
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 11

Special issue: OOPS track at SAC 2004, Nicosia/Cyprus

Cite this article as follows: Bo Nørregaard Jørgensen: “Integration of Independently Developed
Components through Aliased Multi-Object Type Widening”, in Journal of Object Technology, vol.
3, no. 11, December 2004, Special issue: OOPS track at SAC 2004, Nicosia/Cyprus, pp. 55-76.
http://www.jot.fm/issues/issue_2004_12/article3

Integration of Independently Developed
Components through Aliased Multi-
Object Type Widening

Bo Nørregaard Jørgensen, University of Southern Denmark, Denmark

Abstract
The aim of component-based software development is to assemble applications from
existing components, writing as little extra code as possible. For programmers, the
assembling of applications from existing components should increase reuse, thus
allowing them to concentrate on value-added tasks and to produce high-quality software
within a shorter time. For users, component-based software development promises
tailor made functionality from the customization of ready-made components, and that at
a lower cost than applications developed from scratch. However, this ideal scenario has
yet to become reality! Today, the majority of all applications are still developed from
scratch, and there are still relatively few ready-made components that can be easily
reused in the construction of new applications. In this paper, we argue that the present
situation is primary caused by the conventional object-oriented programming languages
in which we try to assemble components. When Assembling independently developed
components in a conventional object-oriented programming language, it leads to a
number of complex integration problems. We describe these problems in turn before we
discuss how the new language features of Lasagne/J, an extension of the Java
programming language, can be used to tackle them.

1 INTRODUCTION

The object-oriented programming languages and development environments of today rely
on components to be well integrated and do not handle the integration of independently
developed components well. Even slight inconsistencies between components can lead to
integration problems that are difficult if not impossible to handle satisfactorily with the
reuse mechanisms available in current object-oriented languages. Inconsistencies between
components are to be expected in a world where components and application frameworks
are designed and developed by independent organizations. The large number of
development organizations makes perfect coordination of components practically
impossible. However, the current state of affairs is unacceptable because it diminishes the
pervasiveness of component-based development due to the unnecessary high cost of reuse

http://www.jot.fm/issues/issue_2004_12/article3
http://www.jot.fm

INTEGRATION OF INDEPENDENTLY DEVELOPED COMPONENTS THROUGH ALIASED

MULTI-OBJECT TYPE WIDENING

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 11

caused by the various implementation techniques required for fitting existing components
for use in new contexts. It is generally acknowledged that the effort necessary for reusing
a component should be smaller than the effort required for creating an equivalent
component from scratch. Components developed by a third party will not become a
serious alternative to in-house development before programming languages and
development environments can seamlessly support the integration of such components.
Rethinking and enhancing the programming constructs of current object-oriented
languages is therefore a necessity for enabling the success of component-based
development.

The present situation for component-based development is characterized by the
following dominating factors:

• Components are written in a statically typed, class-based object-oriented
programming language.

• Components are developed and maintained by independent organizations.
• Extending the behavior of a system is ideally done by adding new components.

Each of these factors has effect on the development of components. The implications

of these factors can be characterized as:

• The internal structure of a component is defined by a set of related classes.

Objects of these classes collaborate to implement the services offered by the
component.

• Most components have to be adapted before they can be reused in settings
different from those in which they were originally developed.

• The source code of existing components cannot or should not be changed.
• The granularity of a component can vary from the size of a simple GUI widget to

a full-sized application.
Having identified the dominating factors characterizing component-based

development and clarified their implications, we can now turn our attention to the
integration problems they cause. We will do so in section 2. In section 3, we show how to
tackle these problems using Lasagne/J, an extension of JavaTM that supports the extension
of collaborating objects through Aliased Multi-Object Type Widening. Related work is
discussed in section 4 and section 5 addresses challenges left for future work. Finally,
section 6 summarizes the main contributions of this paper.

2 PROBLEMS, CAUSES AND SOLUTIONS

In this section we summarize problems that component-based development must face
today, due to the present plane of development of languages and tools. As part of
discussing each problem, we briefly outline necessary properties of a solution. We are not
the first to recognize and acknowledge the importance of these problems. Existing

PROBLEMS, CAUSES AND SOLUTIONS

VOL. 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 57

literature contains numerous examples of the problems in various forms, along with
different proposals for solving them. However, the problems have largely been addressed
independently of each other, so none of the proposed solutions address all of them in a
unified fashion. New solutions which can address a broader range of the problems,
ideally all of them, are therefore needed. We return to our proposal for such a solution in
section 3.
Multiple representations of real-world entities. When assembling an application from
independently developed components, it may occur that different components contain
individual representations for the same real-world entities. As argued in [Ossher92] and
[Mattsson99] this is a problem because equivalent representations have to be coordinated
in the composed application. One practical problem is that objects of equivalent classes
must be interchangeable between components. Components must be able to exchange
objects that represent the same real-world entity. However, the exchange of objects
across component boundaries is forbidden by the type system of the implementation
language if the exchanged objects belong to different class hierarchies, i.e. they do not
share a common supertype. A solution to the problem has to compensate for the missing
shared superclass and the possibility of slightly semantic differences between the
representations. Appropriate compensation could be provided by mechanisms which
support introduction of superclasses into existing class hierarchies and adaptation of
behavior in affected classes.
Extending shared components. A shared component is typically a component which
controls a unique resource. In some situations simultaneous clients may have different
expectations to the behavior of a shared component. One client could for instance require
a newer version of the component than the one required by another client. If the newer
version of the component is appropriate for the client requesting the older version, we can
simply replace the old version with the newer one. Often the situation is more complex;
simultaneous clients may have individual conflicting requirements for the component’s
behavior. For shared stateless components the problem can be solved by maintaining
different versions of the component for each client. However, this approach does not
work for components which contain state. Here duplication will result in inconsistencies
for the part of the state that is common to all versions of the component. As argued in
[Meijer02] conventional programming languages lack adequate support for expressing
and managing multiple versions of the same component, especially in the case where
different versions of the same component cannot co-exist. The absence of adequate
support leaves us in a situation where the requirements of one client may exclude the
presence of another. A solution to the problem must allow developers to control the
visibility of the modifications made to a component, so that modifications are only visible
to the client who requested them.
Interface mismatch. Due to their independent conception it is very unlikely that
independently developed components will have exactly the same interface structure and
behavior [Smith98]. In order to avoid interface incompatibilities, different component
vendors must agree upon both structure and behavioral semantics of shared interfaces. To
some extend this may be achievable for domain specific components, by complying with

INTEGRATION OF INDEPENDENTLY DEVELOPED COMPONENTS THROUGH ALIASED

MULTI-OBJECT TYPE WIDENING

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 11

an external specification, but it is generally not the case for general purpose components.
Clients will therefore not be able to substitute one component for another without
compensating for the differences between the two. Interface incompatibilities typically
manifest themselves as typing conflicts caused by the implementation language, when
trying to combine independently developed components, as discussed by [Hölzle93] and
[Mattsson99]. A solution should allow developers to express how the behaviors of
different abstractions relate to each other. One example of this train of thought is a form
of polymorphism, called correspondence polymorphism [Rinat96]. In correspondence
polymorphism a correspondence relation declares how some methods and attributes of
one type correspond to other methods and attributes within another type.
Architectural style mismatch. Components typically use one of two architectural styles
for interacting with other components. The first style of interaction is the explicit
invocation style, which is naturally supported by the call idiom used in the majority of all
programming languages. The other style of interaction is the implicit invocation style
[Shaw96]. This style of interaction is probably better known as event-based. Where the
explicit invocation style invokes methods directly on other components by calling them,
the implicit invocation style invokes methods indirectly by announcing one or more
events. Other components register their interest in an event by associating a callback
method with it. When the event is announced, the source of the event invokes all of the
callback methods that have been associated with the event. The implicit invocation style
is more flexible than the explicit invocation style, because it supports multiple receivers
for an invocation instead of just one. Furthermore, it supports loose coupling by allowing
receivers to be dynamically added and removed. However, the implicit invocation style is
not supported by conventional object-oriented programming languages, which means that
it has to be simulated by the normal call idiom. The general scheme is that components
which listen for events have to implement a listener interface. It is the listener interfaces
that associate events with methods. Since the two interaction styles result in
fundamentally different code structures, the integration of components that use different
styles will either require major re-factoring of existing code or extensive use of new glue
code. In a world of independent development, it is most likely that applications will be
assembled from components supporting one style or the other. As discussed in [Garlan95]
care must be taken when mixing the two styles. To bridge this mismatch in architectural
styles, we need language mechanisms which allow components to participate in different
styles of interaction simultaneously.
Modification of inter and intra component collaborations. When development takes
place in a class-based object-oriented language, any well-formed non-trivial component
will consist of a set of related classes. From this set of classes, the component instantiates
the objects that form the collaborations responsible for the functionality which the
component provides to its clients. Some of these objects also participate in the
collaborations that the component has with other components to implement application-
level functionality. Hence, any extension of functionality either at the component-level or
at the application-level will require modifications of several classes. Likewise, adding a
new collaboration will require the modification of several classes in order to adapt these

PROBLEMS, CAUSES AND SOLUTIONS

VOL. 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 59

classes to the appropriate collaboration roles. The addition of a new collaboration is often
a consequence of integrating a new type of component. Changing the classes of a
component to implement an extension ties the original version of the component to its
extended version. Often an extension is used to bind a component to a specific usage
context, making the component less generic. The irreversible nature of such bindings
caused by invasive changes to classes is undesirable, because in general it should be
possible to continue the development of a component independently of any extensions
made to it. Furthermore, the clarity of the relation between a component and its
extensions is damaged, because the code responsible for implementing the extensions is
not localized in one place, but instead spread across several classes. This results in
tangled code which is difficult to understand and maintain, because it basically suffers
from bad modularity. As pointed out in [Mezini00] and [Kiczales97] there is a critical
need for programming constructs which can support the separation of base functionality
from extended functionality through capturing and encapsulation of distinct and largely
independent slides of program behavior into separate modules.
Iterated extension of components. Similar to the creation of applications by assembling
independently developed components, one may argue that it should also be possible to
create higher-level applications by assembling independently developed applications.
Any application can be used as a component in the construction of a higher-level
application, if only it complies with the component model of the applied component
infrastructure. Hence, at a latter point in its lifecycle an application can itself become a
component in the development of an even larger application. Using a development
approach that creates new applications from existing applications will cause the classes
constituting the components of the applications involved in the assembling process to be
iteratively modified. The constituent classes of a component are potentially modified
each time the component is integrated into a new context. At the moment wrapping is the
most prominent non-invasive extension technique used in component-based development
to modify the behavior of existing components. If we choose to ignore the many
problems, such as efficiency and the self-problem, which follows from using wrapping in
conventional object-oriented programming languages, it turns out that wrapping in
general works well as long as a component is only extended by a single client. However,
the situation becomes more problematic when subsequent integration iterations extend a
component with dependent extensions. Such iterated extension of a component can cause
consistency problems if not handled appropriately. Let’s for a moment assume that we
have two dependent extensions. To ensure consistency all clients now have to access the
extended component through the second extension and the second extension must access
the component through the first extension. This implies that all clients of the first
extension must have their references to the component replaced with references to the
second extension. Hence, as discussed in [Kniesel99] there is a need for the component
infrastructure to support dynamic re-wiring of component references. Without support
from the component infrastructure, re-wiring of object references makes iterated
extension of components very error phone and difficult to manage in systems which
continuously undergo evolution. As argued in [Bosch99] an extended component should
be just as extensible with the extension as it was without the extension. In general the

INTEGRATION OF INDEPENDENTLY DEVELOPED COMPONENTS THROUGH ALIASED

MULTI-OBJECT TYPE WIDENING

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 11

presence of an extension should not preclude the applicability of another extension,
except in the situation where they are semantically incompatible. A solution must allow
us to dynamically extend the behavior of objects without the need for changing existing
object references.

3 INTEGRATING COMPONENTS USING LASAGNE/J

We will use the development of a University administration system to exemplify how
Lasagne/J remedies the integration problems discussed above. But before we do so, we
will give a brief introduction to the main ideas behind Lasagne/J.

Lasagne/J in a nutshell

The Lasagne/J language extension facilitates the integration of independently developed
components through its ability to dynamically extend the behavior of a group of
collaborating objects. Lasagne/J uses generic wrappers to extend the behavior of objects.
Generic means that a wrapper can be applied in a type-safe manner to any type that is a
subtype of the type which the wrapper is intended to adapt. Each generic wrapper can
extend the behavior of exactly one object type. Thus the extension of multiple objects
happens through the coordinated use of several wrappers. A generic wrapper extends an
object by dynamically widen the object’s type. Dynamic widening of object type is
achieved by changing the method dispatch process so that method lookup starts at the
method table of the outermost wrapper and ends with the object’s own method table. In
short, type widening supports overriding of existing methods and the addition of new
methods. The new method dispatch process establishes a common-self between the object
and its wrappers. This implies that self within the object refers to the outermost wrapper.

All wrappers which participate in the coordinated extension of a group of
collaborating objects are organized in an extension package. Extension packages provide
modularization of extensions. The starting points for extending the collaborations of a
group of objects are defined by the wrappers in an extension package. More precisely, the
types of collaborating objects are dynamically widened by wrappers from an extension
package when their collaboration is initiated through an alias of a wrapper type defined in
the extension package. Due to the central role of the alias in this process, we refer to this
way of widening the types of multiple objects as Aliased Multi-Object Type Widening.
Aliased Multi-Object Type Widening provides a way of controlling the visibility of
extensions to the clients of collaborating objects, because the dynamic widening of object
types is done specifically to a particular alias. Hence, different extensions can be made
available to simultaneous clients simply by using different aliases. Extensions activated
through different aliases are kept isolated from each other so that they only share the state
of the extended objects. Any additional state or behavior added by an extension is beyond
the reach of other extensions. The interested reader can find more details on the subject in

INTEGRATING COMPONENTS USING LASAGNE/J

VOL. 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 61

[Joergensen03]. We will discuss the issue of creating aliases of wrapper types in a latter
subsection.

Implementation wise Lasagne/J is based on a mix of source code transformation and
load-time byte code rewriting, using the structural reflection tool Javassist [Chiba00]. The
use of load-time structural reflection enables the extension of existing systems without
requiring access to the source code of their components. Source code transformation is
only needed to initiate Aliased Multi-Object Type Widening from within new clients of
existing components.

Integrating class hierarchies with overlapping abstractions

Let’s assume that our University administration system started out as a simple system
only responsible for registering students as they enroll. The primary class in such a
system will be that of a Student. Clearly this system will turn out to be too limited, sooner
or later the system will have to be extended to meet the evolving expectations of its users.
A natural extension of the system would be to include semester course management.
Typical classes in a semester course management system are Course, CourseOffering,
Student, Schedule, etc. According to our basic observations for component-based
software development listed in section 1, the administration system will be extended
through integration with a component that provides the additional functionality of a
semester course management system. Common to the class hierarchies of the
administration system and the semester course management system is the abstraction of a
Student (see figure 1.). Coincidently the abstractions shared the same class name, but
since they are the products of independent development they will be defined in different
class hierarchies. They are therefore not interchangeable due to the typing conflict caused
by a statically typed, class-based programming language. One of the classes has to be
adapted before it can cross the typing barrier between the two class hierarchies. If we
assume that it is the administration system that is responsible for creating Student objects
we will have to adapt these objects before they can be used by the semester course
management system. Hence, we have to extend the type of a Student object without
losing its identity.

Student

getStudentID()
setFirstName()
getFirstName()
setLastName()
getLastName()
setAddress()
getAddress()

(from administration)
Student

getStudentID()
signUpForCourse()
getSchedule()

(from semester)

Figure 1 Component dependent representations of the same real-world entity

In Lasagne/J objects are adapted using generic wrappers. The generic wrapper in
figure 2 allows Student objects created by the administration system to cross the typing
barrier between the two class hierarchies and to be used as Student objects in the
component providing the semester course management functionality.

INTEGRATION OF INDEPENDENTLY DEVELOPED COMPONENTS THROUGH ALIASED

MULTI-OBJECT TYPE WIDENING

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 11

wrapper StudentTypeAdaptor
 extends org.lasagnej.examples.university.semester.Student
 wraps org.lasagnej.examples.university.administration.Student
{}

Figure 2 Simple type adaptation wrapper

Here we introduce two new keywords to the Java programming language for
defining wrappers. The keyword wrapper is introduced to distinguish the definition of a
wrapper from a class definition and the keyword wraps is used to associate a wrapper
definition with a class definition (i.e., the static wrappee type). To some extent the
definition of wrappers are related to the definition of classes, since they can define both
state and behavior. Wrappers can be defined for concrete and abstract classes, and applied
to instances of those classes as well as instances of their respective subclasses. The latter
is a consequence of fulfilling the genericity requirement [Büchi00], which states that a
wrapper must be applicable to any subtype of the static wrappee type to be generic. When
used together the extends clause and the wraps clause declare that the aggregate which
results from applying a StudentTypeAdaptor wrapper to an instance of org.
lasagnej.examples.university.administration.Student is a subtype of the
class org.lasagnej.examples.university.semester.Student and the static
wrapper type StudentTypeAdaptor. Thus the aggregate can now be used where an
instance of the class org.lasagnej.examples.university.semester.Student
is expected. With respect to method lookup and dispatch the combination of the extends
clause with the wraps clause has type adaptor semantics. That is, if the same method
signature appears in both the extended class and the static wrappee type the method call is
delegated to the wrappee, unless it is overridden by the wrapper. Wrappers can only
override public methods. This includes both the public methods of the static wrappee type
and the public methods of the extended class. A public method that is not overridden by a
wrapper is transparently accessible through the wrapper. Hence, all the methods of the
two Student classes listed in figure 1 are accessible through the wrapper
StudentTypeAdaptor. If the extends clause is absent the wraps clause declares that
the aggregate, which results from combining a wrapper with an instance of the static
wrappee type, is a subtype not only of the static wrappee type but also the dynamic
wrappee type. However, since the dynamic wrappee type is not known until runtime, it is
only the methods of the static wrappee type that can be overridden by the wrapper.

As mentioned earlier wrappers that belong to the same system extension are placed
in the same package, a so-called extension package. This package cannot be the same as
the package in which the classes that they wrap are defined. This separation of wrappers
from the classes that they wrap is required in order to encapsulate extensions into
identifiable modules. Consequently, a wrapper is always defined within another package
than the package of the class that it wraps. At this point, in our running example, we have
one extension package containing a single wrapper, i.e., StudentTypeAdaptor, since
this is all that is required for performing the integration.

INTEGRATING COMPONENTS USING LASAGNE/J

VOL. 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 63

We can now use the Façade design pattern [Gamma95a] to write a class
ServiceFacade that integrates the administration system with the semester course
management system. The class ServiceFacade implements the two use-cases Sign Up
For Course and Commit Schedule. The source code of the class ServiceFacade is
listed in figure 3.

1. public class ServiceFacade {
2. public void
3. enrollInCourse(String identification, String courseName)
4. {
5. CourseOffering courseOffering =
6. SemesterCourseOffering.getNextSemester().
7. getCourseOffering(courseName);
8. Student student = Administration.getStudent
9. (new StudentID(identification));

10. StudentTypeAdaptor adaptedStudent =
11. (StudentTypeAdaptor)student;
12. adaptedStudent.signUpForCourse(courseOffering);
13. }
14.
15. public void commitSchedule(String identification)
16. {
17. Student student = Administration.getStudent
18. (new StudentID(identification));
19. StudentTypeAdaptor adaptedStudent =
20. (StudentTypeAdaptor)student;
21. adaptedStudent.getSchedule().commit();
22. }
23. }

Figure 3. The class ServiceFacade defines the point of integration

The integration of the two components happens through the cast statements in line
11 and line 20. These are not normal cast statements; they are constructive downcast
statements. We have extended the cast mechanism of the Java language to support
constructive downcast. Constructive downcast refers to the dynamic extension of an
object by casting the object reference that refers to the object into the type of a wrapper
belonging to the desired extension. We call this cast constructive because the referenced
object dynamically becomes a type of the requested wrapper type when it is accessed
through the cast object reference. A wrapper can only be used to change the type of a
referenced object if the wrapper wraps the static type of the object reference referring to
the object. The effect of a constructive downcast is not limited to the referenced object; it
also affects all objects with which the referenced object collaborates. Hence, a
constructive downcast designates the point in an object collaboration where the Aliased
Multi-Object Type Widening process is initiated. Constructive downcast statements
inform the Lasagne/J runtime from which point on in the invocation flow it must start to
automatically apply wrappers to objects participating in the object collaboration. The cast
statements in line 11 and 20 widen an org.lasagnej.examples.university.admi

INTEGRATION OF INDEPENDENTLY DEVELOPED COMPONENTS THROUGH ALIASED

MULTI-OBJECT TYPE WIDENING

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 11

nistration.Student into an org.lasagnej.examples.university.semester
.Student thereby allowing Student objects from the administration system to be used in
the semester course management system.

Iterated extension of shared base components

Returning to our University scenario we will assume that the University’s management
has decided that the extended administration system has proven so successful that it
should be extended to also handle the management of tuition fees. Similar to the previous
extension this extension will also be based on integration with components developed by
third parties. For this purpose a sales management component and an accounting
component is purchased from two independent component vendors. Before integration
can take place, we have to inspect the class hierarchies of the four components involved,
i.e., administration system, semester course management, sales management, and
accounting, in order to identify potential overlapping classes. Figure 4 shows two classes
within the sales management and accounting components, which may overlap with the
class Student in the administration system and the class Student in the semester
course management system.

Customer

getName()
getA ddress()
setName()
setA ddress()

(f rom sales)
AccountHolder

setF irstName()
getF irstName()
setLastName()
getLastName()

(from accounting)

Figure 4 Roles applicable to Student objects

As part of the integration effort, it is discovered that Student objects within the
context of sales management must take the place of Customer objects. Now by
comparing figure 1 with figure 4 it becomes clear that the interfaces of
org.lasagnej.examples.university.administration.Student and org.la
sagnej.examples.university.sales.Customer must be bridged before Student
objects can be used in the place of Customer objects. The class org.lasagnej.exam
ples.university.administration.Student deals with a student’s name and
address as String objects whereas the class org.lasagnej.examples.univer
sity.sales.Customer uses Name and Address objects. Hence, we need to define a
type adaptation wrapper that allows Student objects to behave as Customer objects, see
figure 5.

INTEGRATING COMPONENTS USING LASAGNE/J

VOL. 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 65

Wrapper StudentCustomerAdaptor
 extends org.lasagnej.examples.university.sales.Customer
 wraps org.lasagnej.examples.university.administration.Student
{
 public Name getName() {
 return new
 Name(inner.getLastName(),inner.getFirstName());
 }
 public Address getAddress() {
 return new Address(inner.getAddress());
 }
}

Figure 5 Bridging Customer objects

The wrapper StudentCustomerAdaptor overrides the necessary methods in class

Customer for bridging the class Student. Within the methods of a wrapper, the
keyword inner refers to the wrappee. It can be thought of and treated as an implicitly
declared and initialized final instance field. Hence, the keyword inner defines a unique
reference to the wrappee within the scope of the wrapper. Similar to the way subclasses
use the keyword super to call overridden methods of their super class, the keyword
inner can be used by wrappers to call overridden methods of the wrappee. A wrapper
can choose to conceal the behavior of the wrappee by not forwarding an invocation to
inner. Optionally it can redirect an invocation by invoking another method on the
wrappee. Our running example will also require a type adaptation wrapper for making
Student objects interchangeable with Account holder objects. However, we choose to
exclude the definition of this wrapper since it follows the definition of the wrapper
StudentCustomerAdaptor. Making objects interchangeable using type adaptation
wrappers is however not enough to enhance the extended administration system with
support for handling tuition fees. We also have to extend the behavior of the use-case
Commit Schedule, and furthermore we have to add a new use-case Get Tuition Fee. The
implementations of these use-cases require a number of behavior adapting and extending
wrappers, one of which is a wrapper for the class ServiceFacade. Figure 6 shows the
wrapper for extending the class ServiceFacade.

1. wrapper TuitionServiceFacade wraps ServiceFacade {
2. public void commitSchedule(String identification) {
3. inner.commitSchedule(identification);
4. Student student = Administration.getStudent
5. (new StudentID(identification));
6. Order order = OrderSystem.createOrder();
7. order.setCustomer((StudentCustomerAdaptor)student);
8. for (Iterator it = student.getSchedule()
9. .getCourses().iterator();it.hasNext();) {
10. order.addItem(new Item
11. ((CourseOfferingProductAdaptor)it.next())
12. }

INTEGRATION OF INDEPENDENTLY DEVELOPED COMPONENTS THROUGH ALIASED

MULTI-OBJECT TYPE WIDENING

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 11

13. order.close();
14. }
15.
16. public int getTuitionFee(String identification) {
17. Student student = Administration.getStudent
18. (new StudentID(identification));
19. TuitionStudent tuitionStudent =
20. (TuitionStudent)student;
21. return tuitionStudent.getTuitionFee();
22. }
23. }

Figure 6 Tuition extension for the class ServiceFacade

To implement the new use-case Get Tuition Fee, we need a number of wrappers for
extending the original behavior of the classes in the semester course management system.
These wrappers are shown in the sequence diagram in figure 7. To better illustrate the
Aliased Multi-Object Type Widening process, we have changed the UML so that it
allows us to express wrapping of objects. The meaning of the compartment text is
changed from <object>:<class> to <wrapper>:<class>. Iteration is shown by
preceding a method call with a *.

TuitionServiceFacade :
ServiceFacade

 :
Administration

TuitionStudent :
Student

TuitionSchedule :
Schedule

TuitionCourseOffering :
CourseOffering

getStudent(StudentID)

getTuitionFee()
inner.getSchedule()

getCost()
inner.getCourses()

* getTuitionFee()

Figure 7 Object collaboration implementing the use-case Get Tuition Fee

As we can see from figure 7 the introduction of a new use-case results in the creation
of a relatively large number of wrappers. In the specific case, we had to create wrappers
for all the classes in the semester course management system. The Aliased Multi-Object
Type Widening of the classes Student, Schedule, and Course Offering are
initiated by the constructive downcast in line 20. Extending the system to handle tuition
fees implies that invoices have to be issued to students. Figure 8 shows how Aliased
Multi-Object Type Widening modifies the objects implementing the use-case Commit
Schedule to call the necessary methods in the sales management component and in the
accounting component. The wrappers TuitionServiceFacade and TuitionOrder
integrate the sales management component and the accounting component.

INTEGRATING COMPONENTS USING LASAGNE/J

VOL. 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 67

TuitionServiceFacade
: ServiceFacade

 :
Administration

 : OrderSystem TuitionOrder :
Order

 : Invoice : Account

getStudent(StudentID)

inner.commitSchedule(String)

createOrder()

setCustomer((StudentCustomerAdaptor)student)

* addItem(new Item((CourseOfferingProductAdaptor)courseOffering))

close()
inner.close()

createInvoice()

setAccountHolder((CustomerAccountHolderAdaptor)inner.getCustomer())

* add((ItemLineItem)item)

of((CustomerAccountHolderAdaptor)inner.getCustomer())

withdraw(inner.total())

Figure 8 Refinement of the collaboration implementing the use-case Commit Schedule

Evolution of business logic through collaboration refinement

Continuing our running example we will assume that the University management has
decided that no student will be allowed to sign up for a course if she has a tuition balance
from a previous semester. This time no new components are needed. We can implement
the decision of the University management by changing the business rule for course
enrollment. This can be done through specializing the wrapper TuitionService
Facade and the wrapper TuitionStudent from before. Figure 9 shows the
specialization of the wrapper TuitionServiceFacade.

wrapper TuitionDebitServiceFacade wraps TuitionServiceFacade {
 public void enrollInCourse
 (String identification, String courseName)
 {
 inner.enrollInCourse(identification,courseName);
 }
}

Figure 9 Specializing the wrapper for the tuition extension

When the wraps clause refers to another wrapper it means that the new wrapper is a
specialization of the other wrapper. A specializing wrapper wraps the same static
wrappee type as the wrapper that it specializes. This means that the specializing wrapper

INTEGRATION OF INDEPENDENTLY DEVELOPED COMPONENTS THROUGH ALIASED

MULTI-OBJECT TYPE WIDENING

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 11

becomes a subtype of the original wrapper. The specializing wrapper can add methods to
and override methods of the original wrapper. Additional methods are accessible through
an object reference that is at least of the same type as the specializing wrapper. When a
wrapper specializes another wrapper, the use of the keyword inner within the outermost
wrapper refers to the next inner wrapper. The outermost wrapper can conceal the
behavior of the next inner wrapper and the wrappee by not forwarding a call to inner.
Activation of an extension through constructive downcast of an object to the type of a
specializing wrapper will also activate all wrappers within the extension package of the
original wrapper. Thus the constructive downcast of a single object will affect all objects
participating in the object collaboration in which the constructive downcast happens.

TuitionDebitServiceFacade:Tuition
ServiceFacade:ServiceFacade

TuitionDebitStudent:Tuition
Student:Student

 : Account

inner.enrolInCourse(identification,courseName)
signUpForCourse(courseOffering)

inner.signUpForCourse(courseOffering)

of((StudentAccountHolderAdaptor)inner)

if (!account.getBalance() < 0)

Figure 10 Extended object collaboration for changing the business logic of the use-case Enroll In Course

The sequence diagram in figure 10 shows how a type adaptation wrapper is used to
adapt Student objects so that they can be used as AccountHolder objects in the context of
the accounting component. A comparison of the class Student and the class
AccountHolder in figure 11 shows that a simple type adaptation wrapper will do since
the interface of the class Student matches the interface of the class AccountHolder -
no adaptation of methods are required. Methods invoked on an alias of type
AccountHolder are automatically dispatched to the corresponding methods on a
Student object. All interactions with the system that go through the new wrapper
TuitionDebitServiceFacade will be subject to the no tuition balance rule.

Student

getStudentID()
setFirstName()
getFirstName()
setLastName()
getLastName()
setAddress()
getAddress()

(from administration) AccountHolder

setFirstName()
getFirstName()
setLastName()
getLastName()

(f rom a ccounting)

Figure 11 Incidentally structural and semantic compatibility between independent developed classes

INTEGRATING COMPONENTS USING LASAGNE/J

VOL. 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 69

Bridging architectural mismatch in interaction styles

To exemplify how Lasagne/J supports the assembling of applications from components
that use different architectural styles of interaction, we will extend our running example
with a web content management module for publishing semester related information. One
of the things that the university’s administration wants to publish on the University’s
home page is late cancellation of courses. The development department purchased a new
web content management (WCM) component especially for this purpose. However, it
soon turns out that the WCM component is implemented using the Observer design
pattern [Gamma95b], whereas all other components in the system use the call idiom. The
WCM component uses an interface and two classes to implements event-based
interaction. The interface Observer declares the callback method update(Object c)
for content change events. The class WebPublisher implements the interface
Observer and provides the concrete implementation for the callback method
update(Object c). Finally, the abstract class Subject is a utility class that provides
methods for attaching and notifying observers. In order to work with the WCM
component, components that cause content changes have to extend the class Subject. In
our case, such a component is the class SemesterCourseOffering in the semester
course management system. Hence, the class SemesterCourseOffering has to notify
the class WebPublisher when a course is removed; that is, each time its method
removeCourseOffering() is invoked. Without Lasagne/J this would clearly be a
problem since we don’t want to change the source code of the class Semester
CourseOffering to invoke the method update(Object c) on the class
WebPublisher. However, with Lasagne/J the integration can simply be achieved by
defining a wrapper that extends the class Subject and wraps the class
SemesterCourseOffering, see figure 12.

wrapper CancellationSubject extends Subject wraps SemesterCourseOffering

{

 public adherent void removeCourseOffering(CourseOffering course)

 {

 inner.removeCourseOffering(course);

 notifyObservers(course);

 }

}

Figure 12 Type widening of the class SemesterCourseOffering

Using the wrapper CancellationSubject defined in figure 12 we can attach an
instance of the class WebPublisher to an instance of the class SemesterCourse
Offering by the combined constructive downcast and invocation statement
((CancellationSubject)sco).attach(new WebPublisher()) where the
variable sco refers to the semester that we want to monitor. All invocations of the
method removeCourseOffering() will now cause the method update(Object c)

INTEGRATION OF INDEPENDENTLY DEVELOPED COMPONENTS THROUGH ALIASED

MULTI-OBJECT TYPE WIDENING

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 11

to be invoked as well. Thus, whenever a course is removed from a semester the WCM
component will be notified. The presence of the method modifier adherent declares
that the method removeCourseOffering() in the wrapper Cancellation Subject
has to be executed for all subsequent invocations of the method
removeCourseOffering() on instances of the class SemesterCourseOffering.
Hence, the presence of the method modifier adherent does not only affect those
invocations made through the alias sco but also those made through other aliases. A
wrapper method declared as adherent sticks, so to speak, to the wrappee after the first
time the wrappee has been touched by an extension. Invoking the method
attach(WebPublisher wp) touched the SemesterCourseOffering object with
the web publishing extension.

4 RELATED WORK

In this section, we focus on work that possess properties which we believe are essential
for any solution which aims at eliminating the integration problems that developers face
when assembling independently developed components. The first property is the ability
to support multiple simultaneous representations for the same objects while preserving
identity and state. Representation can refer to both type and behavior. The second
property is that of facilitating coordinated extension of object collaborations.

Different approaches for supporting multiple representations for the same object, by
dynamically changing the class of the object, have been discussed in [Drossopoulou01],
[Serrano99] and [Malabarba00]. However, these approaches are limited to re-
classifications within the same class hierarchy in order to prevent run-time type errors.
Furthermore, the different representations cannot exist simultaneously, that is, an object
can only belong to one class at a time. Thus, none of these approaches meet the need for
re-classification across class hierarchies, nor do they meet the need for supporting
multiple simultaneous representations.

Support for multiple simultaneous representations is discussed in [Bertino95]. Their
approach introduces the idea that an object can have multiple most specific classes. Class
selection is based on the static type of the object reference through which the object is
accessed. This allows for multiple simultaneous representations of the same object.
However, their approach cannot be used as an integration tool for classes belonging to
disjoint class hierarchies, because it requires the set of most specific classes to have a
common superclass.

Generic wrappers as discussed in [Büchi00] support simultaneous representations for
the same object via the use of object composition at runtime. Different clients of an
object can extend the object’s type and behavior by applying different wrapper objects to
it. A notable feature of Generic wrappers is that an existing wrapper object can be
wrapped again. Because the wrapping process is type transparent. Thus, it always remains
possible to extend an already extended object. However, the approach suffers from the

RELATED WORK

VOL. 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 71

object reference re-wiring problem. A closely related approach is the work on type-safe
delegation by [Kniesel99]. Like Generic wrappers, type-safe delegation also suffers from
the object reference re-wiring problem.

Correspondence Polymorphism is proposed in [Rinat96] as a means for establishing
correspondences between types, none of which is necessarily a subtype of the other. As a
result, methods may operate on objects and may receive arguments of types different than
the ones originally intended for. This allows programmers to take advantage of
similarities between existing types when such are identified and recognized as beneficial.

Subject-oriented programming, as originally introduced by [Harrison93], aims to
support unanticipated integration of independently developed applications. The subject-
oriented programming model claims that it can achieve this goal by maintaining several
class hierarchies, or so-called subjects, over the same set of instantiated objects. The
basic idea is that subjects can be combined into new applications using a number of
composition rules. The programming environment HyperJ, from IBM Research, adds
subject-oriented programming to Java. HyperJ is available, free of charge, from IBM’s
alphaWorks.

Language constructs for capturing the collaborations among objects have been
discussed in [Mezini98] and [Smaragdakis98]. The rationale for capturing object
collaborations is that the functionality of an application is not confined in the
implementation of a single class but rather scattered across the implementation of several
classes. Making collaborations explicit at the language level provides us with a single
place for changing the behavior of multiple objects. A common shortcoming of these two
approaches is however that the behavior of a collaboration is fixed when the collaboration
is first instantiated in a component. Consequently, different clients of a shared component
cannot request different specializations of the same collaboration. Approaches which can
provide such support have been proposed in [Ostermann02] and [Herrmann03]. These
approaches allow different clients to activate different specializations of the same
collaboration for a shared component. However, the approach proposed in [Herrmann03]
fails short when the extended collaboration has state that must be shared by the
specialized collaborations. The problem is the use of inheritance for specialization of
collaborations. Inheritance leads to replication of state maintained in the extended (i.e.,
super) collaboration. The proposal in [Ostermann02] does not suffer from this problem,
because it associates a specialized collaboration with its super collaboration via a
delegation link. Hence, state maintained in the super collaboration is shared by the
specialized collaborations.

A new relation between classes, called a context relation, is proposed in [Seiter98].
Through a context relation a class (i.e., context class) can override the behavior of several
classes (i.e., base classes). A context class can either be explicitly bound to a base class or
it can be bound to a method invocation. Binding a context class to a method invocation
will affect all nested invocations as well. Thus, clients can modify the object
collaborations of a component by attaching different context classes when invoking its
services.

INTEGRATION OF INDEPENDENTLY DEVELOPED COMPONENTS THROUGH ALIASED

MULTI-OBJECT TYPE WIDENING

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 11

In Aspect-oriented languages, like AspectJ [Kiczales01], modifications which affect
several classes are defined within a separate module called an aspect. At compile time,
the compiler weaves these modifications into the sources of the affected classes. Since
aspects affect several classes they can be used to modify object collaborations. However,
the weaving of aspect code into classes limits the use of AspectJ to extensions that apply
for all clients of a component.

We have deliberately excluded the discussion of using object composition in
conventional object-oriented languages, because of its well-known shortcomings. The
interested reader may refer to [Hölzle93] for a detailed discussion.

5 FUTURE WORK

Of particular interest for future work is the investigation of mechanisms for identifying
and handling of semantic incompatibilities between independently developed extensions.
Extensions are said to be semantically incompatible if their combined use introduces
undesirable application behavior. In most cases we can determine whether two extensions
will be semantically incompatible by observing their behavior independently of each
other. However, it sometimes happens that semantic incompatibilities first appear after
the extensions have been integrated with the application. That is, the mutual presence of
the extensions causes the application to behave in ways that could not be predicted
simply by observing them independently. The common cause for semantic
incompatibility seems to be that the additional application logic introduced by one
extension interferes with the application logic introduced by another. The kind of
interference which is observed for independently developed extensions can be seen as a
variant of the feature interaction problem. The feature interaction problem occurs when
the addition of a new feature to an application disrupts the existing services offered by the
application. Feature interaction has drawn a lot of attention, especially in the
telecommunication field where it has been a well acknowledged problem for many years.
An overview of the state of art of feature interaction research in telecommunication can
be found in [Calder03]. The feature interaction problem can also be observed for plug-ins
created by multiple vendors. Plug-ins can interact in ways not envisioned by either
vendor, and in ways not predictable by users and system administrators. To facilitate the
development of more advanced applications from independently developed extensions it
is crucial that we find ways of developing extensions in such a way that they can be
seamlessly integrated without too much additional effort for correcting interference
related problems.

6 SUMMARY

In this paper we have identified and described the programming problems that we believe
are most relevant to programmers in a world where application development becomes

SUMMARY

VOL. 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 73

more dependent on the integration of independently developed components with existing
applications. Furthermore, we have discussed how the new language features of
Lasagne/J, an extension to the Java programming language, remedy many of those
problems. Evidence for the feasibility of our approach is given through a non-trivial
integration example. The integration example shows that the proposed language features
provide a unifying solution to the identified problems. To summarize:
Multiple representations of real-world entities: Objects belonging to different class
hierarchies can be made interchangeable by applying wrappers that dynamically alternate
their types to the types expected by the receiving class hierarchy.
Extending shared objects: The visibility of wrappers is alias specific. This means that
clients independently of each other can simultaneously apply different extensions to the
same component.
Interface mismatch: Wrappers can adapt and extend the interface of an object. This
allows developers to deal with both structural and behavioral integration problems.
Architectural style mismatch: The use of wrappers which contain so-called adherent
methods allows developers to introduce a component using event-based interaction into
an architecture based on the call idiom.
Modification of intra and inter object collaborations: Aliased Multi-Object Type
Widening facilitates coordinated modification of object collaborations.
Iterated extension of components: Repeated constructive downcast of the alias through
which an object collaboration is initiated will extend the objects participating in the
collaboration with wrappers from more extension packages.

Through experimenting with Lasagne/J we have gained confidence that language
features like those proposed in this paper will help to narrow the current gap between
object-oriented programming languages and the needs of component-based software
development. However, in the balance of this paper, we chose to focus on how the
proposed language features help to address those problems, instead of their
implementation. An implementation of Lasagne/J is available and interested readers may
download it from its project web site www.lasagnej.org.

REFERENCES

[Bertino95] Bertino E., Guerrini G.: Objects with Multiple Most Specific Classes. In:
proceedings of ECOOP’95. Lecture Notes in Computer Science, Vol. 952.
Springer-Verlag, (1995) pp. 102-126

[Bosch99] Bosch J.: Superimposition: A Component Adaptation Technique. In:
Information and Software Technology. No 41. (1999) pp. 257-273

[Büchi00] Büchi M., Weck W.: Generic Wrappers. In: proceedings of ECOOP 2000.
Lecture Notes in Computer Science, Vol. 1850. Springer-Verlag, (2000) pp.
201-225

INTEGRATION OF INDEPENDENTLY DEVELOPED COMPONENTS THROUGH ALIASED

MULTI-OBJECT TYPE WIDENING

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 11

[Calder03] Calder M., Kolberg M., Magill E.H., Reiff-Marganiec S.: Feature interaction:
a critical review and considered forecast. In: Computer Networks - The
International Journal of Computer and Telecommunications Networking, Vol.
41 (1). Elsevier (2003) pp. 115-141

[Chiba00] Chiba S.: Load-time Structural Reflection in Java. In: proceedings of ECOOP
2000. Lecture Notes in Computer Science, Vol. 1850. Springer-Verlag,
(2000) pp. 313-336

[Drossopoulou01] Drossopoulou S., Damiani F., Dezani-Ciancaglini M.: Fickle:
Dynamic Object Re-classification. In: proceedings of ECOOP’01. Lecture
Notes in Computer Science, Vol. 2072. Springer-Verlag, (2001) pp. 130-149

[Gamma95a] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns, Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995) pp. 185-194

[Gamma95b] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns, Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995) pp. 293-304

[Garlan95] Garlan D.,Allen R., Ockerbloom J.: Architectural Mismatch or Why it’s hard
to build systems out of existing parts. In: proceedings of the 17th International
Conference on Software Engineering. ACM (1995) pp. 179-185

[Herrmann03] Herrmann S.: Object Teams: Improving Modularity for Crosscutting
Collaborations. In: proceedings of NetObjectDays. Lecture Notes in
Computer Science, Vol. 2591. Springer-Verlag, (2003) pp. 248-264

[Hölzle93] Hölzle U.: Integrating Independently-Developed Components in Object-
Oriented Languages. In: proceedings of ECOOP '93. Lecture Notes in
Computer Science, Vol. 707. Springer-Verlag, (1993) pp. 36-56

[Harrison93] Harrison W., Ossher H.: Subject-Oriented Programming (A Critique of Pure
Objects). In: proceedings of OOPSLA'93. SIGPLAN Notices, Vol 28 (10).
ACM (1993) pp. 411-428

[Joergensen03] Jørgensen B.N., Truyen E.: Evolution of Collective Object Behavior in
Presence of Simultaneous Client-Specific Views. In: proceedings of OOIS03.
Lecture Notes in Computer Science, Vol. 2817. Springer-Verlag, (2003) pp.
18-32

[Kiczales97] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C.V., Loingtier
J., Irwan J.: Aspect-Oriented Programming. In: proceedings of ECOOP’97.
Lecture Notes in Computer Science, Vol. 1241. Springer-Verlag, (1997) pp.
220-242

[Kiczales01] Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J., Griswold G. W.:
An Overview of AspectJ. In: proceedings of ECOOP’01. Lecture Notes in
Computer Science, Vol. 2072. Springer-Verlag, (2001) pp. 327-353

SUMMARY

VOL. 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 75

[Kniesel99] Kniesel G.: Type-Safe Delegation for Run-Time Component Adaptation. In:
proceedings of ECOOP'99. Lecture Notes in Computer Science, Vol. 1628.
Springer-Verlag, (1999) pp. 351-366

[Malabarba00] Malabarba S., Pandey R., Gragg J., Barr E., and Barnes F.: Runtime
Support for Type-Safe Dynamic Java Classes. In: proceedings of ECOOP
2000. Lecture Notes in Computer Science, Vol. 1850. Springer-Verlag,
(2000) pp. 337-361

[Mattsson99] Mattsson M., Bosch J.: Composition Problems, Causes, & Solutions.: In:
M.E. Fayad, D.C. Schmidt, R.E. Johnson (Eds.): Building Application
Frameworks: Object Oriented Foundations of Framework Design. Wiley &
Sons, (1999) pp. 467-487

[Meijer02] Meijer E., Szyperski C.: Overcoming Independent Extensibility Challenges.
Erik Meijer and Clemens Szyperski. Communications of the ACM, Vol. 45,
No. 10. ACM Press (2002) pp. 41–44

[Mezini98] Mezini M., Lieberherr K.: Adaptive Plug and Play Components for
Evolutionary Software Development. In: proceedings of OOPSLA’98.
Sigplan Notices, Vol. 33, No. 10. ACM Press (1998) pp. 97-116

[Mezini00] Mezini M., L. Seiter and K. Lieberherr.: Component Integration with
Pluggable Composite Adapters. In: M. Aksit (Eds.): Software Architectures
and Component Technology: State of the Art in Research and Practice.
Kluwer Academic Publishers, (2000).

[Ossher92] Ossher H., Harrison W.: Combination of inheritance hierarchies. In:
proceedings of OOPSLA'92. ACM SIGPLAN Notices, Vol 27 (10). ACM
(1992) pp. 25-40

[Ostermann02] Ostermann K.: Dynamically Composable Collaborations with Delegation
Layers. In: proceedings of ECOOP '02. Lecture Notes in Computer Science,
Vol. 2374. Springer-Verlag, (2002) pp. 89-110

[Rinat96] Rinat R., Magidor M.: Metaphoric Polymorphisn: Taking Code Reuse One
Step Further. In: proceedings of ECOOP’96. Lecture Notes in Computer
Science, Vol. 1098. Springer-Verlag, (1996) pp. 449-471

[Seiter98] Seiter L., Palsberg J., Lieberherr K.: Evolution of Object Behavior using
Context Relations. In: IEEE Transactions on Software Engineering, Vol.
24(1) (1998) pp. 79-92

[Serrano99] Serrano M.: Wide Classes. In: proceedings of ECOOP'99. Lecture Notes in
Computer Science, Vol. 1628. Springer-Verlag, (1999) pp. 391-415

[Shaw96] Shaw M., Garlan D., Software Architecture: Perspectives on an emerging
discipline. Prentice Hall, 1996. ISBN 0-13-182957-2.

INTEGRATION OF INDEPENDENTLY DEVELOPED COMPONENTS THROUGH ALIASED

MULTI-OBJECT TYPE WIDENING

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 11

[Smaragdakis98] Smaragdakis Y., Batory D.: Implementing Layered Designs with Mixin
Layers. In: proceedings of ECOOP’98. Lecture Notes in Computer Science,
Vol. 1445. Springer-Verlag, (1998) pp. 550-570

[Smith98] Smith G., Gough J., and Szyperski C.: Conciliation: The Adaption of
Independently Developed Components. In: proceedings of PDCN'98. (1998)
pp. 31-38

About the author
Bo Nørregaard Jørgensen is associate professor in Software
Engineering at the Maersk Mc-Kinney Moller Institute for Production
Technology, University of Southern Denmark. His current research
areas include reflective middleware systems, component-based
software development and the design of programming language
technologies for dynamic adaptation. Bo can be reached at
bnj@mip.sdu.dk.

mailto:bnj@mip.sdu.dk

