
Vol. 3, No. 10, 2004

SECG: The SCOOP-to-Eiffel Code Gener-
ator

Oleksandr Fuks, Jonathan S. Ostroff , Department of Computer Science, York
University, Canada
Richard F. Paige , Department of Computer Science, University of York, York, U.K.

The Simple Concurrent Object-Oriented Programming (SCOOP) mechanism introduces
inter-object concurrency to the Eiffel language, via addition of one new keyword, separate .
We describe a general tool that takes a Eiffel program that uses the separate keyword and
translates it into an Eiffel multi-threaded program that uses the Eiffel THREADclass. The
resulting code is thereafter compatible with EiffelStudio and any other Eiffel compiler that
provides the THREADclass.

1 INTRODUCTION AND BACKGROUND

Many mechanisms exist for introducing concurrency into object-oriented (OO) program-
ming languages. These approaches support the use of multiple, perhaps distributed pro-
cessors, each of which may be executing multiple processes. Different techniques are
provided with the languages to support synchronisation, interruption, mutually exclusive
access to object state, and atomic execution of routines.

Java [5] introduces concurrency via inheritance from special classes that introduce
threads; additional compilers for Java have been developed for efficiently implementing
Java’s concurrency model, e.g., Jalapeno [1]. The Eiffel// project [2] provided a special
classPROCESSthat could be used to introduce new threads of execution. Jalloul [7]
extends Eiffel by providing new language features for implementing critical regions and
conditional critical regions; these new features are in turn implemented in a kernel sit-
ting atop PVM. Variants of Smalltalk have been proposed [12, 9] for multi-threading.
Similarly, C++ extensions such as Parallel-C++ [8] exist for parallel, distributed, and
concurrent execution.

The Simple Concurrent Object-Oriented Programming (SCOOP) mechanism was pro-
posed as a way to introduce inter-object concurrency into the Eiffel programming lan-
guage [10]. The mechanism extends the Eiffel language by adding one keyword,sepa-
rate, that can be applied to classes, entities, and formal routine arguments. Application
of separateto a class indicates that the class is executing in its own thread of control;
application ofseparateto entities or arguments indicate that these constructs are points
of synchronisation, and can be shared among concurrent threads. This mechanism was
implemented by Compton [4] by building upon the GNU SmartEiffel compiler and run-
time system. No implementation for other versions of Eiffel, e.g., ISE EiffelStudio, exists,
though much work is underway at ETH Zurich.

Cite this article as follows: Oleksandr Fuks, Jonathan S. Ostroff, Richard F. Paige: ”SECG: The
SCOOP-to-Eiffel Code Generator”, in Journal of Object Technology, vol. 3, no. 10, 2004, pages
143–160,
http://www.jot.fm/issues/issues 2004 11/article3

http://www.jot.fm/issues/issues_2004_11/article3
http://www.jot.fm


SECG: THE SCOOP-TO-EIFFEL CODE GENERATOR

We describe a tool, called the SCOOP-to-Eiffel Code Generator (SECG), which trans-
lates Eiffel programs that use the SCOOP mechanism viaseparate, into Eiffel threaded
applications that make use of theTHREADclass which is packaged with many distribu-
tions of EiffelStudio. The results of applying the tool have been used successfully with
EiffelStudio 5.2. SECG differs from Compton’s implementation in that it does not rely on
changes to a compiler (it translates SCOOP code into pure Eiffel) or a run-time system;
thus, it can in theory be used with any version of Eiffel that provides an implementation
of theTHREADclass which conforms to ISE’s specification.

The paper is organised as follows. We start with a brief overview of the SCOOP
mechanism, as specified in [10], and summarise Eiffel’sTHREADclass, and then explain
how the SECG translation tool works. We use two examples to illustrate the design and
implementation of the tool. We then discuss limitations with SECG as implemented, and
consider further work.

2 OVERVIEW OF SCOOP AND EIFFEL THREADS

SCOOP introduces concurrency to Eiffel by addition of the keywordseparate; it is the
responsibility of the underlying run-time system and compiler to deal with the subtle (and,
in some cases, complicated) semantic problems introduced by the addition. Theseparate
keyword may be attached to the definition of a class, or the declaration of an entity, or
formal routine argument. Examples of the three types of attachments are as follows.

separate classROOT (1)

x : separatePROCESS (2)

f (y : separatePROCESS) (3)

A class that is declared asseparate(asROOT in (1)) cannot be declared as expanded or
deferred; nor is its property of beingseparateinherited. A separate class executes in its
own thread; thus, service requests (i.e., feature calls) to instances of a separate class may
need to block or wait until the thread is available to execute the request.

An entity or argument declared as separate (e.g., as in (2) and (3) above) indicates that
the data attached to the entity or argument may be shared between threads. Thus, synchro-
nisation facilities must be provided so that, e.g., mutually exclusive writes to shared data
take place. Entityx can only be declared asseparateif PROCESSin (2) is not deferred
or expanded.

SCOOP is based upon the notion of aprocessor, which defines a unit of execution in
an OO system. When a separate object (defined in the sequel) is created, a new processor
is also created to handle its processing. Thus, a processor is an autonomous thread of
control capable of supportingsequentialinstruction execution [10]. A system in general
may have many processors associated with it. Compton [4] introduces the notion of a
subsystem– a model of a processor and the set of objects it operates on – to distinguish
the execution of sequential and concurrent programs. In his terminology, a separate object
is any object that is in a different subsystem.

144 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10



2 OVERVIEW OF SCOOP AND EIFFEL THREADS

Routine calls

In Eiffel, the standard syntax for routine calls is (i)x.c(a) for a commandc, which may
change the state of the object attached tox, and (ii)y := x. f (a) for a side-effect free func-
tion f . In sequential Eiffel, and in both cases, when executing the routine call, execution
switches to the object attached tox, the routine executes, and (perhaps after storing a re-
sult), execution continues at the next instruction. Now suppose that eitherx is attached
to a separate object, or that the type ofx is separate. For the callx.c(a), execution on
the current object andx synchronise;x registers the fact thatc was called and either starts
execution ofc immediately, or when the next opportunity arises. Then both the current
call andx.c(a) can proceed concurrently. If there are multiple pending requests for calls
onx, they are queued and served in first-in-first-out order.

For case (ii), where a result is needed from a separate call, a restricted version of the
wait-by-necessitymechanism of Caromel [3] is used, because the result of a call tox. f (a)
may not be available when the assignmenty := x. f (a) can take place. In SCOOP, further
client calls onx will wait until the query callx. f (a) has terminated.

Waiting

Eiffel introducesrequire andensureclauses for specifying the pre- and postcondition of
routines. In a sequential programming, arequire clause specifies conditions that must be
established and checked by the client of the routine; theensureclause specifies condi-
tions on the implementer of the routine. In a SCOOP Eiffel program, arequire clause on
a routine belonging to a separate object specifies await condition: if on a call tox.r(a),
wherex is attached to a separate object, the routine’srequire clause is false, the proces-
sor associated with the object should wait until it is true before proceeding with routine
execution.

Object reservation

There are many situations in a concurrent OO program where exclusive use of a separate
object is required. In order to retain consistency and correctness, there must be some
mechanism for stopping or pausing any interleaving of concurrent calls. SCOOP enables
this by altering the semantics of argument passing. Consider the call

r(x : separateT1, ...,y : separateT2) (4)

Exclusive locks should be obtained onx andy before the call tor starts; all locks must be
obtained before the processor executes the call1.

1In general, locks need only be obtained if a feature is called on an argument in the body ofr.

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 145



SECG: THE SCOOP-TO-EIFFEL CODE GENERATOR

Consistency rules

A SCOOP program may have both separate and non-separate objects. It is essential to
guarantee that an entity declared as non-separate (e.g.,x : T) can never be attached to a
separate object; this could lead to race conditions and object inconsistency. In order to
prevent this, Meyer introduces four consistency rules [10].

1. If the source of an attachment is separate, the destination entity must be separate as
well.

2. If an actual argument of a separate call is of reference type, the corresponding
formal argument must be separate.

3. If the source of an attachment is the result of a separate call to a function returning
a separate type, the target must be separate.

4. If an actual argument or result of a separate call is of expanded type, its base class
may not include any non-separate attribute of a reference type.

Eiffel Threads

A simple threading mechanism is provided as part of a library that comes with ISE’s
distributions of EiffelStudio. To make use of threads, i.e., to implement a class that defines
an Eiffel thread, a developer writes a new class that inherits from the interfaceTHREAD.
This class provides the following fundamental routines:

• execute: the routine to be executed by the new thread. In general, this must be
implemented by the developer.

• join: the calling thread waits for the current child thread to terminate.

• launch: initialise a new thread runningexecute.

• join all : the calling thread waits for all other threads to terminate.

The classTHREADCONTROLprovides control over thread execution. Typically
the root class of an Eiffel application inherits fromTHREADCONTROL, and uses its
join and join all routines to manage execution of spawned child threads.

The library also provides basic concurrent functionality, particularly through the class
MUTEX, which provides a synchronisation object.

In [4], the SCOOP proposal of Meyer is implemented in the framework of the GNU
SmartEiffel compiler and run-time system. We now describe the SECG code generator,
which translates SCOOP Eiffel programs that use theseparatemechanism, into multi-
threaded Eiffel applications.

146 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10



3 THE SCOOP-TO-EIFFEL CODE GENERATOR

3 THE SCOOP-TO-EIFFEL CODE GENERATOR

The SCOOP-to-Eiffel Code Generator (SECG) tool provides implicit support for the
SCOOP proposal by translating an Eiffel program that makes use ofseparateclasses,
arguments, and entities, into one that makes use of threads and the Eiffel classTHREAD,
which is available with distributions of EiffelStudio. No changes to the EiffelStudio com-
piler or run-time system are needed, and all Eiffel programming constructs can be used,
including once routines. In an informal sense, SECG implements arefinementof the
SCOOP specification into Eiffel classes and statements that do not make use ofseparate;
we discuss this further in the sequel.

The basic mechanism underlying SECG is to add mutexes and buffers toseparate
classes in order to keep track of pending requests made by clients to make use of services.
Additional and similar changes are made to separate entities and separate arguments to in-
troduce mutexes, allowing synchronisation and mutually exclusive access. Each separate
class, when translated, inherits fromTHREADand is provided with a buffer containing
pending services requests (i.e., feature calls). The root class of the system simply executes
all threads; each thread, indefinitely, removes a pending request for service and executes
the request.

We first describe the general translation scheme used by SECG, and then illustrate its
use with two examples.

The SECG tool accepts a single command-line parameter indicating the name of a
projectfile. The project file specifies the names of all Eiffel classes (and thus, all.e files)
to be included in the project. As well, the root class of the project must be specified with
the keywordroot prepended.

Using the information provided in the project file, the generator scans the files in-
cluded in the system. The generator then produces the code as follows.

1. THREADCONTROLis added as a superclass of the root class. This provides the
root of the application with control over thread execution. The root class is re-
sponsible for making sure that, when the application terminates, all pending service
requests on all threads in the application have been handled.

2. All classes inherit fromEXCEPTIONS.

3. requestspendingand requestspendingmutexare added as attributes to the root
class. The former attribute is used as a resource monitor for the root class, while the
latter attribute synchronises access to the monitor (since clients may make service
requests of the root class).

4. The following features are also declared and implemented in the root class.

is requestpendingis used to determine if there are pending accesses to the root.

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 147



SECG: THE SCOOP-TO-EIFFEL CODE GENERATOR

is_requests_pending : BOOLEAN is
do
Result := true
requests_pending_mutex.lock
if requests_pending.is_equal(0) then

Result := false
end
requests_pending_mutex.unlock

end

As well, a general-purposerescueroutine is provided to flag exceptional behaviour
in the root class.

rescue_SCOOP(who_caused: STRING; what_caused: STRING) is
do

io.put_string("Assertion violated in "+who_caused+": "+what_caused)
raise("Assertion " + what_caused + " violated in " + who_caused)

end

5. Each class declared asseparateinherits fromTHREAD; thus, each separate class
has its own thread. The basic idea in translating aseparateclass is to provide a
buffer for service requests (along with a mutex to ensure synchronised access).

The following attributes are declared.

requests_pending: INTEGER_REF
requests_pending_mutex: MUTEX
request_buffer: LINKED_LIST[TUPLE]
request_buffer_mutex: MUTEX
current_feature_args: TUPLE
current_feature_name: STRING

The attributes prefixed withrequestare used to ensure mutually exclusive access
and also to buffer the requests for access; concurrent requests for service are, of
course, queued. The attributes prefixed withcurrent store the current feature (ser-
vice) being requested and the arguments supplied to the call. Requests for services
are stored as tuples, containing the target of the service request and the name of the
service requested, encoded as a string. Decoding takes place in theexecuteroutine
of the thread.

Additional routines must be added to each separate class in order to provide mutu-
ally exclusive access and FIFO buffering of service requests.is requestspending
andrescueSCOOPare identical to the ones defined in the root class above; we do

148 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10



3 THE SCOOP-TO-EIFFEL CODE GENERATOR

not repeat their definitions here. The routineset f eatureto do simulates a feature
call that is pending. It will first obtain the lock on the pending requests mutex,
and increase the number of pending requests. The buffer of pending requests is
extended with suitable arguments.

set_feature_to_do(feature_params_arg: TUPLE) is
do
requests_pending_mutex.lock
requests_pending.copy(requests_pending + 1)
requests_pending_mutex.unlock
request_buffer_mutex.lock
request_buffer.extend(feature_params_arg)
request_buffer_mutex.unlock

end

get f eatureto do removes a pending request from the buffer, if one exists; other-
wise, a dummy empty request is returned, which can be used as a termination signal
to a controlling thread, e.g., the root.

get_feature_to_do: TUPLE is
do
request_buffer_mutex.lock
if not request_buffer.is_empty then

Result := request_buffer.first
else

Result := [Current, "NOTHING"]
end
request_buffer_mutex.unlock

end

Separate entities and arguments

Changes must also be made to entities declared as separate. The declaration

x: separate SOME_TYPE

in a SCOOP Eiffel program is replaced by SECG with the declarations

x: SOME_TYPE
x_mutex: MUTEX

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 149



SECG: THE SCOOP-TO-EIFFEL CODE GENERATOR

A similar addition is made for separate arguments: a mutex is added for each separate
argument, and theseparatekeyword is removed. This is illustrated in the examples in the
next section.

Creation procedures

Given that separate classes and entities are being replaced with threads, buffers, and mu-
texes, the creation procedures of translated separate classes must be extended to initialise
mutexes and service request buffers accordingly. In the declaration of the creation proce-
dures of separate classes, two arguments are added:

requests_pending_arg: INTEGER_REF
requests_pending_mutex_arg: MUTEX

Initialisation is also provided for these attributes in all creation procedures of separate
classes. At the start of the creation procedure of the root class the following instructions
are added:

create requests_pending_mutex.default_create
requests_pending := 1

At the end of this creation procedure we add instructions which guarantee correct
completion of the application. All requests for service that are still pending are removed
from the buffer, and then the routinejoin all of classTHREADis called; the root class
will then wait (and termination of the application will therefore wait) until all threads have
finished execution.

from
requests_pending_mutex.lock
requests_pending.copy(requests_pending -1)
requests_pending_mutex.unlock

until not is_requests_pending
loop end
join_all

In the creation procedures of separate classes we add the following instructions, which
initialise the pending services request buffer to empty, and initialise the mutex for the
class.

150 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10



4 ONE-ZERO EXAMPLE

requests_pending := requests_pending_arg
requests_pending_mutex:= requests_pending_mutex_arg
current_feature_name := "NOTHING"
create current_feature_args.make
create request_buffer.make
create request_buffer_mutex.default_create

Calls

Finally, we can translate calls to routines. We substitute calls to features of formerly
separate classes as follows. The call

p.some_feature(d)

wherep is an entity of a separate class, andd is a separate reference, is translated to
the call

p.set_feature_to_do([Current, "SOME_FEATURE_STRING", d, d_mutex])

The first argument indicates the target of the feature call; the second is a string en-
coding of the feature being requested. Note that a mutex is supplied with the separate
argumentd so that mutually exclusive access can be arranged.

One question remains: the above translation effectivelybuffersservice requests. So
when do service requests actually get processed, and features called? This is carried out
in the routineexecute, which must be implemented by the translation of everyseparate
class;executeis a deferred routine inherited fromTHREAD. Effectively, all thatexecute
does is remove a tuple from the request buffer, decodes the feature to be executed, and
executes it. We illustrate this in the examples.

Finally, SECG automatically places lock/unlock instructions where necessary, i.e.,
when attempting to write to formerly separate entities. This is illustrated in more detail in
the next sections, where examples show how the conversion process works.

4 ONE-ZERO EXAMPLE

Our first example is called one-zero; it is intentionally simple in order to illustrate the
basic conversion process. We assume that we have two classes,PROCESSandDATA.
PROCESSis a separate class, whileDATA is used to represent shared data; thus, access

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 151



SECG: THE SCOOP-TO-EIFFEL CODE GENERATOR

to an entity of typeDATA should be synchronised in some way. We will create three
entities of classPROCESS, which will access a synchronised entity of typeDATA. We
will use the classPROCESSfurther in the next section, where we show the effect of
applying SECG to it.

SCOOP source

Consider the following SCOOP Eiffel program, consisting of a single root class. The
program creates tree entities of separate classPROCESS, which will access the separate
entity of typeDATA. The details of classPROCESSare in the next section, but for now it
suffices to know that all therun routine ofPROCESScan do is either set the value stored
in d to 0 or 1, or print the stored value ind.

class ROOT_CLASS
creation make

feature
d: separate DATA
p1, p2, p3: PROCESS -- separate class

make is -- start three processes
do
io.putstring ("Test threads%N")
create d.make
create p1.make(d,0,"First")
create p2.make(d,1,"Second")
create p3.make(d,2,"Third")
p1.run
p2.run
p3.run

end
end -- class ROOT_CLASS

Generated source

After applying SECG to the above class, the following result is generated. First, inher-
itance fromTHREADCONTROLand EXCEPTIONSis added. Further, a mutex is
added for separate entityd. Since we have several threads (because each processp1, p2,
andp3 are separate entities) – each of which can place service requests to the others – we

152 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10



4 ONE-ZERO EXAMPLE

need to know when requests were executed and if there is a need to continue thread exe-
cution. We thus introduce variables to keep track of pending requests (and their number).
Once all requests have been executed (i.e.,requestspendingis zero), thread execution
can terminate. The following source is therefore generated.

class ROOT_CLASS
inherit
EXCEPTIONS
THREAD_CONTROL

creation make

feature
d_mutex: MUTEX
requests_pending: INTEGER_REF
requests_pending_mutex: MUTEX

is_requests_pending:BOOLEAN is
do

Result := true
requests_pending_mutex.lock
if requests_pending.is_equal(0) then
Result := false

end
requests_pending_mutex.unlock

end

rescue_SCOOP(who_caused:STRING;what_caused:STRING) is
do

io.put_string("Assertion violated in " + who_caused + ": " + what_caused)
raise("Assertion " + what_caused + " violated in " + who_caused)

end

The attributes from the source file are translated directly, with theseparatekeyword
removed.

d: DATA
p1, p2, p3: PROCESS

makemust be modified according to the translation scheme described in the previous
section. Its purpose is to start the three processes. First, it initialisesrequestspendingto

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 153



SECG: THE SCOOP-TO-EIFFEL CODE GENERATOR

1 since the creation procedure is a service that can make further requests. It then initialises
the attributed and its mutex.

make is
do
create requests_pending_mutex.default_create
requests_pending := 1

io.putstring ("Test threads%N");
create d_mutex.default_create
d_mutex.lock
create d.make
d_mutex.unlock

Next, we translate the statements contained in the body of the originalmakeproce-
dure. The statements arecreate statements and processrun statements. For translating
thecreatestatements, we addrequestspendingandrequestspendingmutexparameters,
and alsod mutexsince the attributed is declared as separate and we may need to syn-
chronise access to it. After creating eachPROCESSobject, we launch the corresponding
thread.

create p1.make(d, d_mutex, 0,"First", requests_pending, requests_pending_mutex)
p1.launch
create p2.make(d, d_mutex, 1,"Second", requests_pending, requests_pending_mutex)
p2.launch
create p3.make(d, d_mutex, 2,"Third", requests_pending, requests_pending_mutex)
p3.launch

We must next translate therun feature calls. As with any feature call, it is translated
to invocations of threadset f eatureto do calls, which effectively inform the thread that
a service request of the feature specified as a parameter is being made; the thread can then
buffer the service request and carry it out as soon as possible.

p1.set_feature_to_do([Current,"RUN_STRING"])
p2.set_feature_to_do([Current,"RUN_STRING"])
p3.set_feature_to_do([Current,"RUN_STRING"])

Finally, all pending requests must be removed from the buffer for the class, and the
root class thread must wait until all other threads have terminated, before it can terminate

154 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10



5 EXAMPLE: CLASS PROCESS

from
requests_pending_mutex.lock
requests_pending.copy(requests_pending - 1)
requests_pending_mutex.unlock

until not is_requests_pending
loop end
join_all
end -- make
end -- class ROOT_CLASS

The above translated program compiles and executes under EiffelStudio 5.2.

5 EXAMPLE: CLASS PROCESS

The example of the preceding section makes use of the separate classPROCESS. We now
show how SECG translates this separate class into a threaded Eiffel class.PROCESSis a
straightforward class, possessing a name, an option, and shared data. When the process
runs, it can do one of three things: sets its shared data to 0; to 1; or view and print its data.
Here is its source.

separate class PROCESS
creation make
feature
option: INTEGER
data: separate DATA
name: STRING

make(d: separate DATA; opt:INTEGER; n:STRING) is
do

data := d
option := opt
name := n

end

run is
local i:INTEGER
do
from until false
loop

if option = 0 then
data.zero -- set data to zero

elseif option = 1 then
data.one -- set data to one

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 155



SECG: THE SCOOP-TO-EIFFEL CODE GENERATOR

else data.view; print_me
end

end
end

print_me is
do

print("%N" + name + " just ran" + "%N")
end

end -- class PROCESS

SECG must carry out several tasks in translating this class: it must implement mu-
texes for separate entities, add inheritance clauses for the separate class, and translate the
separate arguments inmake. An implementation must also be provided for theexecute
feature, which must be implemented in any class that inherits fromTHREAD. execute
simply takes requests from the pending buffer and executes the corresponding feature
(eitherrun or print me). Here is a snapshot of the translation.

class PROCESS
inherit
THREAD
EXCEPTIONS

creation make
feature
execute is
do

from
until not is_requests_pending
loop
current_feature_args := get_feature_to_do
current_feature_name ?= current_feature_args.item(2)
if not current_feature_name.is_equal("NOTHING") then

if current_feature_name.is_equal("RUN_STRING") then
run

end
if current_feature_name.is_equal("PRINT_ME_STRING") then
print_me

end
requests_pending_mutex.lock
requests_pending.copy(requests_pending - 1)
requests_pending_mutex.unlock
request_buffer_mutex.lock
request_buffer.start

156 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10



5 EXAMPLE: CLASS PROCESS

request_buffer.remove
request_buffer_mutex.unlock

end
end

end

As discussed in Section 3, a number of features will be automatically added by SECG
for keeping track of pending requests to a (translated) separate object, to keep track of
which feature is being called by a thread, and to handle exceptions. These features, such
as requestspendingandset f eatureto do, are added to the translate ofPROCESSat
this state, as described in Section 3.

Next, SECG copies over attributes from the separate classPROCESSinto the threaded
version; this includesoption, data, andname. The creation proceduremakeis then trans-
lated, adding three new arguments:d mutex(to handle mutually exclusive access to the
data),requestspending, and a mutex. Finally,run can be translated, and at this point we
can illustrate the addition of locking and unlocking of mutexes, which must be before and
after accessing any shared (separate) entities.

run is
local i:INTEGER
do
from
until false
loop

if option = 0 then
data_mutex.lock
data.zero
data_mutex.unlock

elseif option = 1 then
data_mutex.lock
data.one
data_mutex.unlock

else
data_mutex.lock
data.view
data_mutex.unlock
print_me

end
end

end

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 157



SECG: THE SCOOP-TO-EIFFEL CODE GENERATOR

Limitations

A SCOOP program that is translated using SECG is not guaranteed to be deadlock free:
if a programmer misuses shared data or synchronised processes, it is not difficult to in-
troduce deadlock (or livelock) among threads. It is not clear, based on [10], to see how
deadlock freedom can be guaranteed for SCOOP programs.

The SCOOP proposal in [10] allows local variables to be declared asseparate. This
is not permitted in SECG; any locals declared as separate will not be translated correctly,
nor will the resulting program compile. An entity declared aslocal has its lifecycle linked
to that of the execution of its enclosing routine. Once the routine terminates, any object
attached to the entity will be destroyed. An entity declared as separate is intended to
be (potentially) shared by multiple threads; thus, it seems that declarations oflocal and
separateare incompatible. It remains for future work to investigate whether the two
mechanisms can be reconciled.

There are no further limitations with SECG: any valid Eiffel constructs, including
onceroutines andexpandedtypes can be used. Because SECG is a pre-processor, and
because it implementsseparateclasses and entities in terms ofTHREADs, instead of
modifying the underlying run-time system, it should not be affected by changes to the
Eiffel language, e.g., additions of new constructs.

Soundness

The soundness of SECG has not been proven, though the tool has been tested extensively
on a number of case studies. Soundness could be proven by appealing to the Eiffel Re-
finement Calculus (ERC) [11]. This calculus provides a formal semantics for a subset
of Eiffel (including feature calls and reference types). The calculus currently supports
real-time specification, but it could be extended to concurrency and multi-threading; the
calculus is built atop Hehner’s predicative programming calculus [6], which supports con-
currency and communicating processes. The calculus could then be used to give a formal
semantics toseparateclasses and entities. Thereafter, it could be shown that a class
produced by SECGrefinesa separate class in SCOOP.

6 CONCLUSIONS

We have given an overview of the SECG tool, which implements the SCOOP concurrency
proposal for Eiffel by translating Eiffel programs that useseparateentities and classes
into threaded applications. Two examples have demonstrated the process, and limitations
with the tool have been discussed. With some work and tuning for efficiency, a mechanism
like SECG could form the basis for an industrial-quality implementation of the SCOOP
mechanism in open-source Eiffel compilers.

The latest alpha version of SECG can be obtained from the authors. SECG is itself

158 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10



6 CONCLUSIONS

written in Eiffel, and has been tested and evaluated under ISE EiffelStudio 5.2.

REFERENCES

[1] B. Alpern et al. The Jalapeno Virtual Machine.IBM Systems Journal39(1), 2000.

[2] I. Attali and D. Caromel. Formal Properties of the Eiffel// Model.Parallel and Dis-
tributed Objects, 1999.

[3] D. Caromel. Towards a method of object-oriented concurrent programming.Comm.
ACM 36(9), September 1993.

[4] M. Compton.SCOOP: an Investigation of Concurrency in Eiffel, MSc Thesis, Aus-
tralian National University, 2000.

[5] J. Gosling, B. Joy, and G. Steele.The Java Language Specification, Second Edition,
AWL, 2000.

[6] E.C.R. Hehner.A Practical Theory of Programming, Second Edition, Springer-
Verlag, 2003.

[7] G. Jalloul. Communicating Sequential Systems.Journal of Object-Oriented Pro-
gramming, 2000.

[8] C.-H. Jo, C.-J. Lee, and J. Son. A realization of a concurrent object-oriented pro-
gramming language. InProc. ACM Symposium on Applied Computing1998, ACM
Press, 1998.

[9] D. Konstantas, O. Nierstrasz, and M. Papthomas. An implementation of Hybrid, a
concurrent object-oriented language. Technical Report, University of Geneva, June
1998.

[10] B. Meyer.Object-Oriented Software Construction, Second Edition, Prentice-Hall,
1997.

[11] R. Paige and J. Ostroff. ERC: an Object-Oriented Refinement Calculus for Eiffel, to
appear inFormal Aspects of Computing, Springer-Verlag, 2004. Draft available at
http://www.cs.yorku.ca/techreports/2001.

[12] Y. Yokote and M. Tokoro. Experience and evolution of Concurrent Smalltalk.SIG-
PLAN Notices22, October 1987.

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 159

http://www.cs.yorku.ca/techreports/2001


SECG: THE SCOOP-TO-EIFFEL CODE GENERATOR

ABOUT THE AUTHORS

Oleksandr Fuks is a Masters student at York University, Toronto,
Canada, expecting to complete his thesis in 2003. Email:
nati@cs.yorku.ca.

Jonathan Ostroff is an associate professor at York University, Toronto,
Canada, where he leads research on object-oriented design, formal meth-
ods, and real-time software development. Email:jonathan@cs.yorku.ca.

Richard Paige is a lecturer at the University of York, UK, where he
works with the High-Integrity Systems Group and is a co-leader of the
Software and Systems Modelling Team. He carries out research in
object-oriented development, formal methods, security, and distributed
systems. He completed his PhD in Computer Science at the University
of Toronto in 1997. Email:paige@cs.york.ac.uk.

160 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10

mailto:nati@cs.yorku.ca
mailto:jonathan@cs.yorku.ca
mailto:paige@cs.york.ac.uk

