
Vol. 3, No. 11
Special issue: OOPS track at SAC 2004, Nicosia/Cyprus

A Case-Study in Encoding Configuration Lan-
guages: Multiple Class Loaders

Sonia Fagorzi and Elena Zucca, DISI, Università di Genova, Italy

The contribution of the paper is twofold. First, we define a toy language, called MCL,
which provides a very abstract view of the mechanism of dynamic class loading with
multiple loaders as in Java. The aim is to study this feature in isolation, allowing a
better understanding; moreover, this also shows a stratified approach, which, differ-
ently from the Java approach based on reflection, distinguishes between the language
at the user level and the configuration language. This approach is less flexible but
allows to statically check type safety, hence provides an intermediate solution between
the rigid approach based only on the class path and that which allows loaders to
depend on execution of user applications, which can be intricate and error-prone.
The second contribution is related to a recent stream of work aiming at defining simple
and powerful calculi providing a common foundation for systems supporting dynamic
reconfiguration. We use MCL as an extended case-study, by defining an encoding in
one of these kernel calculi, and prove the correctness of the translation.

1 INTRODUCTION

Modern programming environments support and will support more and more in the
future forms of dynamic reconfiguration, in the sense that steps in the execution of
an application can be interleaved with reconfiguration steps, that is, steps of combi-
nation and manipulation of the code fragments which compose the application itself.
However, systems supporting dynamic reconfiguration still lack clear foundations; in
particular, existing module/fragment calculi [6, 5, 16, 12] are based on a static view
of module manipulation, in which open code fragments can be flexibly combined
together, but all module operators must be performed once for all before starting
execution of a program.

Hence, the definition of analogous kernel calculi providing a simple unifying model
for various dynamic reconfiguration mechanisms is an important open problem. In
a recent stream of papers [1, 3, 2], we have provided first attempts in this direction.

Here we define an encoding in the CMS `,`- calculus (our most recent proposal [3],
which incorporates and improves features from previous work) of a toy language,
called MCL, which provides an abstract view of the mechanism of dynamic class
loading with multiple loaders as in Java [11, 10, 13].

The aim is twofold. On the one hand, we show an extended case-study of applica-
tion of the calculus for modeling existing loading and linking policies. On the other

Cite this article as follows: Sonia Fagorzi, Elena Zucca: ”A Case-Study in Encoding Config-
uration Languages: Multiple Class Loaders”, in Journal of Object Technology, vol. 3, no.
11, December 2004, Special issue: OOPS track at SAC 2004, Nicosia/Cyprus, pp. 31–53,
http://www.jot.fm/issues/issue 2004 12/article2

http://www.jot.fm/issues/issue_2004_12/article2
http://www.jot.fm

A CASE-STUDY IN ENCODING CONFIGURATION LANGUAGES: MULTIPLE CLASS LOADERS

hand, differently from existing informal and formal descriptions of Java class loading
[11, 10, 13], which are rather heavy in what their aim is to cover all language-specific
aspects, we provide a simple model allowing to understand the key mechanism with-
out to go in too many details.

MCL is a two level language with a user language for defining executable applications
and a configuration language for defining class loaders to be used in applications.
Both levels have the same syntax1, a simple functional Java subset, where classes
only contain static methods and there is no inheritance. Indeed, the only features
we are interested in modeling here are the following: class loading is dynamically
triggered whenever the first reference to a class name is encountered (in our simple
language, an instance creation or static method invocation), and the actual class
which is loaded is not uniquely determined by the class name, since different class
loaders can be used in the same application. Classes at the configuration level are
called loaders , and must have some special methods which are used to load (user)
classes. Loaders can manipulate user classes as first-class values, but not conversely,
differently from what happens in the Java reflective approach.

In MCL there are two execution levels corresponding to the two language levels.
Execution of the user application can trigger, and depends on, execution of the con-
figuration program, but not conversely. Both levels are formalized by a small-step
operational semantics. The model for the user level is a model of (a simple subset
of) Java execution focusing on class loading, which abstracts from all orthogonal
features. Indeed, in addition to considering a very simple language, we also do not
model bytecode verification, nor, as already said, the Java approach based on reflec-
tion where loaders are just special user classes (subclasses of the class ClassLoader).

One motivation is that, as done in previous work on other Java features (e.g., in-
heritance and late binding in [9], checked exceptions in [4]), we want to study just
one aspect in isolation.

Moreover, we want to show an alternative stratified approach, distinguishing be-
tween the language at the user level and the configuration language. Loaders can
still be flexibly programmed (by a “superuser” which could be the user himself), but
user program execution cannot affect their behaviour. This approach is less flexible
w.r.t. the Java behavior, where both aspects are part of the same language, hence
loaders might change during execution. On the other hand, this approach looks
simpler, safer and less error-prone, so we believe it can be a compromise between
a rigid approach based only on the class path and a total freedom in writing user-
defined loaders. The approach also looks closer (even though much more flexible)
to what happens in .NET, where there is no support for user-defined loaders but
some freedom in finding code to be associated to assembly names can be achieved
by using an XML configuration file.

1This is both for simplicity of presentation and for better mimicking the behavior of loaders in
Java. Of course it is just a choice among others: the important point here is to have a separate
language for defining loaders.

32 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

2 A TWO-LEVEL LANGUAGE WITH MULTIPLE CLASS LOADERS

Formally, stratification allows to statically type-check a user program after executing
a configuration program in a given context.

The rest of the paper is organized as follows. In Section 2 we formally define MCL
(syntax and reduction rules modeling execution for the two language levels). In
Section 3 we give a type system for the two language levels. In Section 4 we briefly
recall the calculus CMS `,`- introduced in [2]. In Section 5 we define a translation
from MCL into CMS `,`- and show that this translation preserves the semantics.
Finally in the Conclusion we summarize the contribution of the paper and outline
further work.

2 A TWO-LEVEL LANGUAGE WITH MULTIPLE CLASS LOADERS

Notations
We denote by A

fin→ B the set of the partial functions f from A to B with finite domain,
written dom(f); the image of f is written img(f); ∅ denotes the function with empty
domain, a1 : b1, . . . , an : bn the function which returns bi on ai and is undefined otherwise.
Finite sequences a1, . . . , an are also written ai∈1..n

i for short.

Syntax

MCL is a two level language with a user level for defining executable applications and
a configuration level for defining class loaders. Both levels have the same syntax,
which is given in Fig.1.

p ∈ Prg ::= cd1 . . . cdn program
cd ∈ CDec ::= class c {mds} class declaration
mds ::= md1 . . .mdn

md ::= static t m (t1 x1, . . . , tn xn) {e} method declaration
t ∈ Type ::= int | bool | . . . | c | cname | cdec | class type
e ∈ Exp ::= expression

x variable
| n | true | false | e1 + e2 | . . . operator of primitive type
| if (e) {e1} else{e2} conditional
| new c() instance creation
| c.m(ei

i∈n) method invocation
| c class name

Figure 1: MCL syntax

Metavariables c, m and x range over primitive sets of class names, method names,
and variables, respectively. We denote by CName the set of class names.

A program consists of a sequence of class declarations (we assume no multiple dec-
larations for the same class name).

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 33

A CASE-STUDY IN ENCODING CONFIGURATION LANGUAGES: MULTIPLE CLASS LOADERS

A class declaration consists of a class name and a sequence of static method dec-
larations, each one specifying the return type, name, parameters and body of the
method, which is an expression. We assume no multiple declarations for the same
method name (that is, no overloading), and that parameter names in a method
declaration are distinct. Note that the fact that loaders are classes which must have
some special methods will be later imposed by the type system.

Types are either primitive types, or class names, or metatypes which can only be
used at the configuration level to manipulate class names, class declarations and
classes of the user level (this constraint will be imposed by the type system in next
section).

There are the following kinds of expressions: variable (parameter), application of
an operator of primitive type, conditional, instance creation, (static) method invo-
cation, constant of metatype cname.

We only consider static methods because this is enough to illustrate dynamic loading;
however, we keep instance creation new c() to have a constant of type c in the
language.

Java class loading

Before presenting the formal semantics of MCL, we briefly recall how the Java class
loading mechanism works. Our description is mainly extracted from [13], to which,
together with [11, 10], we refer for more details.

Class loading is the process of obtaining a representation of a class declaration,
called a class file, and installing the representation within the Java Virtual Machine
(JVM). A class file is typically produced by compiling a Java class declaration, and
contains essentially the same information except that method bodies are compiled to
bytecode, that is, an assembly-like language which can be executed by JVM. Bytecode
instructions use (class) names to refer to classes. The JVM allows lazy, dynamic
loading of classes and a form of name space separation using loaders. Indeed, loading
of a class happens only when the first reference to a class name is encountered during
program execution. Moreover, distinct loaded classes may have the same name, and
within an executing JVM each loaded class is identified by its name plus the class
loader that has loaded it (that is, the defining loader of the class, see below). Java
supports reflection, that is, classes have run-time representations in an executing
JVM, which are objects, in turn instances of the system class named Class, and they
are called class objects.

Loaders are objects of subclasses of class ClassLoader. This class contains a de-
fineClass method (final, that is, which cannot be overridden in subclasses) which
takes a class file (in the form of a byte array) as argument and returns a newly
created class object, unless the class file has an invalid format, in which case an
exception is thrown. If the defineClass method is invoked on a loader and a class
object is returned, then the loader is called the defining loader of the resulting class.

34 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

2 A TWO-LEVEL LANGUAGE WITH MULTIPLE CLASS LOADERS

Class ClassLoader also contains a loadClass method, which may be overridden in
subclasses. This method takes a class name (in the form of a string) as argument,
and returns a class object (or throws the error NoClassDefFoundError). By overriding
this method, users can implement arbitrary loading policies. Typically the code
will fetch a class file in some way (e.g., from a local directory or remote site),
and then invoke defineClass with the resulting class file as argument; moreover,
loading can be delegated by calling loadClass upon another loader. If the loadClass
method is invoked by the JVM on a loader and a class object is returned, then the
loader is called an initiating loader of the resulting class. When a class needs to be
resolved within an executing class, the defining loader of the executing class is used
as initiating loader for the class (name) to be resolved.

Finally, the JVM internally maintains a loaded class cache [13, 11, 10], which keeps
track of loading requests. The loaded class cache is needed since the JVM cannot
trust any user-defined loadClass method to consistently return the same class for
a given name [10]. Hence, the loaded class cache guarantees that the JVM never
invokes the loadClass method with the same name on the same class loader twice
(hence a class can be identified by its name and defining loader).

Semantics of the configuration level

In MCL, differently from Java, there are two execution levels corresponding to the
two language levels. Execution of the user application can trigger, and depends on,
execution of a configuration program, but not conversely. Both levels are formalized
by a small-step operational semantics. Note that this also implies that programmers
who are only allowed to write user level code cannot write their own loaders.

To avoid confusion, we call loaders classes of the configuration level (expected to
have some special methods, as will be enforced by the type system). Moreover,
even though they range over the same set CName, for clarity we use ` and c as
metavariables for loaders and user class names, respectively.

In Fig.2 we show the shape of the reduction relation for the configuration level.

p,U
> ⊆ CnfState× (CnfState ∪ {err(c) | c ∈ CName}) (config. level) reduction

U universe
σ ∈ CnfState ::= (e, L) (config. level) state

L ∈ LCCache = CName× CName
fin→ CName× CDec loaded class cache

e ::= . . . | ret`,c (e) | cd | (`, cd) run-time expression
v ∈ CnfVal ::= n | true | false | . . . | new `() | (config. level) value

c | cd | (`, cd)

Figure 2: MCL reduction relation for the configuration level

At the configuration level, there is no dynamic loading of loaders, hence the se-
mantics we give is very close to standard execution models for Java-like languages

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 35

A CASE-STUDY IN ENCODING CONFIGURATION LANGUAGES: MULTIPLE CLASS LOADERS

which do not deal with JVM specific features (see, e.g., [9, 8]), hence evaluation of
an expression takes place in a fixed program context, modeled by the index p in the
reduction relation.

However, we also parameterize reduction w.r.t. a universe U which models in an
abstract way “the external world”, that is, file systems, URLs on the web, and
so on. The intuitive idea is that evaluation of an expression in the configuration
language can depend on U (for instance, the body of a loadClass method could
attempt to get a class with a certain name from a given directory). Since we do not
want to bother with details here, the nature of the universe is left unspecified, and
we just introduce a primitive method cdec getClassDec(cname) which loaders must
provide, whose effect, depending on U , is to either return a class definition with the
required name or an error.

(Configuration) states consist of two components: the expression currently evalu-
ated, and a mapping from loading requests (pairs consisting of a loader and a user
class name) into pairs consisting of a (defining) loader and a class declaration. In-
deed, by this mapping we explicitly model the loaded class cache maintained by the
JVM previously described.

In our execution model, the loaded class cache is updated each time a call
`.loadClass(c) terminates successfully returning a class value (see rule (load-class-ret)
in Fig.3). To this end, we enrich expressions by adding run-time expressions of the
form ret`,c (e) which model intermediate steps in the execution of a call `.loadClass(c).
We also add as run-time expressions (user) class declarations, which can be obtained
by invoking the primitive method cdec getClassDec(cname), see rule (get-cdec) in
Fig.3, and (user) classes, which can be obtained by invoking the primitive method
class defineClass(cdec), see rule (define-class) in Fig.3.

The reduction relation maps a state into another state or into an error, which models
the situation in which a loader does not find a class (corresponding to NoClassDef-
FoundError in Java), or the class has not the required name.

Values are values of primitive types, instance creations, constants of metatypes, that
is, (user) class names and declarations, and classes.

In Fig.3 we give the reduction rules for the configuration level.

Rules (C[]) and (C[]-err) are the usual contextual closure, where evaluation con-
texts are those standard for evaluation from left to right of arguments of primitive
operators (we show sum as an example), conditional, (static) method invocation and
intermediate loadClass execution. The subsequent three rules are those standard for
sum and the conditional. Note that instance creation is a value (since we consider
a functional subset of Java, as in [9]), hence there is no corresponding rule. Rule
(meth) models the method invocation step, which takes place when the arguments
have been evaluated. The class declaration associated to the receiver is extracted
from the program, and the current expression to be evaluated is updated to the body
of the invoked method where formal parameters have been replaced by arguments.
The functions cdef and mbody are defined by:

36 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

2 A TWO-LEVEL LANGUAGE WITH MULTIPLE CLASS LOADERS

C[] ::= � | � + e | v + � | . . . | if (�) {e1} else{e2} | evaluation context
`.m(v1, . . . , vi−1,�, ei, . . . en) | ret`,c (�)

(C[])
(e, L)

p,U
> (e′, L′)

(C[e], L)
p,U

> (C[e′], L′)
(C[]-err)

(e, L)
p,U

> err(c)

(C[e], L)
p,U

> err(c)

(sum)
(v1 + v2, L)

p,U
> (v1 +Z v2, L)

(if-t)
(if (true) {e1} else{e2}, L)

p,U
> (e1, L)

(if-f)
(if (false) {e1} else{e2}, L)

p,U
> (e2, L)

(meth)
(`.m(vi

i∈1..n), L)
p,U

> (e{xi : vi
i∈1..n}, L)

m 6≡ defineClass, getClassDec, loadClass
cdef(p, `) = cd
mbody(cd,m) = (x1 . . . xn, e)

(define-class)
(`.defineClass(cd), L)

p,U
> ((`, cd), L)

(get-cdec)
(`.getClassDec(c), L)

p,U
> σU ,c

σU ,c ::= (class c {mds}, L) | err(c)

(load-class)
(`.loadClass(c), L)

p,U
> (ret`,c (e){x : c}, L)

(`, c) 6∈ dom(L)
cdef(p, `) = cd
mbody(cd, loadClass) = (x, e)

(load-class-ret)
(ret`,c (`d, cd), L)

p,U
> ((`d, cd), L{(`, c) : (`d, cd)})

(loaded-class-cache)
(`.loadClass(c), L)

p,U
> ((`d, cd), L)

L(`, c) = (`d, cd)

Figure 3: MCL reduction rules for the configuration level

cdef(cd1 . . . cdn, c) = cdi

if cdi = class c {mds} for some i ∈ 1..n,
undefined otherwise

mbody(cd,m) = (x1 . . . xn, e)
if cd = class c {md1 . . .mdk}, mdi = static t m (t1 x1, . . . , tn xn) {e} for some i ∈ 1..k,
undefined otherwise

Invocations of special methods defineClass, getClassDec and loadClass need to be
handled in a special way, as shown by the following rules which have no counterpart
at the user level. Rule (define-class) handles an invocation of the primitive method
defineClass, which simply returns the class value consisting of the loader on which
the method has been invoked and the class declaration passed as argument. This
rule mimics the behaviour of the defineClass method in Java, which constructs a

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 37

A CASE-STUDY IN ENCODING CONFIGURATION LANGUAGES: MULTIPLE CLASS LOADERS

Class object from a byte array (representing a class file). However, here we do not
want to bother about low-level details such as the difference between the source
class declaration, the class file and its byte array representation. Hence, we take an
abstract view in which the argument is directly a class declaration and a class value
is just a pair consisting of a loader and a class declaration. In particular, we do
not consider the Java exception which is thrown in case the class file has an invalid
format. Rule (get-cdec) handles an invocation of the primitive method getClassDec,
which returns, depending on the universe U , either a class declaration with the
name passed as argument, or an error. Rule (load-class) handles an invocation
of the method loadClass in the case the loading request has not been encountered
before. This invocation is handled as a standard invocation apart that the body is
enclosed into a ret`,c () context. This is used in the following rule (load-class-ret) to
update the loaded class cache when the body execution terminates. Rule (loaded-
class-cache) handles an invocation of the method loadClass in the case the loading
request has already been encountered. In this case, the class stored in the loaded
class cache is simply returned.

Semantics of the user level

In Fig.4 we show the shape of the reduction relation for the user level.

p,U
> ⊆ UsrState× (UsrState ∪ {err(c) | c ∈ CName}) (user level) reduction

σ ∈ UsrState ::= (S; L; e) (user level) state
S ::= `1, . . . , `n loader stack
e ::= . . . | ret (e) run-time expression
v ∈ UsrVal ::= n | true | false | . . . | new c() (user level) value

Figure 4: MCL reduction relation for the user level

User level states model snapshots of the execution of a user application and consist
of three components: a stack of loaders, where the top of the stack corresponds
to the defining loader of the code currently in execution, the loaded class cache,
which is updated by configuration level execution triggered by loading requests, and
the expression currently in execution. The reduction relation maps a state into
another state or into a “class not found” error propagated from the configuration
level execution.

Expressions are enriched by adding run-time expressions of the form ret (e) which
model intermediate steps in the execution of a method call.

A value is either a value of a primitive type, or an instance creation.

In Java, execution of an application starts by invoking a class name, say c. The effect
is that the initial loader, say ` (typically the system loader), initiates the loading of
c, an initial class is loaded with defining loader `d (possibly coinciding with `), and
the body of the main method of this class, say e, is executed, with current loader

38 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

2 A TWO-LEVEL LANGUAGE WITH MULTIPLE CLASS LOADERS

`d. Here for simplicity we do not model main methods and assume that execution
starts from an initial state where the stack of loaders contains one element, and the
loaded class cache is empty.

In Fig.5 we give the reduction rules for the user level.

C[] ::= � | � + e | v + � | . . . | if (�) {e1} else{e2} | evaluation context
`.m(v1, . . . , vi−1,�, ei, . . . en) | ret (�)

(C[])
(S; L; e)

p,U
> (S ′; L′; e′)

(S; L; C[e])
p,U

> (S ′; L′; C[e′])
(C[])-err

(S; L; e)
p,U

> err(c)

(S; L; C[e])
p,U

> err(c)

(load)
(`.loadClass(c), L)

?

p,U
> (v, L′)

(`,S; L; e)
p,U

> (`,S; L′; e)
e ::= new c() | c.m(vi

i∈1..n)
(`, c) 6∈ dom(L)

(load-err)
(`.loadClass(c), L)

?

p,U
> err(c)

(`,S; L; e)
p,U

> err(c)
e ::= new c() | c.m(vi

i∈1..n)
(`, c) 6∈ dom(L)

(meth) (
`,S; L; c.m(vi

i∈1..n)
)

p,U
> (`d, `,S; L; e′)

L(`, c) = (`d, cd)
mbody(cd,m)=(xi

i∈1..n, e)
e′ = ret

(
e{xi : vi

i∈1..n}
)

(ret)
(`,S; L; ret (v))

p,U
> (S; L; v)

Figure 5: MCL reduction rules for the user level

We omit standard rules for primitive operators and conditional, which are analo-
gous to those for the configuration level. Rule (load) is new w.r.t. the configuration
level, and models the situation in which a class name c is encountered (in our sim-
ple language this only happens in instance creation and static method invocation)
with current loader ` and the loading request (`, c) has not been considered yet. In
this case, execution at the configuration level is triggered by invoking the method

loadClass on ` with argument c. We denote by
?

p,U
> the reflexive and transi-

tive closure of the reduction relation at the configuration level. Execution at the
configuration level will update the loaded class cache L, adding in particular the
association from (`, c) into the corresponding defining loader and class declaration.
Note, however, that nothing prevents a loader from deciding to load other classes in
response to some loading request, hence in general we need to pass the whole loaded
class cache between the two levels. Rule (load-err) deals with the case in which the
execution at the configuration level results into an error. This can happen if the
loadClass method of the current loader ` does not succeed in loading the required
class name. In this case, the rule simply propagates this error to the user level
execution. Rule (meth) is analogous to that for the configuration level. However,
here the rule can only be applied when, besides arguments having been evaluated,
the receiver’s class has been already loaded; in this case, the loaded class cache is
used to get the defining loader `d and the class declaration associated to the loading

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 39

A CASE-STUDY IN ENCODING CONFIGURATION LANGUAGES: MULTIPLE CLASS LOADERS

request. Note also that the ret operator is applied to the method body. Moreover,
the defining loader `d of the class to which the invoked method belongs becomes
the new current loader (that is, it is put on top of the stack of loaders). Finally,
note that at the user level class declarations are found (after the initial load) in
the loaded class cache, whereas at the configuration level, since we do not model
dynamic loading of loaders, they are extracted from the current program context,
which is an index in the reduction relation. We could have equivalently assumed
to have all loader classes as default entries in the loaded class cache; however, we
preferred this approach since it makes more clear the stratification in two levels.
Rule (ret) models the end of the evaluation of a method body, when we obtain a
value. In this case, a pop operation is performed on the stack of loaders, so that the
current loader comes back to that at the time of the method invocation.

3 TYPE SYSTEM

The fact that MCL is a stratified language allows one to statically check type sound-
ness of a user application w.r.t. a type environment obtained by running a configu-
ration program in a given context.

Configuration level

The type system for the configuration level is a standard type system for a Java-
like language (see, e.g., [9, 8]). The typing judgments and typing rules for states,
programs, class and method declarations are shown in Fig.6.

p,U ` (e, L) (e, L) well-formed configuration state w.r.t. p, U
` p p well-formed program
Γ ` cd cd well-formed class declaration w.r.t. Γ
Γ ` md md well-formed method declaration w.r.t. Γ

Γ : CName
fin→ CType class type environment

ct ∈ CType ::= mh1 . . .mhn class type
mh ::= t m(t1 . . . tn) method header

(state)
` p type(p); ∅ ` e : t λp,U ` L

p,U ` (e, L)

(prg)
type(p) ` cdi ∀i ∈ 1..n

` p
p = cd1 . . . cdn

(cdec)
Γ ` mdi ∀i ∈ 1..n

Γ ` class ` {md1 . . .mdn}
∃i s.t. type(mdi) = class loadClass(cname)

(mdec)
Γ; x1 : t1, . . . , xn : tn ` e : t

Γ ` static t m (t1 x1, . . . , tn xn) {e}
Figure 6: MCL type system for the configuration level (1)

40 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

3 TYPE SYSTEM

A configuration level state consisting of an expression and a loaded class cache is
well-formed w.r.t. a given program and a universe U if the program is well-formed,
the expression is well-formed w.r.t. the class type environment extracted from the
program and the empty local type environment and the loaded class cache agrees
with the loading environment associated to p,U (see in the type system for the user
level).

A class type environment is a mapping from class names into class types, which are
sequences of method headers (consisting of return type, name and parameter types
of a method).

The class type environment type(p) extracted from p is defined as follows:

type(cd1 . . . cdn) = type(cd1) . . . type(cdn)
type(class c {mds}) = c : type(mds)
type(class ` {mds}) = ` : (type(mds), class defineClass(cdec),

cdec getClassDec(cname)
type(md1 . . .mdn) = type(md1) . . . type(mdn)
type(static t m (t1 x1, . . . , tn xn) {e}) = t m(t1 . . . tn)

Note that each loader has, besides the declared methods, the primitive methods
class defineClass(cdec) and cdec getClassDec(cname).

A program is well-formed if each class declaration in it is well-formed w.r.t. the class
type environment extracted from the program.

A class declaration is well-formed w.r.t. a class type environment Γ if each method
declaration in the class is well-formed w.r.t. Γ and, moreover, the class declares a
class loadClass(cname) method.

A method declaration is well-formed w.r.t. a class type environment Γ if the body
is well-formed w.r.t. Γ and the local type environment which associates to each
parameter its type.

The typing judgment and typing rules for expressions are shown in Fig.7.

A local type environment is a mapping from variables into types.

Rule (var), (n), (true), (false), (sum), (if), (new) and (meth) are standard. The
function mtype is defined in the following way:

mtype(mh1 . . .mhn, m) = mhi if mhi = t m(t1 . . . tn).

It extracts the method header with a certain name in a class declaration, if any. In
rule (c), a user class name has the metatype cname. Finally, rule (ret) states that
the ret`,c () operator applied to an expression does not change its type.

User level

The type system for the user level is based on the following key features. First,
a user state can be statically type-checked only having the information on how

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 41

A CASE-STUDY IN ENCODING CONFIGURATION LANGUAGES: MULTIPLE CLASS LOADERS

Γ; Π ` e : t e well-formed expression with type t w.r.t. Γ and Π

Π : Var
fin→ Type local type environment

(var)
Γ; Π ` x : Π(x)

(n)
Γ; Π ` n : int

(true)
Γ; Π ` true : bool

(false)
Γ; Π ` false : bool

(sum)
Γ; Π ` e1 : int Γ; Π ` e2 : int

Γ; Π ` e1 + e2 : int

(if)
Γ; Π ` e : bool Γ; Π ` e1 : t Γ; Π ` e2 : t

Γ; Π ` if (e) {e1} else{e2} : t
(new)

Γ; Π ` new `() : `

(meth)
Γ; Π ` ei : ti ∀i ∈ n

Γ; Π ` `.m(e1, . . . en) : t
mtype(Γ(`), m) = t m(t1 . . . tn)

(c)
Γ; Π ` c : cname

(ret)
Γ; Π ` e : t

Γ; Π ` ret`,c (e) : t

Figure 7: MCL type system for the configuration level (2)

loading requests would be resolved by executing a configuration program in a given
context. This is formally modeled by a loading environment which is a mapping
that associates to each loading request (pair consisting of an initiating loader and a
class name) a class (pair consisting of a defining loader and a class declaration) and
a loaded class cache. Moreover, a class name cannot be directly used as type of a
user level expression, but it must be tagged with its defining loader, which can be
obtained via the loading environment from the initiating loader at that point. To
this end, typing judgments are parameterized by the current loader (in the case of
expressions, by the current loader stack).

The typing judgments and typing rules for states, class declarations environments,
class and method declarations are shown in Fig.8.

In rule (state) λp,U denotes the loading environment associated to p,U , that is,
the loading environment obtained by executing in p and U all the possible loading
requests:

λp,U(`, c) =

{
((`d, cd), L) if (`.loadClass(c), ∅)

?

p,U
> ((`d, cd), L)

undefined otherwise

Defining loaders and class declarations environments extracted from a loading en-
vironment λ are defined in the following way:

• λCName(`, c) = `d if λ(`, c) = ((`d,),)

• λCDec(`, c) = cd if λ(`, c) = ((, cd),)

The class type environment type(CD) extracted from a class declarations environ-
ment CD is defined analogously to that extracted from a configuration program,

42 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

3 TYPE SYSTEM

p,U ` (S; L; e) (S; L; e) well-formed user state w.r.t. p,U
Γ;D ` CD CD well-formed class declarations environment w.r.t. Γ,D
Γ;D `` cd cd well-formed class declaration w.r.t. Γ,D
Γ;D `` md md well-formed method declaration w.r.t. Γ,D
λ : CName× CName

fin→ (CName× CDec)× LCCache loading environment

Γ : CName× CName
fin→ CType class type environment

D : CName× CName
fin→ CName defining loaders environment

CD : CName× CName
fin→ CDec class declarations environment

(state)
Γ;D ` λCDec

p,U Γ;D; ∅ `S e : τ λp,U ` L

p,U ` (S; L; e)
Γ = type(λCDec

p,U),D = λCName
p,U

(cdec-env)
{Γ;D ``d

cd | CD(`, c) = cd,D(`, c) = `d}
Γ;D ` CD

(cdec)
Γ;D `` mdi ∀i ∈ 1..n

Γ;D `` class c {md1 . . .mdn}

(mdec)
Γ;D; x1 : τ1, . . . , xn : τn `` e : τ

Γ;D `` static t m (t1 x1, . . . , tn xn) {e}
τi = D̃ (`, ti) ∀i ∈ 1..n

(?) τ = D̃ (`, t)

Figure 8: MCL type system for the user level (1)

except that there are loading requests instead of class names and there are no prim-
itive methods:

type(CD)(`, c) = type(mds) iff CD(`, c) = class c {mds}

A user state consisting of a loader stack, a loaded class cache and an expression is
well-formed w.r.t. a configuration program p and a universe U if the following condi-
tions hold: the class declarations environment associated to p,U is well-formed w.r.t.
the class type and defining loaders environments associated to p,U ; the expression
is well-formed w.r.t. the class type environment extracted fromw.r.t. the class type
and defining loaders environments associated to p,U , the empty local type environ-
ment and the loader stack (see typing judgment and rules for expressions in the
following); the loaded class cache agrees with the loading environment associated to
p,U (see below).

The judgment λ ` L holds if L(`, c) = (`d, cd) implies λ(`, c) = ((`d, cd),).

A class declarations environment CD is well formed w.r.t. a class type enviroment
Γ and a defining loaders environment D if each class declaration which could be
possibly loaded is well-formed w.r.t. Γ, D and its defining loader `d.

A class declaration is well formed w.r.t. a class type environment Γ, a defining
loaders environment D and a loader ` if each method declaration in it is well-formed
w.r.t. Γ, D and `.

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 43

A CASE-STUDY IN ENCODING CONFIGURATION LANGUAGES: MULTIPLE CLASS LOADERS

A method declaration is well-formed w.r.t. the class type environment Γ, the defining
loaders environment D and the current loader ` if the body is well-formed w.r.t. Γ,
D, the local type environment which associates to each parameter its (tagged) type,
obtained through D̃ (`,) (see below) and `. Moreover, we have to check that the
type of the body corresponds (through D̃ (`,)) to the one declared in the class.

The typing judgment and typing rules for expressions are shown in Fig.9.

Γ;D; Π `S e : τ e well-formed expression with (tagged) type τ
w.r.t. Γ,D, Π and S

τ ::= int | bool | . . . | (`, c) tagged type

(ret)
Γ;D; Π `S e : τ

Γ;D; Π `S,` ret (e) : τ
(sum-1)

Γ;D; Π `S,` e1 : int
Γ;D; Π `` e2 : int

Γ;D; Π `S,` e1 + e2 : int
e1 6∈ UsrVal

(sum-2)

Γ;D; Π `` v : int
Γ;D; Π `S,` e : int

Γ;D; Π `S,` v + e : int
(new)

Γ;D; Π `` new c() : D̃ (`, c)

(meth)

Γ;D; Π `` vk : τk ∀k ∈ 1..i− 1
Γ;D; Π `S,` ei : τi

Γ;D; Π `` ej : τj ∀j ∈ i + 1..n

Γ;D; Π `S,` c.m(v1, . . . vi−1, ei, . . . en) : D̃ (`d, t)

ei 6∈ UsrVal
D(`, c) = `d

Γ(`d, c) = ct
mtype(ct, m) = t m(t1 . . . tn)

(?) D̃ (`d, ti) = τi ∀i ∈ 1..n

Figure 9: MCL type system for the user level (2)

An expression is well-formed and has a given tagged type w.r.t. a class type en-
vironment, a defining loaders environment, a local type environment and a loader
stack. A tagged type is either a primitive type or a class name tagged with a (defin-
ing) loader. Indeed, class names in user code will be associated to different classes
depending on the current loader.

In the rules, D̃ (,) denotes a function which, given an initiating loader, transforms
types into types tagged by the corresponding defining loader by applying D, defined
by: D̃ (`, int) = int, D̃ (`, bool) = bool, D̃ (`, c) = (D(`, c), c).

The role of the loader stack in type-checking expressions is the following. Expressions
in user programs (that is, not containing ret (e) subexpressions) can be type-checked
by just having the current loader. However, they can reduce to run-time expressions
where, each time the evaluation of a method body starts, method body is boxed into
a ret operator, and, correspondingly, a new loader is pushed onto the stack. Hence,
the current loader must be determined starting from the bottom of the stack and
going up to the next (upper) one in S each time a ret (e) expression is encountered.
This is expressed by rule (ret).

Note that a run-time expression obtained by applying reduction rules can contain

44 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

3 TYPE SYSTEM

(recursively) only one ret (e) subterm, and all previous (in leftmost order) subterms
must have been already evaluated. This is expressed by the rules for operators of
primitive types, conditional, and method call, where the loader stack is used to type-
check only the first argument which is not a value yet, while the other arguments
are typed w.r.t. the loader at the bottom of the stack (we only show the two rules
(sum-1) and (sum-2) for the sum operator).

Rules for variables, constants of primitive types and conditional are omitted (they
are analogous to those for the configuration level, considering a loader stack with
only the current loader). The (new) rule states that the type of an instance creation
expression new c() contained in code with current loader ` is the tagged type (`d, c)
where `d is the defining loader obtained taking ` as initiating loader for c. In
rule (meth), arguments are first type-checked, getting their (tagged) types. As
already mentioned, the loader stack is used to type-check the first argument which
is not a value yet, while the other arguments are type-checked w.r.t. the loader at
the bottom of the stack. Then, the defining loader of the receiver is found in the
defining loaders environment, the class type environment is used to get the associated
class declaration, and the method type is extracted. Argument types must match
parameter types tagged by their defining loader (which is obtained by taking `d,
that is, the current loader for the method declaration, as initiating loader). Finally,
the type of the method call is the return type of the method tagged by its defining
loader as well.

A very important point to mention is about the two side conditions marked by (?)
in rules (mdec) and (meth), respectively. These side conditions, as the reader can
see, express constraints on the classes which can be loaded. In the JVM, these con-
straints are checked dynamically by maintaining an internal data structure (loading
constraints [13, 10]). In earlier versions of the JVM, these constraints were not
checked, leading to type violations. This bug was firstly reported by [14]. In our
approach, since loading environment cannot be affected by the user program execu-
tion, these constraints are statically enforced by the type system, as shown above;
even more, they just emerge naturally by adapting the standard Java type system
to the case when classes are loaded from a loading environment.

Results

We give now the technical results about the language. In particular, we state the
Progress and Subject Reduction properties for the reduction relation at the two
levels. These properties are expected for the configuration level, whose type system
is a variant of standard type system for Java-like languages. On the contrary, type
soundness for the user level is a novelty of our approach, where user programs can
be statically type-checked after fixing a loading environment. Note that this also
prevents user level reduction to raise err(c) errors.

Proposition 3.1 (Progress)

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 45

A CASE-STUDY IN ENCODING CONFIGURATION LANGUAGES: MULTIPLE CLASS LOADERS

• If p ` (e, L) and e 6∈ CnfVal, then (e, L)
p,U

> σ with σ ::= (e′, L′) | err(c).

• If p,U ` (S; L; e) and e 6∈ UsrVal, then (S; L; e)
p,U

> (S ′; L′; e′).

Proof Both the two facts are proven by induction on the structure of e and case-
analysis on the last rule applyed in the derivation of the first judgement.

Proposition 3.2 (Subject Reduction)

• If p ` (e, L) and (e, L)
p,U

> (e′, L′), then p ` (e′, L′)

• If p,U ` (S; L; e) and (S; L; e)
p,U

> (S ′; L′; e′), then p,U ` (S ′; L′; e′).

Proof Both the two facts are proven by induction on the derivation of reduction and
case-analysis on the last typing rule applyed.

4 AN OVERVIEW OF THE TARGET CALCULUS

In this section we briefly present (a subset of) the CMS `,`- calculus which we will
use for encoding MCL. The reader can refer to [2] for other operators, all technical
details and an extended discussion on the motivations and the expressive power of
the calculus.

CMS `,`- is a module calculus where steps of execution of a module component can
be interleaved with reconfiguration steps, that is, reductions at the module level, and
execution can partly control precedence between these reconfiguration steps. This
is achieved by means of a low priority link operator which is only performed when a
certain component, which has not been linked yet, is both available and needed for
execution to proceed, otherwise precedence is given to the outer operators. In this
way, control over precedence between this operator and others can be obtained by
appropriately using variables in user’s code.

The syntax of the (subset of) the calculus is given in Fig.10.

We assume infinite sets Name of names X, Var of variables x, and Exp of (core)
expressions (the expressions of the underlying language used for defining module
components). Indeed, CMS `,`- is a parametric and stratified calculus, which can be
instantiated over different core calculi. In the following section we will consider a
particular instantiation in order to encode MCL.

For our aim here, it is enough to consider a very small subset of CMS `,`- which only
includes basic configurations and the low priority link operator. However, we also
include in our presentation the sum operator, to give the flavour of the calculus and
of more powerful configuration mechanisms which could be encoded as well.

A CMS `,`- executable configuration is obtained applying operators (here only sum
and low-priority link) to a basic executable configuration < [ι; o; ρ] , e > which

46 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

4 AN OVERVIEW OF THE TARGET CALCULUS

C ∈ Conf ::= executable configuration
< [ι; o; ρ] , e > (dom(ι)∩dom(ρ)=∅) executable basic configuration

| C + M sum
| link-σC low priority link

M ∈ MExp ::= non-executable configuration
| [ι; o; ρ] (dom(ι)∩dom(ρ)=∅) non-executable basic configuration
| M + M sum

ι : Var
fin→ Name input assignment

o : Name
fin→ Exp output assignment

ρ : Var
fin→ Exp local assignment

σ : Name
fin→ Name renaming

e ∈ Exp ::= x | . . . (core) expression
t ∈ Type ::= . . . (core) type

Figure 10: CMS `,`- syntax

intuitively models execution of a core program (expression e) in the context offered
by [ι; o; ρ]. Expression e may contain variables which are either local, that is, have
an associated definition in ρ, or deferred, that is, have no associated definition, but
are bound to an input name in ι.

Evaluation of e is performed by applying reduction rules at the core level (rule
(core)), and replacing local variables by their definitions (rule (var)) until a deferred
variable is encountered. In this case rule (var/err) is applied and an error is raised
which means “execution is stuck since input component X is needed, and currently
available output components are Y”. In this case, reconfiguration steps must be
performed until X becomes available. In the small subset we consider, a reconfigu-
ration step can be either a linking step, which consists in binding X to a currently
available output name Y in o (rule (link-/basic)), thus making local all deferred
variables associated with X, or performing a sum with an external module (rule
(sum/basic)), or switching a low-priority link operator which is not applicable with
an outer operator (combined effect of remaining rules).

The following examples give the flavour of CMS `,`- reduction. In

link-
Y :Y (link-

X:X< [x : X, y : Y ; X : 2;] , x + 1 > + [; Y : 2;]),

since execution needs component X, the link-
X:X operator is executed and the con-

figuration reduces to link-
Y :Y (< [y : Y ; X : 2; x : 2] , x + 1 > + [; Y : 2;]).

However, if the execution needs the component Y instead, e.g.,

link-
Y :Y (link-

X:X< [x : X, y : Y ; X : 2;] , y + 1 > + [; Y : 2;]),

then the link-
X:X is not performed, and outer operators are moved inside and per-

formed instead, as shown below.

link-Y :Y (link-X:X< [x : X, y : Y ; X : 2;] , y + 1 > + [; Y : 2;]) →
link-Y :Y link-X:X< [x : X, y : Y ; X : 2, Y : 2;] , y + 1 > →

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 47

A CASE-STUDY IN ENCODING CONFIGURATION LANGUAGES: MULTIPLE CLASS LOADERS

(M -sum)
M1 + M2 → [ι1, ι2; o1, o2; ρ1, ρ2]

Mi ≡ [ιi; oi; ρi] , i ∈ {1, 2}
(dom(ι1) ∪ dom(ρ1)) ∩ FV(M2) = ∅
(dom(ι2 ∪ dom(ρ2)) ∩ FV(M1) = ∅

(core)
e

core
> e′

< [ι; o; ρ] , e >→< [ι; o; ρ] , e′ >

(var)
< [ι; o; ρ] , E [x] >→< [ι; o; ρ] , E [ρ(x)] >

x ∈ dom(ρ)
E [x] 6

core
>

(var/err)
< [ι; o; ρ] , E [x] >→ err(X,Y)

ι(x) = X
E [x] 6

core
>

dom(o) = Y

(sum/basic)
< [ι; o; ρ] , e >→ err(X,Y) [ι1; o1; ρ1] + [ι2; o2; ρ2] → [ι; o; ρ]

< [ι1; o1; ρ1] , e > + [ι2; o2; ρ2] →< [ι; o; ρ] , e >

(link-/basic)
< M, e >→ err(X,Y)

link-X:Y < M, e > →<
[
ι\L; o; ρ, x : o(Y)x∈L

]
, e >

M ≡ [ι; o; ρ]
Y ∈ Y
L = {x | ι(x) = X}

(sum/link-)
link-σC → err(X,Y)

link-σC + [ι; o; ρ] → link-σ(C + [ι; o; ρ])

(link-)
C → err(X,Y)

link-σ,X:Y C → link-σ link-X:Y C
Y ∈ Y

(link-/err)
C → err(X,Y)

link-σC → err(X,Y)
X 6∈ dom(σ) ∨ σ(X) 6∈ Y

Figure 11: CMS `,`- reduction rules

link-X:X link-Y :Y < [x : X, y : Y ; X : 2, Y : 2;] , y + 1 > →
link-X:X< [x : X; X : 2, Y : 2; y : 2, z : 2] , y + 1 >

In Fig.11 we give the reduction rules (rules for contextual closure are omitted).
Arrow

core
> and E [] denotes reduction and evaluation contexts at the core level,

respectively. In rule (var), FV(M) denotes the free variables of M , whose definition,
omitted here (see [2]), is on top of that for the core level.

5 TRANSLATION

As target language we consider a particular instantiation of CMS `,`- (see Fig.12).

We assume that, for each pair consisting of a loader and a class name, there exist a
distinguished variable x(`, c) and a distinguished name X(`, c).

Core expressions include core variables (which encode pairs consisting of a loader
and a class name), application of an operator of primitive type, conditional, instance
creation, method invocation, class declaration and let-in expression. In the sequel

48 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

5 TRANSLATION

Var = {x(`, c) | `, c ∈ CName}, Name = {X(`, c) | `, c ∈ CName}
e ∈ Exp ::= x(`, c) | n | true | false | e1 + e2 | . . . | if (e) {e1} else{e2} | new e() |

e.m(e1, . . . en) | cd | let x = e1 in e2

v ∈ Val ::= n | true | false | new cd()
E [] ::= � | � + e | v + � | . . . | if (�) {e1} else{e2} | new �() |

�.m(e1, . . . en) | cd.m(v1, . . . , vi−1,�, ei, . . . en) | let x = � in e

(c-sum)
(v1 + v2, L)

p,U
> (v1 +Z v2, L)

(c-if-t)
if (true) {e1} else{e2}

core
> e1

(c-if-f)
if (false) {e1} else{e2}

core
> e2

(c-meth)
cd.m(vi

i∈1..n)
core

> e{xi : vi
i∈1..n}

mbody(cd,m) = (x1 . . . xn, e)

(c-let)
let x = v in e

core
> e{x : v}

(E [])
e

core
> e′

E [e]
core

> E [e′]

Figure 12: CMS `,`- instantiation

we will abbreviate a let-in construct where the binding variable does not appear

in the body of the expression as follows: e1; e2
∆
= let x = e1 in e2 if x 6∈ FV(e2).

Class declarations are included since in the encoding, whenever a class named c is
loaded with initiating loader `, the variable x(`, c) is replaced by the actual class
declaration, by applying rule (var) of CMS `,`-.

Values contain, in addition to values of primitive type, the new application to a class
declaration. Core evaluation contexts and rules are standard.

The translation is defined in Fig.13. We use the superscripts MCL and CMS `,`- to
denote syntactic categories of MCL and CMS `,`-, respectively.

A MCL user state is translated into a CMS `,`- configuration; the translation is
parameterized on a fixed program p and a fixed universe U .

The configuration consists of a basic configuration to which a low-priority link op-
erator is applied. More precisely:

Input assignment The input assignment keeps track of the loading requests which
are not yet in the cache. For each (variable corresponding to) a loading request (`, c)
not in L, there is an input component which maps x(`, c) into the name X(`d, c) with
`d defining loader for this request, obtained by invoking the loadClass method of
the loader `, which is the initiating loader for the class c to load. Recall that

λCName
p,U (`, c) = `d stands for (`.loadClass(c), ∅)

?

p,U
> ((`d,),).

The loaded class caches environment extracted from λ is defined by:

λLCCache(`, c) = L if λ(`, c) = ((,), L)

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 49

A CASE-STUDY IN ENCODING CONFIGURATION LANGUAGES: MULTIPLE CLASS LOADERS

L : CName× CName
fin→ LCCache loaded class caches environment

Tp,U : UsrStateMCL → ConfCMS `,`-

Tp,U (S; L; e) = link-σ< [ι; o; ρ] , TλLCCache
p,U ,S(e) >, with:

ι =
{
x(`, c) : X(`d, c) | λCName

p,U (`, c) = `d, (`, c) 6∈ L
}

o =
{

X(`d, c) : TλLCCache
p,U ,`d

(cd) | λCName
p,U (`, c) = `d ∧ λCDec

p,U (`, c) = cd
}

ρ =
{
x(`, c) : TλLCCache

p,U ,`d
(cd) | L(`, c) = (`d, cd)

}
σ = {X(`d, c) : X(`d, c) | X(`d, c) ∈ cod(ι)}

TL,` : CDecMCL → ExpCMS `,`-

TL,`(class c {md1 . . .mdn}) = class c {TL,`(md1) . . .TL,`(mdn)}
TL,`(static t m (t1 x1, . . . , tn xn) {e}) = static TL,`(t) m (TL,`(t1) x1, . . . ,TL,`(tn) xn) {TL,`(e)}

TL,` : TypeMCL → ExpCMS `,`-

TL,`(c) = x(`1, c1); . . . ; x(`n, cn) if dom(L(`, c)) = {(`i, ci) | i ∈ 1..n}
TL,`(bool) = bool
TL,`(int) = int

TL,S : ExpMCL → ExpCMS `,`-

TL,S(x) = x
TL,(S,`)(new c()) = new TL,`(c)()
TL,(S,`)(c.m(ei

i∈n)) = TL,`(c).m(e′i
i∈n), with TL,(S,`)(ei) = e′i, i ∈ 1..n

TL,(S,`)(ret (e)) = TL,S(e)
TL,S(e1 + e2) = e′1 + e′2, with TL,S(ei) = e′i, i ∈ {1, 2}
TL,S(if (e1) {e2} else{e3}) = if (e′1) {e′2} else{e′3}, with TL,S(ei) = e′i, i ∈ {1, 2, 3}
TL,S(n) = n
TL,S(b) = b, with b = true, false

Figure 13: Translation

50 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

5 TRANSLATION

Output assignment The output assignment keeps track of all the existing classes,
corresponding to pairs (`d, c) with `d defining loader. For each (name corresponding
to) a pair (`d, c) with `d defining loader, there is an output component mapping the
name X(`d, c) into the corresponding (translated) class declaration. Recall that

λCDec
p,U (`, c) = cd stands for (`.loadClass(c), ∅)

?

p,U
> ((,), cd).

Local assignment The local part of the configuration keeps track of the loading
requests which are already in the cache. For each (variable corresponding to) a
loading request (`, c) in L, there is a local component which maps x(`, c) into the
(translated) class declaration associated in L with this loading request.

Low-priority link All input names are linked (by using the low-priority link oper-
ator link-).

The translation of a class declaration simply propagates to method return and ar-
gument types and bodies.

A class name c is translated into an expression x(`1, c1); . . . ; x(`n, cn) which keeps
track of the loading requests (`1, c1), . . . , (`n, cn) which are resolved as an effect
of the loading request (`, c), with ` current loader for the code which contains c.
Note that the loading requests can be taken in an arbitrary sequence, since all the
classes that are loaded as an effect of the resolution of a given request are added
to the current cache in one (user-level) reduction step. In this way, all variables
corresponding to these classes have to be linked, correctly simulating what happens
in MCL.

Translation of expressions is parametrized by the current stack of loaders, which is
used for taking the right initiating loader in translating class names inside expres-
sions. Indeed, recall that loaders are pushed onto the stack each time the evaluation
of a method body starts and that, during this evaluation, method body is boxed
into a ret operator. Hence, the initiating loader must be determined starting from
the bottom of the stack and going up to the next (upper) one in S each time a ret (e)
expression is encountered (this is obtained, in the translation of ret (e), by depriving
the stack S of its bottom element in the recursive call on e).

The given translation preserves the semantics, formally:

Theorem 5.1 If p,U ` (S; L; e) and (S; L; e)
p,U

> (S ′; L′; e′), then

Tp,U(S; L; e) →∗ Tp,U(S ′; L′; e′).

Proof By induction on the derivation of the reduction and case-analysis on the last
rule applied in the derivation of the typing judgement.

Although we cannot state and prove it formally because for lack of space we have not
presented the type system for CMS `,`-, the translation preserves also well-formedness
of terms (that is, transforms well-formed MCL user states into well-formed CMS `,`-

configurations).

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 51

A CASE-STUDY IN ENCODING CONFIGURATION LANGUAGES: MULTIPLE CLASS LOADERS

6 CONCLUSION

We have presented a toy language, called MCL, which embodies the following features
of Java: class loading is dynamically triggered when the first reference to a class
name is encountered, and the actual class which is loaded is not uniquely determined
by the class name, since different class loaders can be used in the same application.

Formal descriptions of Java class loading are given already in, e.g., the already cited
[13], and in [15, 7]. With respect to these models, the aim of this paper is different
for at least two reasons.

First, in the same spirit as in previous papers on selected Java features [9, 4], we
wanted to model just the two features mentioned above in isolation, abstracting
from the complexity of the language and other orthogonal aspects such as bytecode
verification2 and reflection. Indeed, we believe these two features constitute, in a
sense, the essence of the way dynamic linking of fragments is allowed in Java.

Second, our aim here is also on the design side; indeed, we have shown in MCL
that, besides a rigid approach where all classes are loaded by a unique loader whose
behavior just depends on a user defined class path, and one where arbitrary loaders
can be created and manipulated by the user, an intermediate solution is also possible
based on stratification, in the sense that the configuration language can influence the
execution of the user program, but not conversely. We believe that this possibility is
interesting since it allows to statically check safety while retaining some flexibility,
and should be further investigated in the context of real programming languages.

Then, we have defined an encoding of MCL into a kernel calculus CMS `,`- [2] which
models various forms of linking, and proved that the translation is correct in the
sense that it preserves the language semantics. In this way we have provided an ex-
tended application showing the effectiveness of CMS `,`- for modeling linking policies
of real languages.

The aim of the translation given in this paper is not to show the full expressive-
ness of CMS `,`-, since only some features of the calculus are actually needed for
the encoding, but rather, to analyze Java-like linking within a general framework
with different linking operators, and to serve as a basis for studying and comparing
possible variations of the Java-like mechanism.

Acknowledgments. This work has been partially supported by Dynamic Assembly,
Reconfiguration and Type-checking - EC project IST-2001-33477, and APPSEM II - The-
matic network IST-2001-3895. We warmly thank Davide Ancona for the previous common
work in [2] and other discussions which directly inspired this paper, Giovanni Lagorio for
many precious discussions and suggestions, and Alex Buckley and an anonymous referee
for their careful reading and useful comments.

2Which, however, affects the loading mechanism in what some classes need to be loaded earlier.

52 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

6 CONCLUSION

REFERENCES

[1] D. Ancona, S. Fagorzi, and E. Zucca. A calculus for dynamic linking. In
C. Blundo and C. Laneve, editors, Italian Conf. on Theoretical Computer Sci-
ence 2003, number 2841 in Lecture Notes in Computer Science, pages 284–301,
2003.

[2] D. Ancona, S. Fagorzi, and E. Zucca. A calculus for dynamic reconfiguration
with low priority linking. In WOOD’04: Workshop on Object-Oriented Devel-
opments, August 2004.

[3] D. Ancona, S. Fagorzi, and E. Zucca. A calculus with lazy module operators. In
Jean-Jacques Levy, Ernst W. Mayr, and John C. Mitchell, editors, TCS 2004
(IFIP Int. Conf. on Theoretical Computer Science), pages 423–436. Kluwer
Academic Publishers, 2004.

[4] D. Ancona, G. Lagorio, and E. Zucca. A core calculus for Java exceptions. In
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA 2001), SIGPLAN Notices. ACM Press, Oc-
tober 2001.

[5] D. Ancona and E. Zucca. A calculus of module systems. Journ. of Functional
Programming, 12(2):91–132, 2002.

[6] L. Cardelli. Program fragments, linking, and modularization. In ACM Symp.
on Principles of Programming Languages 1997, pages 266–277. ACM Press,
1997.

[7] S. Drossopoulou. Towards an abstract model of Java dynamic linking and verfi-
cation. In R. Harper, editor, TIC’00 - Third Workshop on Types in Compilation
(Selected Papers), volume 2071 of Lecture Notes in Computer Science, pages
53–84. Springer, 2001.

[8] S. Drossopoulou and S. Eisenbach. Describing the semantics of Java and proving
type soundness. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java,
number 1523 in Lecture Notes in Computer Science, pages 41–82. Springer,
1999.

[9] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. In ACM Symp. on Object-Oriented Programming:
Systems, Languages and Applications 1999, pages 132–146, November 1999.

[10] S. Liang and G. Bracha. Dynamic class loading in the Java Virtual Machine.
In ACM Symp. on Object-Oriented Programming: Systems, Languages and Ap-
plications 1998, volume 33(10) of SIGPLAN Notices, pages 36–44. ACM Press,
October 1998.

VOL 3, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 53

A CASE-STUDY IN ENCODING CONFIGURATION LANGUAGES: MULTIPLE CLASS LOADERS

[11] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java
Series. Addison-Wesley, Second edition, 1999.

[12] E. Machkasova and F.A. Turbak. A calculus for link-time compilation. In
ESOP 2000 - European Symposium on Programming 2000, number 1782 in
Lecture Notes in Computer Science, pages 260–274. Springer, 2000.

[13] Z. Qian, Al. Goldberg, and A. Coglio. A formal specification of Java class load-
ing. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA 2000), volume 35(10) of SIGPLAN No-
tices, pages 325–336. ACM Press, October 2000.

[14] V. Saraswat. Java is not type-safe. Technical report, AT&T Research, 1997.
http://www.research.att.com/~vj/bug.html.

[15] A. Tozawa and M. Hagiya. Formalization and analysis of class loading in Java.
Higher-Order and Symbolic Computation, 15:7–55, March 2002.

[16] J.B. Wells and R. Vestergaard. Confluent equational reasoning for linking with
first-class primitive modules. In ESOP 2000 - European Symposium on Pro-
gramming 2000, number 1782 in Lecture Notes in Computer Science, pages
412–428. Springer, 2000.

About the authors

Sonia Fagorzi Ph.D. student in Computer Science at the Univer-
sity of Genova since February 2002. Her research interests are in
the area of programming languages; in particular, design and foun-
dations of modular and object-oriented languages and systems. She
can be reached at fagorzi@disi.unige.it.
See also http://www.disi.unige.it/person/FagorziS/.

Elena Zucca Associate professor at the University of Genova since
1999, previously assistant professor at the University of Genova since
1989. Author of more than 40 papers in international journals and
conferences. Her main research contributions are in the semantics
and specification of concurrent and object-oriented languages, ex-
tension of algebraic techniques to dynamic systems, module cal-
culi, type systems and semantics of Java-like languages. She can
be reached at zucca@disi.unige.it.
See also http://www.disi.unige.it/person/ZuccaE/.

54 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11

mailto:fagorzi@disi.unige.it
http://www.disi.unige.it/person/FagorziS/
mailto:zucca@disi.unige.it
http://www.disi.unige.it/person/ZuccaE/

