of view this was the best we could achieve, from
a practical point of view the handling of the full Java language requires evaluating
rather complex type assumptions, which is time-consuming. So, a more effective
way to apply those ideas is to use such a recompilation strategy as a refinement
of some other less precise (but faster) strategy; for instance, as a refinement for a
cascading recompilation strategy. This was the motivation for this paper.

On the one hand, a cascading recompilation scheme is both easier to imple-
ment and more efficient (in selecting which sources have to be recompiled) than the
solution based on type assumptions, but, on the other hand, a cascading recompila-
tion scheme triggers useless recompilations in most cases, since it cannot tell apart
changes that affect the compilation of dependent sources from changes that do not.
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While there is already some work on cascading recompilation schemes for Java
[2], our tests show that popular tools (Eclipse, Javamake, JBuilderX and Jikes) fail
to trigger some recompilations which are required to obtain the same result a global
recompilation would produce.

The source of these problems seems to be the fact that the introduction of a new
source may change the result of the (re)compilation of unchanged sources. In order
to deal with these ghost dependencies we have introduced a level of indirection in
handling dependencies and shown how regular expressions can be used to encode
these dependencies.

Our encoding is compact and allows to quickly determine which new dependen-
cies have been introduced by the addition or the modification of some files.
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