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In this paper we consider re-classification in the presence of multi-threading. To
this aim we define a multi-threaded extension of the language F ickle, that we call
F ickleMT. We define an operational semantics and a type and effect system for the
language. Each method signature carries the information on the possible effects of the
method execution. The type and effect system statically checks this information. The
operational semantics uses this information in order to delay the execution of some
threads when this could cause access to non-existing members of objects. We show
that in the execution of a well-typed expression such delays do not produce deadlock.
Lastly we discuss a translation from F ickleMT into Java, showing how the operational
semantics can be implemented with the standard Java multi-threading constructs.

1 INTRODUCTION

Re-classifiable objects support the modification of object’s behavior by changing
class membership at runtime, see e.g. [6, 15, 13, 17, 10, 11, 8]. The language
F ickle [10, 11, 8] is particularly interesting since it is a Java-like language which
combines features for object re-classification with a strong type system. In this
paper we consider the issue of dealing with re-classification in the presence of multi-
threading. To this aim we define a multi-threaded extension of the language F ickle,
that we call F ickleMT.

In F ickleMT the expression spawn(e) starts the evaluation of the expression e
in a new thread while the current thread continues by evaluating the expression
following spawn(e). The new and the current thread work on a common heap
containing the set of defined objects, and, through aliasing, re-classification may
change the class membership of objects across threads.

The basic problem in the design of languages with re-classification features is to
ensure that, even though objects may be re-classified across classes with different
members, no attempt is made to access non-existing members of an object. In the
single-threaded language F ickle [10, 11, 8] this is achieved by the use of a static
type and effect system that conservatively estimates the re-classifications that may
be caused by the execution of expressions and changes the types of the variables
that may refer to a re-classified object. In a multi-threaded environment this is
not enough, since the object referred to by a given variable could be re-classified
by another thread. Therefore, we have to prevent executions in which a thread re-
classifies an object while another is executing a method on the object. We achieve
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this by combining a static type and effect system with a synchronization mechanism
based on effect information.

Each method declaration gathers in addition to information on the classes of
the objects that may be re-classified (as in F ickle) also information on the classes
of the re-classifiable objects that may receive messages. The operational semantics
uses the previous information to delay threads that either re-classify objects that
are used by other threads, or invoke methods on objects that could be re-classified.
We can prove that:

• no execution of a well-typed expression can cause the access to non-existing
members of objects, and

• the delays introduced do not cause deadlocks.

We model multi-threading at a rather abstract level, since our aim is to study its
interaction with re-classification. Other work on multi-threaded Java-like languages
(e.g. [5, 14]), instead, consider a semantics closer to the implementation.

To investigate the practicality of the ideas around F ickleMT we provide a trans-
lation of F ickleMT into Java [4]. The translation extends a previous translation
of F ickle into Java, see [1], and its improved version [2]. To implement the delays
needed in method calls we use the standard synchronization constructs of Java. The
translation preserves the behavior of expressions.

This paper is organized as follows: Section 2 provides a brief overview of F ickleMT.
Section 3 presents the operational semantics and Section 4 introduces the type and
effect system. In Section 5 a translation from F ickleMT into Java is defined. The
first four sections of the present paper are a revised and improved version of [7]:
in particular the present operational semantics and effect system are simpler than
those in [7].

2 F ickleMT IN A NUTSHELL

F ickleMT is a typed, imperative, class-based language, where classes are types, sub-
classes are subtypes, and methods are defined inside classes and selected depending
on the class of the object on which the method is invoked. The syntax of F ickleMT

is given by the pseudo-grammar in Figure 1, where a [ - ] pair means optional, and
A∗ means zero or more repetitions of A. We omit separators like “; ” or “, ” where
they are obvious. Programs are ranged over by P (with subscripts and superscript
when needed), types by t, effects by Θ, expressions by e, and values by v.

A program is a sequence of class definitions. A class definition may be preceded
by the keyword root or state. All the subclasses of a root class must be state classes,
and all the superclasses of a root class must be non-root/non-state classes. Root and
state classes are the possible sources and targets of re-classification – static typing
guarantees that the source and the target of a re-classification are subclasses of a
same root class.
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P ::= class∗

class ::= [ root | state ] class c extends c {field∗ meth∗}
field ::= t f
meth ::= t m ( t x) Θ { e }
t ::= bool | c
Θ ::= 〈{c∗}, {c∗}〉
e ::= if e then e else e | e ; e | new c | v | this | x:=e | e.f:=e | x

| e.f | e.m ( e ) | this⇓c | spawn(e)
v ::= true | false | null

with the following conventions
c, c′, ci, d . . . for class names
f, f ′, fi . . . for field names
m,m′,mi . . . for method names

Figure 1: Syntax of F ickleMT

Objects are created with the expression new c – c may be any class, including
a state class.

The expression this⇓c changes the class c′ of the object pointed at by this to c,
the values of all the fields declared in the common root superclass of c′ and c are
preserved, and the other fields of c are initialized to the default value associated to
their type (true for bool and null for classes).1

Field’s types, method’s result types and parameter’s types cannot be state classes
– so that, even though objects pointed at by them may be re-classified across classes
with different members, there will never be an attempt to access non-existing mem-
bers. In contrast, the static type of this may be a state class. To ensure that no at-
tempt to access non-existing members will take place, the (possible) re-classification
of the object pointed at by this will affect the static type of this.

Methods defined in state classes are called state methods. Calls to state methods
are traced since, due to the usual scoping rules, these methods are the only methods
that can access fields defined in state classes.

Methods have only one parameter and are declared by

t m ( t′ x) Θ { e }

where t is the result type, t′ is the type of the formal parameter x, Θ is the effect,
and e is the method’s body. The effect Θ is a pair 〈φ, ψ〉 where

1In F ickleMT (following F ickle [10, 11, 8]), state classes are alternative rather than cumulative,
as for example roles in [13]. We do not see major technical problems in considering a different design
choice that, in the spirit of roles, requires re-classification this⇓c to keep the value of the fields from
the previous time (if any) the re-classified object was in the state class c. The investigation of this
issue is outside of the scope of the present paper.
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φ, called re-classification effect, is a set of root classes which conservatively esti-
mates the set of classes whose objects could be re-classified during the evalu-
ation of e, and

ψ, called receive effect, is a set of root classes which conservatively estimates the
set of classes whose objects could receive calls of state methods, but cannot
be re-classified during the evaluation of e (this implies φ ∩ ψ = ∅).

The receive effect ψ, used only by the synchronization mechanism, plays a crucial
role in guaranteeing safety in presence of multi-threading. For a program to be
well-formed, we require that, if 〈φ, ψ〉 is the effect of a state method defined in a
state class, which is a subclass of the root class c, then c ∈ φ∪ψ. This ensures that,
during the execution of a method m, if an object of a state class is the receiver of a
state method, then its root super-class occurs in the effect of the method m. In this
way we can assure that an object is never re-classified by one thread when another
thread uses it as receiver of a state method. The above condition is not enforced
in [10, 11, 8], where receive effects are not considered. Note that the effects of state
methods are always non-empty, while the effects of non-state methods can be either
empty or non-empty. In particular, non-state methods that do not re-classify objects
and do not call state methods can have empty effect.

The expression spawn(e) causes the execution of the expression e in a new
thread. Since the spawned expression e is no more inside the original method body,
we require that this does not occur in e.

Typing the body of a method involves the use of environments, Γ, mapping the
parameter name to a type, and the metavariable this to a class. Environments are
denoted by {t x, c this}; lookup, Γ(id), and update, Γ[id 7→t], have the usual meaning.

Typing an expression e in the context of a program P and environment Γ involves
three components, namely

P , Γ ` e : t [] c [] Θ

where t is the type of the value returned by evaluation of e, c is the type of this after
execution of e, and Θ is the effect of e.

An Example

In Figure 2 we give the program P pl, which defines some classes inspired to adventure
games.2

In the typing judgements of F ickleMT, as in [10], the class c and the re-classification
effect φ are used to track how the receivers of methods can change class. For exam-
ple, if Γ(this)=Frog and Γ′(this)=Prince we have (see the typing rules in Figure 5):

Ppl, Γ ` this.pouch:= null : Vocal [] Frog [] 〈{}, {}〉
Ppl, Γ ` this⇓Prince : Prince [] Prince [] 〈{Player}, {}〉
Ppl, Γ

′ ` this.sword:= new Weapon : Weapon [] Prince [] 〈{}, {}〉
2This example is a multi-threaded variant of an example proposed in [11].
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class Weapon extends Object{bool swing( )〈{ }, { }〉{· · ·}}

class Vocal extends Object{bool blow( )〈{ }, { }〉{· · ·}}

abstract root class Player extends Object{
bool brave;

abstract bool wake( ) 〈{ }, {Player } 〉;
abstract Weapon kissed( ) 〈 {Player } , { }〉;
abstract Vocal cursed( )〈 {Player } , { }〉;

}

state class Frog extends Player{
Vocal pouch;

bool wake( )〈{ }, {Player } 〉{this.pouch.blow( ) ; this.brave}
Weapon kissed( )〈 {Player } , { }〉
{this.pouch:= null;
this⇓Prince;
this.sword:= new Weapon}

Vocal cursed( )〈{ }, {Player } 〉{this.pouch}
}

state class Prince extends Player{
Weapon sword;

bool wake( )〈{ }, {Player } 〉{this.sword.swing( ); this.brave}
Weapon kissed( )〈{ }, {Player } 〉{this.sword}
Vocal cursed( )〈 {Player } , { }〉
{this⇓Frog; this.pouch:= new Vocal}

}

class Game extends Object{
bool play( Player x)〈{ }, { }〉
{spawn(x.wake( ); x.kissed( )); /* row (1)*/
spawn(x.wake( ); x.wake( ))} /* row (2)*/

}

Figure 2: Program P pl- players with re-classifications

so the body of the method kissed in class Frog is well-typed.

The receiver effect ψ has been added to correctly deal with multi-threading.
Consider for instance the expression:

(new Game).play(new Frog)

The method play spawns two threads. We need to avoid an execution in which the
receiver of the method wake in the thread created in row (2), which is initially a
Frog, becomes (due to the concurrent execution method kissed in the thread created
in row (1)) a Prince before it “blew its pouch” (according to the body of wake in
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class Frog), since this would produce a field not found error. This is realized taking
into account that, for Γ(this)=Game and Γ(x)=Player, the two method calls have
typing

P pl, Γ ` x.kissed( ) : Weapon [] Game [] 〈{Player}, {}〉

and typing
P pl, Γ ` x.wake( ) : bool [] Game [] 〈{}, {Player}〉

respectively. The crucial observation is that there are objects in the heap (like the
object pointed by x) which could be re-classified by the method kissed in one thread
and could at the same time be used as receiver of the method wake in another thread.
This is made explicit by the fact that the class Frog of the object pointed at by x
has a super-class (i.e. Player) both in the re-classification effect of x.kissed( ) and in
the receiver effect of x.wake( ).

To avoid these problems, we require that each object that is re-classified by one
thread is not concurrently re-classified or used as receiver of state methods. This
requirement is enforced by introducing a mapping, γ, from root class names to
integers. The mapping γ, called “re-classification counter”, identifies the objects
that may be re-classified and the objects that may receive messages in the active
methods. Before executing a method call the rules of the operational semantics check
(using the information given by the re-classification counter γ and by the method
effect) a sufficient condition for the above requirement and delay the execution of
the method call until it is satisfied.

For instance, in the expression (new Game).play(new Frog) considered above,
the method call x.kissed( ) (in the thread created) in row (1) must be executed
either before the execution of the first method call x.wake( ) in row (2), or between
the two method calls x.wake( ) in row (2) (that is when the first call is terminated
and the second is not started), or after the execution of the second call x.wake( ) in
row (2). Note that, the simultaneous execution of method calls x.wake( ) in different
threads is allowed, since it cannot cause access to non-existing members of objects.

3 OPERATIONAL SEMANTICS

The semantics of F ickleMT is a small step operational semantics, presented in
the style advocated in [18]. To model multi-threaded computations we consider
multi-threaded configurations composed by exactly one heap, one “re-classification
counter” (which is shared by all the threads) and one set of tuples of single-threaded
configurations 〈stack, effect, expression〉 (one tuple for each thread). The “re-
classification counter” (whose structure is detailed at page 12) and the “effects”
of all threads keep the information about “which threads are active on which re-
classifiable objects”. Notice that, according to F ickleMT syntax, a thread may access
fields defined in a state class only if it is executing a state method call.

The evaluation of the expression spawn(e) in one of the current threads creates
a new thread that runs the expression e in parallel with the current threads.

10 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11



3 OPERATIONAL SEMANTICS

(calls) � χ, γ, 〈ζ,Θ,ι.m(v)〉 �−→P� χ, γ, 〈ζ · [x 7→ v, this 7→ ι],Θ,returns(e)〉 �
if χ(ι) = [[...]]c, M(P , c,m) = t m( t1 x) 〈φ, ψ〉 { e }, and

either |ζ| ≥ 2 or 〈φ, ψ〉 = 〈{}, {}〉

(calln) � χ, γ, 〈ζ,Θ, ι.m(v)〉 �−→P� χ, γ′, 〈ζ · [x 7→ v, this 7→ ι], 〈φ, ψ〉, returnn(e)〉 �
if χ(ι) = [[...]]c, M(P , c,m) = t m( t1 x) 〈φ, ψ〉 { e },

|ζ| = 1, 〈φ, ψ〉 6= 〈{}, {}〉,
∀c′ ∈ φ(γ(c′) = 0) and ∀c′ ∈ ψ(γ(c′) ≥ 0)

where γ′ = γ[c′ : −1 | c′ ∈ φ][c′ : γ(c′) + 1 | c′ ∈ ψ]

(rets) � χ, γ, 〈ζ · ρ,Θ,returns(v)〉 �−→P� χ, γ, 〈ζ,Θ,v〉 �

(retn) � χ, γ, 〈ζ · ρ, 〈φ, ψ〉, returnn(v)〉 �−→P� χ, γ′, 〈ζ, 〈{}, {}〉, v〉 �
where γ′ = γ[c : 0 | c ∈ φ][c : γ(c)− 1 | c ∈ ψ]

(new) � χ, γ, 〈ζ,Θ, new c〉 �−→P� χ′, γ, 〈ζ,Θ, ι〉 �
if χ(ι) is undefined
where Fs(P , c) = {f1, ..., fr}, ∀l∈1, ..., r : vl initial for F(P , c, f l), and

χ′ = χ[ι 7→[[f1 : v1, ..., fr : vr]]
c]

(rec) � χ, γ, 〈σ · ρ,Θ, this⇓c〉 �−→P� χ[ι7→[[f1 : v1, ..., fr+q : vr+q]]
c], γ, 〈σ · ρ,Θ, ι〉 �

where ι = ρ(this), χ(ι) = [[...]]c
′
, Fs(P ,R(P, c)) = {f1, ..., fr},

∀l∈1, ..., r : vl = χ(ι)(f l), Fs(P , c) \ {f1, ..., fr} = {fr+1, ..., fr+q}, and
∀l∈ r + 1, ..., r + q : vl initial for F(P , c, f l)

(:=v) � χ, γ, 〈σ · ρ,Θ, x:=v〉 �−→P� χ, γ, 〈σ · ρ[x : v],Θ, v〉 �

(:=f) � χ, γ, 〈ζ,Θ, ι.f :=v〉 �−→P� χ[ι : χ(ι)[f : v]], γ, 〈ζ,Θ, v〉 �, if χ(ι)(f) 6= Udf

Figure 3: Operational semantics of F ickleMT: some −→P reduction rules

The semantics, which specifies how a multi-threaded configuration rewrites with
respect to a program P , is defined by a reduction relation:

7−→P ⊆
(
H×Cnt× Pfin(S×Eff×E)

)
×

(
(H×Cnt× Pfin(S×Eff×E)) ∪ {exc, end}

)
which is defined in terms of another reduction relation specifying how a sequential
reduction step rewrites the heap, the re-classification counter, and exactly one single-
threaded configuration:

−→P ⊆
(
H×Cnt× (S×Eff×R)

)
×

(
(H×Cnt× (S×Eff×E)) ∪ {exc}

)
A well-typed program terminates either normally with the special term end or with
the special term exc modeling null pointer exceptions – which are the only source of
abnormal termination in well-typed programs.

Figure 3 gives the more interesting reduction rules for sequential reductions and
Figure 4 all the rules for multi-threaded reductions.

The semantic categories involved in the definition of 7−→P are:
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� χ, γ, 〈ζ,Θ, r〉 �−→P� χ′, γ′, 〈ζ ′,Θ′, e′〉 �
(step)

� χ, γ, {..., 〈ζ,Θ, C[r]〉, ...} �7−→P� χ′, γ′, {..., 〈ζ ′,Θ′, C[e′]〉, ...} �

(spawn)
� χ, γ, {..., 〈σ · ρ,Θ, C[spawn(e)]〉, ...} �7−→P� χ, γ, {..., 〈σ · ρ,Θ, C[true]〉, 〈ρ′,Θ0, e〉, ...} �

where ρ′ = ρ[this : null] and Θ0 = 〈{}, {}〉

(val)
� χ, γ, {..., 〈ρ, 〈{}, {}〉, v〉, ...} �7−→P� χ, γ, {..., ...} �

(end)
� χ, γ0, {} �7−→P end

� χ, γ, 〈ζ,Θ, r〉 �−→P exc
(exc)

� χ, γ, {..., 〈ζ,Θ, C[r]〉, ...} �7−→P exc

Figure 4: Operational semantics of F ickleMT: 7−→P reduction rules

• Addresses, ι ∈ I (we assume a denumerable set of addresses).

• (Extended) Expressions, e ∈ E, defined by adding the clauses “| ι | returnκ(e)”
to the pseudo-grammar defining expressions (in Figure 1), where ι is an address
and κ ∈ {s,n}.

• (Extended) Values, v ∈ Val ⊆ E, defined by adding the clause “ | ι” to the
pseudo-grammar defining values (in Figure 1), where ι is an address. So the
set of (extended) values is {true, false, null} ∪ I.

• Objects, o ∈ O
∆
= (FN →fin Val) × CN, i.e., pairs of finite mappings from

field names, in FN, to values and class names, in CN, denoted by [[f1 :
v1, ..., fr : vr]]

c. By o[f : v] we denote the object such that o[f : v](f) = v and
o[f : v](f ′) = o(f ′), for f ′ 6= f.

• Heaps, χ ∈ H
∆
= I →fin O, i.e., finite mappings from addresses to objects. As

for objects we use χ[ι : o] to denote the heap such that χ[ι : o](ι) = o and
χ[ι : o](ι′) = χ(ι′), for ι′ 6= ι.

• Frames, ρ ∈ F
∆
= {x, this} → Val, which are mappings from the parameter x

to values, and from the metavariable this to addresses or null. For denoting
the update of ρ we use the same conventions as for heaps.

• Stacks, σ ∈ S
∆
=

⋃
n∈N Fn, which are finite sequences of frames ρ1 · · · · · ρn

(n ≥ 0), where ρ1 is the bottom of the stack and ρn is the top of the stack.
Non-empty stacks are ranged over by ζ.

• Re-classification counters, γ ∈ Cnt
∆
= RCN → {−1} ∪ N, i.e., mappings

from root class names, in RCN, to integers greater than or equal to −1. If
γ(c) ≥ 0 then exactly γ(c) threads could use objects belonging to (a subclass
of) c as receivers of state methods which cannot re-classify object belonging
to (a subclass of) c. If γ(c) = −1 then exactly one thread executes one or
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more methods on objects belonging to (a subclass of) c: at least one of these
methods could re-classify objects belonging to (a subclass of) c. For denoting
the update of γ we use the same conventions as for heaps.

• Effects, Θ = 〈φ, ψ〉 ∈ Eff
∆
= {〈φ′, ψ′〉 ∈ (Pfin(RCN)×Pfin(RCN)) | φ′∩ψ′ =

{ }} are pairs of disjoint finite sets of root class names. The first component of
the pair, φ, is the re-classification effect and the second, ψ, is the receive effect.
Union of effects is defined component-wise preserving the condition that the
intersection of the re-classification component and of the receive component
of the effect must be empty:

〈φ, ψ〉 ∪ 〈φ′, ψ′〉 = 〈φ ∪ φ′, (ψ ∪ ψ′)− (φ ∪ φ′)〉.

Since 〈φ, ψ〉 is a sub-effect of 〈φ′, ψ′〉 iff there is 〈φ′′, ψ′′〉 such that

〈φ, ψ〉 ∪ 〈φ′′, ψ′′〉 = 〈φ′, ψ′〉,

we get the following definition of inclusion between effects:

〈φ, ψ〉 ⊆ 〈φ′, ψ′〉 if φ ⊆ φ′ and ψ ∪ φ ⊆ ψ′ ∪ φ′.

• Redexes, r ∈ R ⊆ E ::=

if v then e else e | v; e | new c | this | x:=v | ι.f:=v | x
| ι.f | ι.m(v) | returnκ(v) | this⇓c | null.f:=v | null.f | null.m(v)

• Evaluation Contexts, C ∈ C ::=

[ ] | if C then e else e | C; e | x:=C | C.f:=e | ι.f:=C
| C.f | C.m(e) | ι.m(C) | returnκ(C) | null.f:=C | null.m(C)

The initial configuration for evaluating the expression e in a program P is

� χ0, γ0, {〈ρ0,Θ0, e〉} �

where χ0 is the empty heap, γ0(c) = 0 for all root classes c which occur in P ,
ρ0(x) = ρ0(this) = null, and Θ0 = 〈{}, {}〉.

A typical configuration of one thread is:

〈ρ1 · · · · · ρn,Θ, C[returnκ1(...(returnκn(e))...)]〉

where C and e do not contain occurrences of return, the outermost return corre-
sponds to the bottom frame ρ1, and the innermost return corresponds to the top
frame ρn.

Before discussing the reduction rules we introduce some notation.

The function M(P ,m, c) gives the definition of method m in the class c.
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The term R(P , c) denotes the least superclass of c which is not a state class: If c is
a state class, then R(P , c) is its unique root superclass, otherwise R(P , c) = c.

For method calls we distinguish between standard and non-standard method calls,
rules (calls) and (calln). A standard method call, rule (calls), can always be executed
and changes neither the statically declared effect Θ nor the re-classification counter
γ. Instead, a non-standard method call, rule (calln), could be executed only when:

1. the objects that will be re-classified by the execution of the method are not
receivers of state method calls in other threads, and

2. the objects that the method execution will call state methods on and, when
the method is state, the receiver object are not currently re-classified in other
threads.

The objects that will be re-classified by the execution of the method call must belong
to (a subclass of) a class in the re-classification effect φ of the method. The objects
that will receive state methods during the execution of a method call (including the
receiver of the method call itself when the method is a state method) and will not
be re-classified during the execution of the method call must belong to (a subclass
of) the receiver effect ψ of the method. Therefore conditions 1. and 2. above are
implied by the following conditions:

∀c′ ∈ φ (γ(c′) = 0) and ∀c′ ∈ ψ (γ(c′) ≥ 0).

At the beginning of the method call the effect is set to 〈φ, ψ〉 and the re-classification
counter is updated by putting γ(c′) = −1 for all the root classes c′ ∈ φ and γ(c′) =
γ(c′) + 1 for all the root classes c′ ∈ ψ.

In well-formed programs (see page 17), the effects of inner method calls (i.e.,
the method calls done inside another a method call) are sub-effects of those of the
corresponding top level call. Therefore, non-standard method calls are exactly top-
level calls of methods such that the set φ∪ψ is not empty. The current stack is never
empty and it contains exactly one frame in all and only the top level evaluations.
This justifies the conditions |ζ| ≥ 2 and |ζ| = 1 (where |ζ| denotes the number of
frames in the stack ζ) in rules (calls) and (calln).

Both standard and non-standard method calls push the evaluation frame for the
body of the call on the stack. The frame binds the formal parameter to the value
of the actual parameter, v, and this to the receiver of the call, ι. The method call
is rewritten into a return expression, returnκ(e), where κ indicates the kind of the
method call (s for standard and n for non-standard) and e is the body of the method.

The return from a standard method call, rule (rets), leaves the effect and the re-
classification counter unchanged. Instead, the return from a non-standard method
call, rule (retn), restores the value 〈{}, {}〉 for the effect and updates the value of
the re-classification counter.

Rule (new) creates a new object of class c at an address ι. The term Fs(P , c)
denotes the set of fields defined in class c and F(P , c, f) the type of field f in class c.
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For re-classification expressions, this⇓c, the object bound to this, which is of class
c′, is replaced by a new object of class c. The fields belonging to the root superclass
of c′ are preserved and the other fields of c are initialized according to their types.
The term χ(ι)(f) denotes the value of the field f in the object at address ι.

The updating of frames and heaps is done respectively in rules (:=v) and (:=f).

Rule (step) in Figure 4 allows to perform a sequential reduction step inside (one
of the single-threaded configurations composing) the multi-threaded configuration.

Rule (spawn) generates a new thread for the evaluation of the expression e,
which initially has empty effect, while the expression spawn(e) is replaced with the
constant true, so the evaluation of the expression containing the spawn expression
can proceed in the old thread. The stack of the new thread generated for the
evaluation of the expression e contains only one frame in which x is bound to the
current value in the old thread and this is bound to null. The two threads can share
objects in the heap if the value bound to the variable x is an address. If x is bound to
a boolean, its value can be considered an input value for the new thread. The value
of this is bound to null since the spawned expression does not contain occurrences
of this (see page 8).

The normal termination is dealt with by rules (val) and (end), while rule (exc)
propagates exc.

4 TYPING

In this section we illustrate the type and effect system of F ickleMT. Besides the
introduction of the receive effects, the main novelty with respect to [10] is that
the typing rules allow the object bound to this to be re-classified only by expression
occurring in “statement position” (i.e., not by: the test of a conditional, the receiver
and the parameter of a method call, the left-hand side and the right-hand side of
an assignment,...). We claim that this choice gives a cleaner use of re-classification
making the programs easier to read. All the examples of F ickle programs in [10,
11, 9, 16, 3, 12, 8] satisfy this requirement.

We first present some interesting typing rules for expressions and then we discuss
well-formed classes and programs. The typing rules for expressions we will consider
are given in Figure 5.

A first use of the information about the class of the receiver appears in rule (seq).
The second expression, e′, is typed in the updated environment Γ[this 7→c] where c
is the class of this after the evaluation of the first expression, e. So, the effect of the
composition is the union of the effects of the components.

In rule (cond), the two branches may cause two different re-classifications for
this, i.e. c1 and c2. So, after the evaluation we can only assert that this belongs to
the least upper bound c1 tP c2 of c1 and c2 with respect to the subclass hierarchy
in the program P . The condition R(P , Γ(this)) 6∈ φ (the re-classification effect φ
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P , Γ ` e : t [] c [] Θ P , Γ[this 7→c] ` e′ : t′ [] c′ [] Θ′

(seq)
P , Γ ` e; e′ : t′ [] c′ [] Θ ∪Θ′

P , Γ ` e : bool [] Γ(this) [] 〈φ, ψ〉 R(P , Γ(this)) 6∈ φ
P , Γ ` e1 : t [] c1 [] Θ1 P , Γ ` e2 : t [] c2 [] Θ2

(cond)
P , Γ ` if e then e1 else e2 : t [] c1 tP c2 [] 〈φ, ψ〉 ∪Θ1 ∪Θ2

P , Γ ` e0 : c [] Γ(this) [] 〈φ0, ψ0〉 P , Γ ` e1 : t1 [] Γ(this) [] 〈φ1, ψ1〉
R(P , Γ(this)) 6∈ φ0 ∪ φ1 M(P , c,m) = t m( t1 x) 〈φ, ψ〉 { ... }

(meth)
P , Γ ` e0.m( e1) : t [] φ@P Γ(this) [] 〈φ, ψ〉 ∪ 〈φ0, ψ0〉 ∪ 〈φ1, ψ1〉 ∪ 〈{}, E(P , c)〉

P ` Γ 3 P ` c 3rs R(P , c) = R(P , Γ(this))
(recl)

P , Γ ` this⇓c : c [] c [] 〈{R(P, c) }, {}〉

P , {t1 x,Object this} ` e : t [] Object [] Θ
(spawn)

P , {t1 x, c this} ` spawn(e) : bool [] c [] 〈{}, {}〉

Figure 5: Some typing rules for expressions

does not contain the least root superclass of the class of this) ensures that the object
bound to this is not re-classified by the test part of the conditional.

Consider rule (meth): the evaluation of the method’s body could modify the
class of this in the calling expression. This could happen if a superclass of the class
of this in the calling expression is among the re-classification effects of the called
method. (Existence of such a class implies uniqueness, since effects are sets of root
classes.) For taking this into account, we define the application of re-classification
effects to classes:

{ c1, ..., cn }@P c =

{
ci if R(P , c) = ci for i∈1, ..., n
c otherwise.

For method calls we lookup (using the function M(P ,m, c)) the definition of method
m in the class c of the receiver. Moreover, if the class c of the receiver is a state or
a root class such that R(P , c) does not occur in the re-classification effect, we add
the class R(P , c) to the receive effect. To this aim we define the term E(P , c) as the
set {R(P , c)} if c is a state or a root class, and as the empty set otherwise.

The re-classification this⇓c is type correct if the environment Γ is well-formed,
i.e. it is of the shape Γ = {t x, c this}, where t is either bool or a non-state class and
c is any class (this is expressed by the condition P ` Γ 3). Moreover c, the target of
the re-classification, must be a root or state class (this is expressed by the condition
P ` c 3rs), and c and the class of this before the re-classification (the class Γ(this))
must be subclasses of the same root class. The re-classification effect is {R(P , c)}.
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In a well-formed program (see below) this cannot occur in an expression of the
shape spawn(e). In spite of this, we need a type for this in the environment Γ for
typing e inside spawn, since Γ(this) is used for example in rules (cond) and (meth).
So in rule (spawn) we assume that this has type Object in the environment used to
type the expression e. Recall that e will be evaluated in a new thread and the value
of this in this new thread will be null.

A program is well-formed if the inheritance hierarchy is well-formed and all its
classes are well-formed. Fields may not redefine fields from superclasses, and a
method may redefine a superclass method only if it has the same name, argument,
and result type, and its effect is a sub-effect of that of the overridden method. Recall
that 〈φ, ψ〉 is a sub-effect of 〈φ′, ψ′〉 if φ ⊆ φ′ and ψ ∪ φ ⊆ ψ′ ∪ φ′. For instance,
〈{ }, {Player } 〉 is a sub-effect of 〈 {Player } , { }〉, so in the Example of Figure 2,
the definitions of method cursed in class Frog, and of method kissed in class Prince
are correct. Method bodies must be well-formed, must return a value appropriate for
the method signature, and their effect must be a sub-effect of that in the signature.
Effects of state methods must contain the root superclass of the state class defining
the state method. Moreover, the arguments of spawn expressions do not contain
occurrences of this.

We end this section by stating the soundness property of our operational seman-
tics and type system: we can assure that starting from a well-typed expression we
always obtain well-typed expressions and we never reach a deadlock. We need some
definitions.

Definition 1 1. An environment Γ agrees with a program P , a heap χ and a
frame ρ if:

Γ(x) =

{
bool if ρ(x) ∈ {true, false}
R(P , cx) if χ(ρ(x)) = [[...]]cx

Γ(this) = cthis if χ(ρ(this)) = [[...]]cthis

2. The expression e is typable w.r.t. a program P , a heap χ and a frame ρ if

P , Γ ` e : t [] c [] Θ

for some type t, class c, effect Θ and environment Γ which agrees with P , χ
and ρ.

3. A multi-threaded configuration ∆ is reachable for a well-formed program P ,
notation P ` ∆3, if there is an expression e typable w.r.t. P , χ0 and ρ0 such
that

� χ0, γ0, {〈ρ0,Θ0, e〉} �7−→∗
P ∆.

where � χ0, γ0, {〈ρ0,Θ0, e〉} � is an initial configuration for e (defined at page
13).

Note that Definition 1.2 requires the run-time value of the method argument and the
receiver to have exactly the type specified in the type environment. This condition
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can be relaxed by asking only that the method argument and/or the receiver has a
subtype of the type specified in the environment. We choose the current definition
to avoid introducing the subtype relation, since the resulting notions of typability
coincide.

Theorem 1 (Type Preservation) If P `� χ, γ, {..., 〈σ · ρ,Θ, e〉, ...} � 3 then e
is typable w.r.t. P , χ, and ρ.3

As observed by a referee, the above formulation of type preservation is quite weak. A
stronger formulation (not reported here, since it requires the introduction of further
definitions) is given in [7].

Theorem 2 (Progress) If P ` ∆3 and ∆ 6∈ {end, exc} then ∆ 7−→P ∆′ for some
∆′.

5 A TRANSLATION OF F ickleMT INTO JAVA

The translation we define is based on the translation of F ickle into Java described
in [2] (revised and improved version of [1]). Following [2], in order to simplify
the presentation, we consider as target language an idealized Java (in which, as
in Java, declarations may have initializations and declarations and statements may
be interleaved in a block), extended with block-expressions, which are blocks con-
taining declarations and statements as regular blocks with a final expression. A
block-expression is evaluated like a standard Java block-statement (that is from left
to right) and, when it occurs in expression position, yields the value of the last
expression. For example, see the translation of re-classification in Figure 11.

The translation mapping is defined by cases on the various syntactic constructs:
programs, classes, field declarations, method declarations, and expressions. The
main difference with respect to the translation given in [2] is the presence of the
new translation mapping [[·]]eTop, from F ickleMT expressions to Java, which has been
introduced in order to correctly translate the expressions occurring as arguments of
spawn expressions.

In order to be self-contained we describe the translation in full. To state a
formal result of correctness of the present translation we would need to give an
operational semantics of the subset of Java which is the target of the translation.
Then, we should prove that any computation of an expression can be simulated by
a computation of the translated expression and vice versa. This is outside the scope
of the present paper.

3In general e may be an extended expression, so we need typing rules for extended expressions,
as done in [7].
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[[P ]] ∆= class Identity extends Object { FickleObject imp; }
class FickleObject extends Object { Identity id; }
class Gamma { · · · }
class SpawnL1 { · · · }
· · · · · ·
class SpawnLl { · · · }
[[class1]]class(P )
· · · · · ·
[[classn]]class(P )

where PL = class1 · · · classn

Figure 6: Translation of programs

The classes FickleObject and Identity

Like the translation in [2], the translation from F ickleMT into Java is based on the
idea that each object o is encoded by a pair <id, imp> of objects; we call id the
identity object of imp and imp the implementor object of id. Roughly speaking,
id provides the identity of o, and imp the behavior of o. A re-classification of o
changes imp but not id: method invocations are resolved by imp, whereas objects
are accessed through id. Hence, two implementors paired with the same identity
represent the same object at different execution stages.

Implementor objects belong to the class FickleObject which contains the field id
which is of type Identity. Identity objects belong to the class Identity which contains
the field imp which is of type FickleObject (see Figure 6 for the definition of the two
classes). Variables that in the original program were of type class will be translated
in variables of type Identity. All classes declared in a program are subclasses of
FickleObject.

Translation of programs

A program, P is a sequence of class declarations: class1 · · · classn. The translation
mapping for programs, [[·]], is defined on labeled programs. A labeled program P
is a program where every occurrence of a spawn expression, spawn(e), has been
marked with a distinguished label L (we consider a denumerable set of labels ranged
over by L1,L2,...), producing a labeled spawn expression, spawnL(e). Thus, before
applying the translation mapping [[·]] on a program P , we have first to transform
P into a labeled program, P L, by labeling with fresh labels all the occurrences of
spawn expressions in P .

The translation of a (labeled) program P contains the translation of the classes
defined in the program plus a number of extra classes:
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class SpawnL extends Thread {
private theType(t) fieldX ;

public SpawnL (theType(t) x) {
fieldX= x ;

}

public void run ( ) {
([[e]]eTop(P , {t x,Object this}))[fieldX/x];

}
}
where:
t is the type of the parameter x in the method that contains spawnL(e)

Figure 7: Classes SpawnL

• the classes FickleObject and Identity,

• classes SpawnL, one for each label L occurring in P L, and

• the class Gamma, needed for bookkeeping.

We assume that there are no name clashes between these extra classes and the
classes declared in P L.

The translation of (labeled) programs is defined in Figure 6. The classes Identity
and FickleObject have been discussed above, the classes SpawnL are defined in Figure
7, and Gamma is defined in Figures 8 and 9.

The classes SpawnL extend the Java library class Thread. Each class SpawnL
has a field for storing a copy of the parameter of the method containing the spawn
expression labeled L (field fieldX). The constructor initializes this field (see the
translation of spawnL(e) in Figure 11). The correct type for the field fieldX is
obtained applying the following operator (taken from [2]):

theType(t) =

{
Identity if t is a class
t otherwise

(1)

to the current type t of the parameter.

The body of the method run is the translation through [[·]]eTop (see page 23)
of the expression e which is the argument of spawn. As remarked in [2], since
the translation of expressions depends on their types, both the program and the
environment must be passed as argument to the corresponding translation functions.
The environment used for the translation maps x to the type of the parameter of
the method containing spawnL(e) and this to Object, in accord with the typing rule
(spawn) of Figure 5. Recall that e does not contain occurrences of this. After the

20 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 11



5 A TRANSLATION OF FICKLEMT INTO JAVA

class Gamma extends Object {
private static Map gamma=new HashMap( );

public static syncronized void preCall(Set phi,Set psi) {
while(!mayCall(phi, psi)) {

wait ();
}
addToGamma(phi, psi);

}

public static syncronized void postCall(Set phi,Set psi) {
remFromGamma(phi, psi);
notifyAll ();

}

private static bool mayCall(Set phi,Set psi) { · · · }

private static void addToGamma(Set phi,Set psi) { · · · }

private static void remFromGamma(Set phi,Set psi) { · · · }
}

Figure 8: Class Gamma

application of the translation mapping [[·]]eTop to e, the occurrences of x in [[e]]eTop are
replaced with fieldX.

Notice that, at run-time, in a program generated by the present translation
there are two kinds of objects, the objects extending FickleObject generated by
the translation removing re-classification, and the SpawnL objects that contain the
expressions inside the spawn: our threads. Objects of classes SpawnL are not
receivers of any method call except for the start method of the Java library class
Thread that executes the method run.

The class Gamma implements the re-classification counter γ (represented by the
private static field gamma) and the computations needed before and after non-
standard method calls. Since we want at most one thread at a time that modifies
γ, the public methods of Gamma are synchronized. More precisely, the field gamma
contains the mapping γ (defined at page 12) from root class names, represented as
strings, to integers. The mapping γ is checked and updated in rules (calln) and (retn)
of Figure 3. The methods preCall and postCall of Figure 8 implement respectively
what is done in these rules: they are synchronized and this assures that only one
thread can read and modify the field gamma.

Rule (calln) allows the execution of the method call only if the condition

∀c′ ∈ φ(γ(c′) = 0) and ∀c′ ∈ ψ(γ(c′) ≥ 0) (2)
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private static bool mayCall(Set phi,Set psi) {
Iterator itphi= phi.iterator( );
while (itphi.hasNext( )){

String nextClass= (String)itphi.next( );
if ((gamma.containsKey(nextClass)) && (gamma.get(nextClass)! = 0))

return false ;
}
Iterator itpsi= psi.iterator( );
while (itphi.hasNext( )){

String nextClass= (String)itpsi.next( );
if ((gamma.containsKey(nextClass)) && (gamma.get(nextClass) < 0))

return false ;
}
return true ;

}

private static void addToGamma(Set phi,Set psi) {
Iterator itphi= phi.iterator( );
while (itphi.hasNext( )){

gamma.put(itphi.next( ),−1);
}
Iterator itpsi= psi.iterator( );
while (itphi.hasNext( )){

String nextClass= (String)itpsi.next( );
if (gamma.containsKey(nextClass))

gamma.put(nextClass, gamma.get(nextClass) + 1);
else gamma.put(nextClass, 1);

}
}

private static void remFromGamma(Set phi,Set psi) {
Iterator itphi= phi.iterator( );
while (itphi.hasNext( )){

gamma.put(itphi.next( ), 0);
}
Iterator itpsi= psi.iterator( );
while (itphi.hasNext( )){

String nextClass= (String)itpsi.next( );
gamma.put(nextClass, gamma.get(nextClass)− 1);

}
}

Figure 9: The private methods of class Gamma

is satisfied. The method mayCall of Figure 9 evaluates this condition. If condition
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(2) is satisfied rule (calln) updates γ as follows:

γ[c′ : −1 | c′ ∈ φ][c′ : γ(c′) + 1 | c′ ∈ ψ] (3)

The method addToGamma of Figure 9 modifies gamma according to (3).

Rule (retn) updates γ as follows:

γ[c : 0 | c ∈ φ][c : γ(c)− 1 | c ∈ ψ]

and method remFromGamma of Figure 9 implements this updating. The method
postCall after calling remFromGamma notifies the change of gamma to all threads:
this change may allow some threads to execute method calls.

For simplicity in the methods of Figure 9 we omit the wrapping of int into Integer
and vice versa. Such wrappings are needed since the Java library class HashMap
maps Object to Object.

Translation of classes, fields, and method declarations

Figure 10 gives the translation of classes, fields, and method declarations.

Each translated class extends class FickleObject and the translation preserves the
inheritance hierarchy. Therefore it is useful to introduce the operator:

theName(c) =

{
FickleObject if c = Object
c otherwise

Each F ickleMT class c is translated into a single Java class containing the transla-
tion of the field and method declarations of c. The translation of these declarations
is the same for any kind of class. For fields we just translate the type via the function
theType(t) defined in (1).

The program P , and the class c are passed as parameter to the translation
function for methods, since the translation of the expression which is the method
body depends on its typing judgement, and the typing judgement in turn depends
on the program P , and on the current class, which is the type of this.

Translating a method consists of removing the effect annotation and translating
the return type, the parameter type, and the body. To the translation function
for the method body we pass the program P , the typing environment in which the
current class is bound to this, and the type of the parameter to x.

Translation of expressions

For expressions we have two translation functions: [[·]]expr and [[·]]eTop.

Starting from the translation [[·]]expr defined in [2] we:
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[[[ root | state ]class c extends c′ { t1 f1 · · · tn fn meth1 · · · methm }]]class(P ) ∆=
class c extends theName(c′) { theType(t1) f1 · · · theType(tn) fn

[[meth1]]meth(P , c) · · · [[methm]]meth(P , c)
}

[[t m ( t′ x) Θ { e}]]meth(P , c)
∆=

theType(t) m ( theType(t′) x) { } { [[e]]expr(P , {t′ x, c this}) }

Figure 10: Translation of classes, fields, and method declarations

• extend [[·]]expr by adding the clause for spawn expressions (which was not in
the language of [2]), and

• define [[·]]eTop as the “extended” [[·]]expr (i.e. as [[·]]expr in [2] plus the clause for
spawn expressions) by modifying the translation of method calls to insert the
checks and delays needed for non-standard calls.

The translation [[·]]expr is used for expressions in contexts in which we know that
the method calls occurring in the expression will always be standard. It is applied
to the bodies of the methods in the classes of the program, since the calls in them
are always inner calls, and therefore are standard, see Figure 10. The translation
[[·]]eTop is intended for expressions that could contain non-standard method calls. We
use it for all the expressions in which there could be top level method calls. Such
expressions are: the expressions inside spawn, which, according to our operational
semantics, are evaluated at the top level, and the initial expression that we evaluate.
The expressions inside spawn are the bodies of the run methods of SpawnL classes,
see Figure 7.

The translation [[·]]expr

In Figure 11 we present the clauses of the translation [[·]]expr. Most of the clauses
are as in [2]. Recall that each object is encoded by a pair of objects <id, imp>,
respectively with the fields id and imp pointing to each other and that the translation
of an object is the corresponding id object. This means that in order to access the
current implementation of an object we have to select the field imp in the object
translation.

In field access, field update and method call, the cast of the field imp to theName(c)
is needed since field imp has type FickleObject.

The clauses for field update and method call are simplified w.r.t. the correspond-
ing clauses in [2]. The simplification comes from the fact that this can be re-classified
only by expressions in “statement position”.

Consider the clause for method call (which is similar to field update). First we
evaluate the receiver and assign this value to the variable y. Recall that according
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[[v]]expr(P , Γ) ∆= v [[x]]expr(P , Γ) ∆= x [[this]]expr(P , Γ) ∆= this.id

[[e.f]]expr(P , Γ) ∆= ((theName(c)) ([[e]]expr(P , Γ).imp)).f where P , Γ ` e : c [] c′ [] Θ

[[if e then e1 else e2]]expr(P , Γ) ∆=
if [[e]]expr(P , Γ) then [[e1]]expr(P , Γ) else [[e2]]expr(P , Γ)

[[e1;e2]]expr(P , Γ) ∆= [[e1]]expr(P , Γ);[[e2]]expr(P , Γ[this7→c]) where P , Γ ` e1 : t [] c [] Θ

[[x:=e]]expr(P , Γ) ∆= x:=[[e]]expr(P , Γ)

[[e1.f:=e2]]expr(P , Γ) ∆= { Identity y= [[e1]]expr(P , Γ);
if (y == null) throw new nullPointerException();
(theName(c))(y.imp).f = [[e2]]expr(P , Γ);

} where P , Γ ` e1 : c [] c′ [] Θ

[[e1.m(e2)]]expr(P , Γ) ∆= { Identity y= [[e1]]expr(P , Γ);
if (y == null) throw new nullPointerException();
(theName(c))(y.imp).m([[e2]]expr);

} where P , Γ ` e1 : c [] c′ [] Θ

[[ new c]]expr(P , Γ) ∆= { theName(c) theImp= new theName(c);
Identity theId= new Identity;
theImp.id= theId;
theId.imp= theImp;
theId;

}

[[this⇓c]]expr(P , Γ) ∆= { theName(c) theImp= new theName(c);
Identity theId= this.id;
R(P , c) theLastThis= (R(P , c)) (theId.imp);
theImp.id= theId;
theId.imp= theImp;
theImp.f1= theLastThis.f1;
· · ·
theImp.fr= theLastThis.fr;
theId;

}
where {f1, ..., fr} are the fields of the class R(P , c)

[[spawnL(e)]]expr(P , Γ) ∆= {new SpawnL(x).start( ); true ;}

Figure 11: The translation of expressions [[]]expr
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Let c be such that P , Γ ` e1 : c [] c′ [] Θ′ for some c′ and Θ′, and t,
〈{c1, ..., cm}, {d1, ..., dn}〉 be the return type and the effect of method m
in class c.

[[e1.m(e2)]]eTop(P , Γ) ∆=



{ Identity y= [[e1]]eTop(P , Γ);
if (y == null)

throw new nullPointerException();
(theName(c))(y.imp).m([[e2]]eTop(P , Γ));

}, if m = n = 0

{ theType(t) result;
Identity y= [[e1]]eTop(P , Γ);
if (y == null)

throw new nullPointerException();
Set phi=new HashSet.add(“c1”)....add(“cm”);
Set psi=new HashSet.add(“d1”)....add(“dn”);
Gamma.preCall(phi, psi);
result= (theName(c))(y.imp).m([[e2]]eTop(P , Γ));
Gamma.postCall(phi, psi);
result;

}, otherwise

Figure 12: Translation of method calls for [[·]]eTop

to the translation of [2] the values of expressions are either booleans or objects of
class Identity. For this reason we declare y as an object of class Identity. If y is the
null pointer we raise an exception. Otherwise, we call the method m of the object
refereed to by (theName(c))(y.imp) on the translation of the actual parameter e2.

The translation of object creation creates an identity object and an implementor
object and binds them to each other. The identity object is then returned.

For re-classification a new implementor object is created. All the fields of the root
superclass of the previous implementor are copied into it, and this new implementor
substitutes the old one.

We translate an occurrence of an expression spawnL(e) by creating a new object
of the class SpawnL. The argument of this constructor is the parameter x. The ar-
gument is assigned to the field fieldX (see the definition of class SpawnL in Figure 7).
To start the thread we send the method start to the new object of class SpawnL and
we return the value true in agreement with rule (spawn) of Figure 4. The method
start is the method (of the Java library class Thread) that starts the execution of
the method run.
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class SpawnA extends Spawn {
private Identity fieldX ;

public SpawnA (Identity x) {
fieldX= x ;

}

public void run ( ) { Identity result;
Identity y= fieldX;
if (y == null) throw new nullPointerException();
Set phi=new Set( ).add(“Player”);
Set psi=new Set( );
Gamma.preCall(phi, psi);
result= (Player)(y.imp).kissed( );
Gamma.postCall(phi, psi);
result;

}

}

Figure 13: Class SpawnA

The translation [[·]]eTop

All the clauses of the mapping [[·]]eTop except the one for method call are as the
corresponding ones of [[·]]expr. The clause for method call is given in Figure 12.
This translation needs to take into account both call and return rules of Figure 3.
We look at the class c of e1 in the context of program P and environment Γ. Let
〈{c1, ..., cm}, {d1, ..., dn}〉 be the effect of method m in class c: if m = n = 0 then
the translation is the same as in the mapping [[·]]expr, since (calls) and (rets) apply.
Otherwise we have to use rules (calln) and (retn). We declare the local variable
result of type theType(t), where t is the return type of method m in class c, and
we build two sets of strings (phi and psi) containing respectively the root class
names (represented as strings) {c1, ..., cm} and {d1, ..., dn}. As we already explained
the method call Gamma.preCall() checks gamma and possibly changes it. Then, we
execute the method call and when it ends we restore the initial conditions for gamma
as described in rule (retn).

Example

We sketch the translation of:

[[spawnA(x.kissed( ))]]eTop(P pl, Γ)
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where A is the label of the spawn expression, Γ(this) = Game, Γ(x) = Player and
program P pl is given in Figure 2. The translation of this expression is:

{ new SpawnA(x).start( );
true ;

}

and the declaration of class SpawnA is given in Figure 13.

6 CONCLUSION

We have presented F ickleMT, an extension of a multi-threaded class based language
in which objects may change class at run-time. A combination of a static type
and effect system with a mechanism delaying the execution of method calls allows
re-classification to be safely used in presence of multi-threading. Moreover, the
delays introduced do not cause deadlock. We have also presented a translation of
F ickleMT into Java. The translation shows how to realize the non-standard method
call/return rules using standard multi-threading constructs such as synchronized
methods of Java.

The aim of this paper was to analyze the interaction between multi-threading
and re-classification, so we considered a minimal extension of F ickle including a
primitive spawn(e) starting the expression e in a new thread. We plan to apply
our technique to the standard multi-threading present in Java, that is the definition
of subclasses of Thread that are explicitly created and started. Moreover, we are
working on one side at a proof of soundness for the current language that extends
the sketch given in [7], and on the other at a proof of soundness of the translation
given in this paper. For the latter we need to formalize the significant subset of Java
used, which includes static members of classes, threads and synchronized methods.

As noticed by a referee, the present approach might unnecessarily limit multi-
threading in some situations. For instance, if a thread is executing a method that
will (or may) at some point re-classify a given set of objects of a (subclass of a) root
class is r, then such a thread would block any other thread that attempts to execute
a method that will (or may) invoke methods on a disjoint set of objects of a (subclass
of) r. A possibility for overcoming this problem could be to use object-level locking
(instead of class-level locking). However, we think that a better program design
would be declaring different classes for the two sets of disjoint objects. We believe
that, in order to exploit the potentiality of object-level locking, it is necessary to
rely on dynamic information (instead of on a statically known approximation), and
that guaranteeing absence of deadlocks (as Theorem 2 does for class based locking)
leads to enforce limitations on multi-threading similar to the ones of this paper.
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