
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 10, November-December 2004

Cite this article as follows: Leslie Keedy, Christian Heinlein, Gisela Menger, Mark Evered:
“Diamond Inheritance and Attribute Types in Timor”, in Journal of Object Technology, vol. 3, no.
10, November-December 2004, pp. 121-142. http://www.jot.fm/issues/issue_2004_11/article2

Diamond Inheritance and Attribute
Types in Timor

J. Leslie Keedy, Christian Heinlein and Gisela Menger, University of Ulm,
Germany
Mark Evered, University of New England, Australia

Abstract
In Timor multiple inheritance of methods from a common abstract ancestor (e.g.
Collection) and of separate "parts" (possibly repeatedly) from distinct supertypes (e.g. a
Radio, a Cassette Player) are handled in different ways. The paper shows that neither
technique is suitable for cases where a common concrete ancestor (e.g. Person) is
specialised in different subtypes (e.g. as a Student, an Employee) and then brought
together in a new subtype, possibly with repeated inheritance (e.g. a Doubly Employed
Student). For such cases a new kind of type ("attribute types") is proposed, which
provides an alternative programming paradigm to inheritance, based on the idea of
adjectives and their use in noun phrases in natural languages.

1 INTRODUCTION

Timor1 is a new OO language currently being developed at the University of Ulm with
the primary aim of facilitating the development of programs and applications using
components which have been separately designed and developed without knowledge of
each other. In earlier papers two different ways of handling multiple inheritance in Timor
have been presented.

The first paper [5] describes how subtypes in the Timor Collection Library (TCL),
such as Set, Bag and List, can be derived from a common abstract ancestor
(Collection). Multiple inheritance arises when orthogonal properties (here the ordering
and duplication of collection elements) are combined. In this case it is natural to merge
methods (e.g. insert) when they are inherited in a subtype from multiple supertypes at
intermediate levels in the hierarchy.

The second paper [10] addresses a completely different kind of multiple inheritance,
whereby a subtype (e.g. a type RadioCassettePlayer) can inherit "parts" from
independent supertypes (e.g. a type Radio and a type CassettePlayer). Repeated
inheritance can play a significant role (e.g. for a subtype RadioDouble-

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_11/article2

DIAMOND INHERITANCE AND ATTRIBUTE TYPES IN TIMOR

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

CassettePlayer), creating a naming problem which Timor handles by allowing the
supertypes to have "part identifiers" in the subtype definition, thus giving them an
appearance analogous to variables declared by aggregation. The paper also discusses in
detail the differences between this kind of parts inheritance and aggregation.

The present paper discusses the relationship between these two fundamentally
different approaches to multiple inheritance, using examples which involve a common
ancestor (e.g. Person) that can be specialised in orthogonal ways (e.g. as a Student and
an Employee) and then brought together in a subtype involving diamond inheritance
(e.g. EmployedStudent), and possibly also repeated inheritance (e.g. a
DoublyEmployedStudent). It will be shown that neither of the approaches described
in the earlier papers provides a satisfactory way of handling such examples.

A new kind of type, called an attribute type, is then presented. Attribute types
support a programming paradigm which is based on noun phrases in natural languages
rather than on inheritance. This approach leads to more modular units than conventional
subtypes, and is especially useful in cases which would otherwise result in diamond
inheritance problems. It is shown how different attributes can be flexibly mixed and
matched with a base object and can be composed in different combinations (including
cases which would otherwise lead to repeated inheritance) into static type definitions.

The paper assumes a knowledge of the papers mentioned above [5, 10] as well as an
earlier paper which describes the fundamentals of the Timor approach to single
inheritance [4]. The reader is advised that the code re-use technique as described in [4, 5]
has been revised to take repeated inheritance into account. The new technique is
described in [10], and knowledge of this technique is assumed here.

Section 2 describes how types involving diamond inheritance can be defined in
Timor using a conventional OO style, and shows that with the standard Timor re-use
technique it is only possible to re-use an implementation of one of the supertypes (cf.
Java). Section 3 illustrates that there is also a serious problem at the type level as soon as
repeated inheritance is considered. Section 4 then presents an alternative approach,
showing how attribute types (which can be compared with adjectives in natural
languages) can be defined and implemented. Then section 5 shows how these can be
combined, using the analogy of adjectives in noun phrases, to compose types involving
diamond inheritance and repeated inheritance (e.g. DoublyEmployedStudent). Section
6 shows that the implementation difficulties encountered in section 2 do not occur when
attribute types are used, and section 7 shows that even diamond inheritance types defined
in the conventional way can be implemented using implementations of attribute types,
with full code re-use. Section 8 discusses the peculiarities of value and reference
variables for attribute types and section 9 describes casting of types containing attributes.
The paper then discusses related work in section 10 and provides some concluding
remarks in section 11.

DIAMOND INHERITANCE

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 123

2 DIAMOND INHERITANCE

We begin by considering a standard example of diamond inheritance, showing how a
type Person might serve as a supertype from which types such as Student and
Employee can be derived and then combined into an EmployedStudent. Type
inheritance and code re-use are considered in turn. The approach adopted in this section is
based on the Timor equivalent of the standard OO paradigm, as described in [5] (i.e.
without using part identifiers, but merging methods from a common ancestor).

Diamond Inheritance at the Type Level

A type Person might be defined as follows:
type Person {
instance:
 String name, address;
 Date dob; // the date of birth
 enq int currentAge();
 enq String toString();
maker:
 init(String name);
}

This might have subtypes Student and Employee:
type Student {
extends:
 Person;
redefines:
 enq String toString();
instance:
 String uni;
 Date matriculationDate;
 enq int ageAtMatriculation();
maker:
 init(String name, uni; Date matriculationDate);
}
type Employee {
extends:
 Person;
redefines:
 enq String toString();
instance:
 String employer, employeeNumber;
 Date startingDate;
maker:
 init(String name, employer; Date startingDate);
}

As would be expected, Student and Employee inherit all the public methods and
abstract variables [6, 10] of Person, and redefine the method toString.

DIAMOND INHERITANCE AND ATTRIBUTE TYPES IN TIMOR

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

A new type can be derived from the above types, using diamond inheritance, to
model an EmployedStudent, as follows:

type EmployedStudent {
extends:
 Student;
 Employee;
redefines:
 enq String toString();
maker:
 init(String name, uni, employer;
 Date matriculationDate, startingDate);
}

Because the type Person is inherited as a common ancestor via multiple derived types
(cf. Collection in [5, 6]) its inherited instance methods and abstract variables are
merged in EmployedStudent. The method toString is redefined, again as expected.
If other Person methods were inherited in different forms (as a result of method
redefinitions in Student and/or Employee) a further redefinition of the affected
methods would also be necessary in EmployedStudent.

At this point it appears that an adequate mechanism for handling diamond
inheritance from a common concrete ancestor exists at the type level.

Diamond Inheritance at the Implementation Level

Given an implementation of Person, the types Student and Employee might be
implemented along the following lines:

impl StudentImpl of Student {
state:
 ^Person p; // reuses any implementation of Person
 // the Person methods (except toString) are matched from p.
 String uni; // set and get methods are
 Date matriculationDate;// automatically implemented, cf [6]
instance:
 enq String toString() {
 return (p.toString() //equivalent to super in OO languages
 + ... /* code to print Student details */);
 }
maker:
 init(String name, uni; Date matriculationDate) {
 p.name = name;
 this.uni = uni;
 this.matriculationDate = matriculationDate;
 }
}
impl EmployeeImpl of Employee {
state:
 ^Person p;
 String employeeNumber; // set and get methods are
 Date startingDate; // automatically implemented, cf [6]
instance:
 enq String toString() {
 return (p.toString()

DIAMOND INHERITANCE

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 125

 + ... /* code to print Employee details */);
 }
maker:
 init(String name, employer; Date startingDate) {
 p.name = name;
 this.employer = employer;
 this.startingDate = startingDate;
 }
}

It might be thought that the combined type EmployedStudent can then be implemented
as follows:

impl EmployedStudentImpl of EmployedStudent {
state:
 ^Student s;
 ^Employee e;
instance:
 enq String toString() {
 /* code to combine the toString methods */
 }
maker:
 init(String name, uni, employer;
 Date matriculationDate, startingDate) {
 s.name = name;
 s.uni = uni;
 s.matriculationDate = matriculationDate;
 e.employer = employer;
 e.startingDate = startingDate;
 }
}

This would provide an implementation which syntactically matches the type definition:
the methods of Person (except toString, which is implemented explicitly in the
instance section) and of Student are all matched from Student s, and the
remaining Employee methods are matched from Employee e.

But semantically the implementation would not achieve the intended result, because
it contains two separate Person implementations, associated respectively with s and e,
because each of these is a separate variable with its own complete implementation (which
by definition includes an implementation of Person). In cases where subtype methods
access the supertype implementation (e.g. where Employee accesses Person), the
"wrong" Person state would be accessed.

We might attempt to solve this problem by including an explicit variable for the
"top" of the diamond, e.g.

state:
 ^Person p;

Even then an efficient implementation is not easy with the means described in earlier
papers, because any attempt to re-use Student and Employee implementations
encounters the problem that these each still include a separate state for its Person
supertype.

DIAMOND INHERITANCE AND ATTRIBUTE TYPES IN TIMOR

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

A semantically correct implementation of EmployedStudent is always possible in
Timor, because each implementation can be a fresh implementation: there is no
requirement that re-use variables must be used. But to recode each such case from
scratch, or to base a new implementation on the re-use of the code of only one supertype
(cf. the Java approach) is hardly satisfactory. Before we present a solution for this
(implementation level) problem we consider repeated type inheritance involving a
common ancestor.

3 REPEATED INHERITANCE WITH A COMMON ANCESTOR

Suppose the above example is changed so that it involves repeated inheritance from a
common ancestor, e.g. a DoubleStudent (i.e. a Person enrolled at two universities) or
a DoubleEmployee (i.e. a Person with two jobs). This might be approached by using
part names (the Timor technique for achieving repeated inheritance [6]). Here is a
possible definition:

type DoubleStudent {
extends:
 Student s1, s2;
redefines:
 [s1, s2] enq String toString();
}

For this definition to be semantically appropriate (i.e. such that it defines a single person
with repeated Student - but not Person - attributes) there would have to be a rule
requiring that a common ancestor inherited in multiple parts leads to the merging of
methods.

However, such a rule would be undesirable in other cases. For example, suppose we
extend the type CassettePlayer (defined in [6]) to become a CassetteRecorder, as
follows:

type CassetteRecorder {
extends:
 CassettePlayer;
instance:
 op void startRecording();
 op void stopRecording();
}

It would seem appropriate to define a DoubleCassetteRecorder (by analogy with the
DoubleCassettePlayer) as follows:

type DoubleCassetteRecorder {
extends:
 CassetteRecorder cr1, cr2;
}

But the intended interpretation, that there are two separate parts - each including its own
supertype CassettePlayer - conflicts with the interpretation appropriate for
DoubleStudent where the supertype Person should only be present once.

REPEATED INHERITANCE WITH A COMMON ANCESTOR

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 127

It would no doubt be possible to devise mechanisms which could distinguish
between such cases, but these would all have at least one disadvantage. Either the definer
of the repeated type would have to be aware of the way the individual supertype(s) are
defined, or (as with C++ virtual inheritance) a decision would have to be made by the
designers of all the second level types, perhaps even before the diamond inheritance case
is considered. The deeper the hierarchy involved, the more evident it is that such
approaches are unsatisfactory.

The Timor aims of supporting the information hiding principle and of being able to
use components without a knowledge of their inner composition led to the decision to
adopt the interpretation of the above examples which replicates an entire part without
consideration of its inner structure or common ancestor(s) (the interpretation relevant for
DoubleCassetteRecorder), i.e. when multiple subtypes are inherited as parts,
methods of a common ancestor are not implicitly merged. According to this rule the type
DoubleStudent defines a "schizophrenic", with two Person elements.

An important additional advantage of this decision is that it creates no
implementation difficulties, as the following implementation shows:

impl DoubleCassetteRecorderImpl of DoubleCassetteRecorder {
state:
 ^CassetteRecorder cr1;
 ^CassetteRecorder cr2;
}

On the other hand all the difficulties associated with implementing EmployedStudent
would still arise for a rule which favours merging a common ancestor in types such as
this.

4 INHERITING ORTHOGONAL ATTRIBUTES

The above discussion leaves at least two questions unanswered:
a) How can repeated inheritance from a common (shared) ancestor (such as a Double-

Student) be appropriately defined at the type level?
b) How can diamond inheritance and repeated inheritance involving a common (shared)

ancestor be conveniently implemented (even where it can be appropriately specified,
as in EmployedStudent)?

At the heart of these issues is the fact that a (usually concrete) base type serves as a
common (shared) ancestor which can be orthogonally extended in a potentially infinite
number of ways to specialise objects of the base type. Such orthogonal attributes can then
be combined (and might occur repeatedly) in particular objects. Person is not an
exception in this respect. The same principle would apply to a hierarchy defining ships or
vehicles, and many other cases.

Such specialisations are usually incremental extensions which are behaviourally
conform with the base type (cf. [11]), i.e. they typically add new state and new methods,
without changing the definition of existing methods or state. In fact they are normally not

DIAMOND INHERITANCE AND ATTRIBUTE TYPES IN TIMOR

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

only behaviourally conform with their supertype but, for a given supertype, they are
usually compatible with each other. (In the above example the method toString
appears to be an exception, but this will be taken into account in the following
discussion.)

To handle such extensions Timor breaks with the standard OO paradigm, by
providing a mechanism for defining behaviourally compatible type units as add-on
attributes, which can be orthogonally combined with each other in association with a base
type. This alternative paradigm is inspired by the use of adjectives in natural language
rather than by inheritance concepts. Adjectives (cf. attributes) can be added to nouns (cf.
objects) to augment their meaning (e.g. a student is a studying person, an employee is an
employed person, an employed student is a studying, employed person). In contrast
inheritance simply works in terms of nouns (i.e. objects, e.g. a student is a person), with
the consequence that in the object oriented paradigm the attributes represented by
adjectives simply disappear as separate units. This is unfortunate, since adjectives are
especially flexible: the same adjective can often qualify many different nouns, and many
different adjectives can (where appropriate concurrently) qualify the same noun. The
basic idea behind attribute types in Timor is to introduce a similar level of flexibility into
programming. This involves constructs for defining and implementing attribute types (i.e.
the adjectives) and further constructs allowing them to be composed into more complex
types (i.e. the noun phrases).

In this section it is shown how such attribute types can be defined and implemented
in Timor, and in section 5 how they can then be composed into new types.

Attribute Type Definitions

An attribute type definition is characterised by the keyword for. The for clause
nominates a base for the attribute type (known as an attribute base2). This can be defined
in terms of a type, or a view, or the special keyword any, and indicates the type(s) of
object which can be qualified adjectivally. In the following examples a specific type is
nominated as the attribute base.

type Studying for Person {
instance:
 String uni;
 Date matriculationDate;
 enq int ageAtMatriculation();
 enq String toString(); // returns a string describing
 // only the student details
maker:
 init(String uni, Date matriculationDate);
}
type Employed for Person {
instance:
 String employer, employeeNumber;
 Date startingDate;
 enq String toString(); // returns a string describing
 // only the employee details
maker:

INHERITING ORTHOGONAL ATTRIBUTES

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 129

 init(String employer; Date startingDate);
}

Although attribute types have a similar appearance and serve a similar purpose to
subtypes, they are by no means the same. Here are some key differences from the
viewpoint of type definition and implementation:
a) An attribute type can have only one attribute base3.
b) The methods of the attribute base cannot be redefined in a redefines clause of an

attribute type4.
c) The attribute type's makers, if any, are responsible only for initialising their own state.

They cannot invoke the makers of the attribute base.
d) The instance methods of an attribute type can access the public methods of the

associated base object via a pseudo variable base. This promotes both behavioural
conformity with its attribute base and independence of the latter's implementation.

e) The instance methods of an attribute type should confine their activities to the
attribute's own state. Thus methods such as toString should produce results which
can be used to add to (rather than already include) those of the attribute base in a
modular way.

In accordance with the philosophy behind attribute types we typically use adjectival
names in examples.

Implementing Attribute Types

Like other Timor types, attribute types can have multiple implementations. Their
implementations differ from implementations of other types only in that the code of their
methods can use the pseudo variable base, which provides access to the public methods
of the attribute base object. Here is an implementation of Studying:

impl StudyingImpl of Studying {
state:
 String uni;
 Date matriculationDate;
maker:
 init(String uni; Date matriculationDate) {
 this.uni = uni; this.matriculationDate= matriculationDate;
 }
instance:
 enq int ageAtMatriculation() {
 return (Date.yearDifference(matriculationDate, base.dob));
 }
 enq String toString() { // confined only to own state
 return ("Commenced at " + uni
 + " on " + matriculationDate.toString());
 }
}

The code of the method ageAtMatriculation illustrates how the pseudo variable
base can be used to gain access to the public methods of the base object (here the get
method of dob from Person, using the abstract variable notation, cf. [6, 10]).

DIAMOND INHERITANCE AND ATTRIBUTE TYPES IN TIMOR

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

Because of its add-on nature, an implementation of an attribute type does not include
state variables describing its attribute base.

Inheriting from Attribute Types

Like other Timor types, attribute types can inherit (in the conventional sense) from other
types. Inherited bases may (but need not) be attribute types. If one or more of the
inherited bases is an attribute type, then the subtype must have an attribute base which is
either the same type as, or is a common subtype of, all the attribute bases of the inherited
types.

5 USING ATTRIBUTES IN TYPE DEFINITIONS

In concrete situations adjectives are used to qualify nouns, typically in noun phrases.
Similarly, instances of attribute types ("attributes") can be used in association with their
base objects to compose new types. In this section we consider how such types are
composed.

Composing Types from Attributes

The following is an alternative definition of EmployedStudent which uses attribute
types.

type AttributedEmployedStudent {
extends: // or includes where polymorphism is unwanted
 {Studying; Employed;} Person;
redefines:
 enq String toString();//returns all EmployedStudent details
maker:
 init(String name; String uni; Date matriculationDate;
 String employer; Date startingDate);
}

The extends clause defines one or more inherited bases, as usual. Those bases which
serve as attribute bases are preceded by a bracketed list of dependent attributes. The
methods of the attribute base (here Person) and of the individual attributes (here
Studying and Employed) are all "inherited" as separate methods of the new type.

The syntax can be understood in terms of the following EBNF fragment:
derivationClause = "extends:" qualifiedList |
 "includes:" qualifiedList.
qualifiedList = {[qualifyingList] qualifiedItem ";"}.
qualifyingList = "{" {qualifiedList} "}".

This syntax is more fully explained in [9], which also describes how it can be used in
static definitions that include qualifying types with bracket methods [7, 8]. The basic idea
is that a qualified item can be qualified by a qualifying list (here of attributes). Because
the qualifying list is recursively defined in terms of a qualified list, qualifying items (here
attributes) can themselves be qualified.

USING ATTRIBUTES IN TYPE DEFINITIONS

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 131

Because each of the attributes and the attribute base in this example all have a
method toString, a name collision occurs, which, if unresolved, would lead to a
compile time error. Hence this appears in a redefines clause to indicate that it is a
common method (with an informal specification indicating what it does)5.

The instance methods and abstract variables of AttributedEmployedStudent
are identical to those of the conventional EmployedStudent, as follows:

instance:
 String name, address; // from Person
 Date dob;
 enq int currentAge();
 String uni; // from Studying
 Date matriculationDate;
 enq int ageAtMatriculation();
 String employer, employeeNumber; // from Employed
 Date startingDate;
 enq String toString(); // redefined in the redefines clause

Should the designer of the type wish to make the individual toString methods of the
various parts publicly available as separate methods, this can be achieved by adding part
names (which may be defined as optional, cf. [10]), e.g.

type EmployedStudentByParts {
extends:
 {Studying [s]; Employed [e];} Person [p];
instance:
 enq String toString();//returns all EmployedStudent details
}

In this case there are separate public methods s.toString, e.toString, p.toString
and toString. Because the part names have been provided in the optional form, non-
colliding methods can be invoked by the client either with or without the part name (cf.
[6]). This type is not equivalent to EmployedStudent.

Repeated Attributes

The modular structure of attribute types allows diamond and repeated inheritance to be
simulated in a straightforward manner, e.g.

type DoublyEmployedStudent {
extends:
 {Studying; Employed e1, e2;} Person;
redefines:
 [e1, e2] enq String toString();
 //combines all the toString methods into a single method
maker:
 init(String name, uni, e1.employer, e2.employer;
 Date matriculationDate, e1.startingDate, e2.startingDate);
}

This is defined by analogy with repeated inheritance of parts. Repeated attributes must
have a part name; others (including the attribute base) may, but need not be explicitly
named. Part names must be provided whenever a type occurs more than once in the
derivation clauses of a type definition. These must be unique within all the derivation

DIAMOND INHERITANCE AND ATTRIBUTE TYPES IN TIMOR

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

clauses of a type definition and cannot be hierarchical (i.e. their uniqueness must be
independent of the dot notation).

Part names are used by clients to invoke methods, as in simple repeated inheritance
(except in cases where they are optionally defined using square brackets [10]). Where a
part name is used, the names of the object's members are compounded from the part name
and the normal method name, using the dot notation, e.g.

DoublyEmployedStudent* des =
 new DoublyEmployedStudent.init(...);
des.e2.matriculationDate = Date.init(1,10,2000);

In DoublyEmployedStudent the toString methods of all the constituent types are
merged into a single method. As in the case of repeated parts inheritance, any named
parts must be explicitly named in the redefines clause if their methods are to be
merged. The effect of omitting the part names from the redefines clause would be that
the methods toString from Studying and Person would be merged, but the methods
e1.toString and e2.toString would remain separate methods for objects of type
DoublyEmployedStudent.

The parameters of makers may (but need not) use the dot notation to name
parameters, where this corresponds to a name as seen by the client. This facility allows
simple makers with parameters to be implemented automatically.

Multiple Attribute Bases

The extends clause is a normal extends clause. Consequently an attribute base is simply
an inherited type (or part), and types can be defined to extend or include multiple
attribute bases. Here is an example defining a "schizophrenic", whose first personality
thinks he is a student while the second thinks he is doubly employed:

type SchizoDoublyEmployedStudent {
extends:
 {Studying s;} Person p1;
 {Employed e1, e2;} Person p2;
redefines:
 [s] enq String p1.toString();
 // returns all details of the first personality
 [e1, e2] enq String p2.toString();
 // returns all details of the second personality
maker:
 init(String p1.name, s.uni, p2.name,
 e1.employer, e2.employer;
 Date s.matriculationDate,
 e1.startingDate, e2.startingDate);
}

In this example there is no method toString, but there are methods known to the client
as p1.toString and p2.toString.

USING ATTRIBUTES IN TYPE DEFINITIONS

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 133

Bases for Attribute Types

A for clause can nominate a type as its attribute base, as in the above examples, or it can
nominate a view (cf. [6]), in which case an instance of any type which implicitly or
explicitly contains this view can serve as a base type. In both cases the compiler checks
that instances of the attribute type are only used in conjunction with bases which contain
the view or type named in the for clause.

Alternatively an attribute type can be defined to have the special base any, which
indicates that it can have any type as an attribute base. In this case its implementations
may not use the pseudo variable base. Here is an example:

type Loanable for any {
instance:
 op void putOnLoan (Person* toWhom, Date loanDate);
 op void returnFromLoan(Date returnDate);
 boolean currentlyLoaned; // an abstract variable
 Date dueDate; // an abstract variable
 enq int daysOverdue();
 enq Person* borrower();
 enq Person* previousBorrower();
 enq Date dateLastReturned();
 ...
}

The for any clause indicates that instances of this type should only be used in
conjunction with an attribute base, even though implementations may not use the pseudo
variable base.

Attribute Types as Attribute Bases

An attribute type can qualify another attribute type. This is equivalent to qualifying an
adjective with an adverb. Thus an attribute PartTime might be defined as follows:

type PartTime for any { // for Studying would also be OK
 // and base could then be used
 int fullTimeHours;
 float fractionPartTime;
}

This could be used in a type:
type SchizoPartTimeDoublyEmployedStudent {
extends:
 {{PartTime pt1;} Studying;} Person p1;
 {{PartTime pt2;} Employed e1; Employed e2;} Person p2;
maker:
 init(String p1.name, p1.uni,
 p2.name, e1.employer, e2.employer;
 Date p1.matriculationDate,
 e1.startingDate, e2.startingDate);
}

Here the first personality is a part-time student, while the second has a part-time
employment e1 and an employment e2 not defined as part-time. The items PartTime,

DIAMOND INHERITANCE AND ATTRIBUTE TYPES IN TIMOR

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

Employed and Person must have part names, because of the type repetition, but
Studying need not. In the latter case the member names "belong to" the next named
higher part in the hierarchy. In this example there is, for instance, an abstract variable in
Studying named p1.uni. The client refers to the methods in the PartTime items as
pt1.fractionPartTime and pt2.fractionPartTime, e.g.

SchizoPartTimeDoublyEmployedStudent* schizo =
 new SchizoPartTimeDoublyEmployedStudent.init(...);
float hoursWorked = schizo.pt2.fractionPartTime;

6 IMPLEMENTATIONS USING ATTRIBUTE TYPES

Automatic Implementations

Assuming that implementations for all the types used in derivation clauses (see section 5)
already exist, it would be tedious to require the programmer to provide explicit
implementations of types into which they are composed, especially if no methods are
being overridden and no new methods are being added. For such cases, if there are no
explicit makers (or if the makers conform to certain requirements), the compiler can
provide an automatic implementation of the type in question. It transforms the type
definition using the following basic rules:

a) Change each extends or includes clause into a state clause.
b) For each type which does not already have a part name in the type definition, add

a part name (the same as the type name, but beginning with a small letter) to form
a variable declaration.

c) For each type which already has a part name in the type definition, use that part
name to form a variable declaration.

d) Prefix the hat symbol to each type name of a variable declaration which provides
public methods.

e) Add a parameterless maker or makers which conform to the requirements for
producing automatic makers.

The following is an automatic implementation of the type SchizoPartTimeDoubly-
EmployedStudent (cf. the last subsection of section 5):

impl SchizoPartTimeDoublyEmployedStudentImpl of
 SchizoPartTimeDoublyEmployedStudent {
state:
 {{^PartTime pt1;} ^Studying studying;} ^Person p1;
 {{^PartTime pt2;} ^Employed e1; ^Employed e2;} ^Person p2;
maker:
 init(String p1.name, p1.uni,
 p2.name, e1.employer, e2.employer;
 Date p1.matriculationDate,
 e1.startingDate, e2.startingDate) {
 p1.init(p1.name);
 studying.init(p1.uni, p1.matriculationDate);
 pt1.init();
 p2.init(p2.name);

IMPLEMENTATIONS USING ATTRIBUTE TYPES

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 135

 e1.init(e1.employer, e1.startingDate);
 pt2.init();
 e2.init(e2.employer, e2.startingDate);
 }
}

This automatic implementation sets out a pattern which can be used in explicit
implementations. The key points which it illustrates are as follows:

a) Qualified lists can be used in the state section of an implementation to express the
relationships between attributes and their attribute bases.

b) Each variable has a unique name.
c) Makers of attributes are invoked from within the maker for the composed type to

instantiate the necessary attributes.
d) Makers conforming to simple rules with respect to their formal parameter names

can be implemented automatically.

Explicit Implementations

We now show how an explicit implementation might handle a redefined method. To
illustrate this we implement the type DoublyEmployedStudent (defined in section 5
using attribute types):

impl DoublyEmployedStudentImpl of DoublyEmployedStudent {
state:
 {^Studying s; //re-use any Studying implementation
 ^Employed e1, e2;} //re-use any Employed implementation(s)
 ^Person p; //re-use of any Person implementation
/* maker:
 init(String name, uni, e1.employer, e2.employer;
 Date matriculationDate, e1.startingDate, e2.startingDate);
 This maker is automatically implemented. It does not need
 to be explicitly coded in the implementation.
*/
instance:
 enq String toString() {
 return (p.toString() + s.toString()
 + e1.toString() + e2.toString());
 }
}

In accordance with the Timor strategy that any type can be implemented from scratch,
there is no necessity that a type defined in terms of attributes must be implemented using
attribute types. However, if implementations of attribute types are used in an
implementation of some other type the programmer must define these using qualified
lists, in order to clarify the relationships between attribute implementations and their
attribute bases.

DIAMOND INHERITANCE AND ATTRIBUTE TYPES IN TIMOR

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

7 IMPLEMENTING CONVENTIONAL DIAMOND INHERITANCE
VIA ATTRIBUTES

In the implementation discussion in section 2, which was based on a conventional
approach to inheritance, we did not find a straightforward solution for implementing
diamond inheritance with more than one re-use variable. However, the previous sections
have illustrated that no substantial problems arise when attributes are used to achieve the
equivalent of diamond inheritance.

Because of the relative independence of type definitions and implementations,
attribute implementations can be used not only to implement types defined using
attributes but also to implement types defined in the conventional diamond inheritance
style, such as EmployedStudent. The following type definition remains unchanged
from section 2. It does not include attribute types.

type EmployedStudent {
extends:
 Student;
 Employee;
redefines:
 enq String toString();
init(String name, uni, employer;
 Date matriculationDate, startingDate);
}

Here is an implementation, using attribute implementations defined previously:
impl EmployedStudentImpl of EmployedStudent {
state:
 {^Studying s; // any implementation of the attribute types
 ^Employed e;} // Studying and Employed can be used
 ^Person p;
maker:
 init(String name, uni, employer;
 Date matriculationDate, startingDate) {
 p.init(name);
 s.init(uni, matriculationDate);
 e.init(employer, startingDate);
 }
instance:
 enq String toString() {
 return (p.toString() + s.toString() + e.toString();
 }
}

The Person methods are matched from the re-use variable ^Person p, while the
additional Student and Employee methods are matched from (any implementation of)
the re-use variables ^Studying s and ^Employed e. Although these are different
types from those used in the type definition (i.e. Student and Employee) the instance
methods match and so are selected.

IMPLEMENTING CONVENTIONAL DIAMOND INHERITANCE VIA ATTRIBUTES

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 137

The fundamental difference from the attempted diamond inheritance implementation
in section 2 is that in contrast with implementations of Student and Employee
implementations of Studying and Employed do not include state for Person.
Consequently the problems encountered earlier do not arise.

Although the individual toString methods have been merged into a single
redefined method, they still exist in the re-use variables representing the attributes and
their base, and can still be invoked in implementations which re-use them, as is illustrated
in the implementation of the redefined toString.

8 ATTRIBUTE VALUES AND REFERENCES

The peculiarities of attribute types lead to some special rules with regard to attribute
values and attribute references.

Attribute Values

An attribute (instance) relies logically - and if it uses the pseudo variable base also
physically - on the existence of its attribute base, which implies that an attribute cannot
simply be instantiated as a free-standing object or value. Consequently it is inappropriate
to allow attributes to be declared as free-standing value variables in implementations (or
as abstract values in type definitions). Hence value declarations of attribute types are
permitted only as items in qualifying lists. A simple declaration such as

Employed e;

is treated as a compile time error.

Attribute References

Like a view, an attribute type provides instance methods which are a subset of the
instance methods of objects in which it is embedded. Consequently it can be useful to
allow reference variables to refer to an existing attribute. Hence it is permitted to declare
an attribute reference, e.g.

Employed* emp;

Such reference variables, like reference variables for supertypes and views, refer to the
entire object in which the particular attribute is embedded, and can therefore be the
subject of cast statements (see section 9).

Because of the need to guarantee the existence of a base, such a reference cannot be
used to instantiate an actual attribute as such, i.e. the compiler would treat a statement
such as:

Employed* emp = new Employed.init();

as an error, but it would allow statements such as
Employed* emp1 = schizo.e1; // for schizo cf. Section 5 end
Employed* emp2 = new
 (SchizoPartTimeDoublyEmployedStudent.init()).e2;

DIAMOND INHERITANCE AND ATTRIBUTE TYPES IN TIMOR

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

Unlike a view, an attribute type cannot be defined retrospectively, so that a statement
such as the latter would not be valid merely on the basis of matching methods. Thus an
assignment statement

Employed* emp3 = new EmployedStudent.init();

is erroneous, because the type EmployedStudent is defined in terms of Employee, not
Employed, whereas

Employed* emp4 = new AttributedEmployedStudent.init();

is valid.

9 THE CAST STATEMENT

An object is considered to be behaviourally conform with any attribute bases which it
extends (but not includes) and it can therefore be used polymorphically, where
appropriate using part names to identify which attribute base is intended, e.g.

Person* p = schizo.p2; // for schizo cf. section 5 (end)
p.name = "Joe Confused";

As in the cases of normal inheritance and parts inheritance, such an assignment logically
assigns the entire object (not merely the part) to the reference. The Timor conditional
downcast statement can then be used in the usual way to gain access to the entire subtype,
e.g.

cast (p) as {
 (EmployedStudent es) {/* statements using es */}
 (SchizoPartTimeDoublyEmployedStudent sptdes)
 {/* statements using sptdes */}
 ...
 else {/* optional statements if there is no match */}
}

The cast statement can also be used to access attributes contained in an object, and where
appropriate the square bracket notation can be used to gain access to multiple attributes of
the same type (cf. repeated parts [10]), e.g.

cast (p) as allof { // allof indicates that all matching
 // individual clauses are selected
 [Employed e] // square brackets indicate repetition
 // for each matching attribute
 {if (e.employer = "University of Ulm") ...;
 cast e as allof {
 [PartTime pt] {...}
 [FullTime ft] {...}
 }
 [Studying s] {...}
 ...
}

As this example illustrates, nested cast statements can be used to access (depth first) all
the attributes in an object in succession. Where cast statements are nested in this way all

THE CAST STATEMENT

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 139

references in the current hierarchy are accessible. Thus the statements associated with
PartTime pt can use the current values of pt, e and p as references (unless they have
been hidden by other in scope references which use the same identifiers).

Finally a conditional cast can be applied to an attribute reference in order to gain
access to an underlying object or, as in this example, other attributes in the object:

cast (emp) as { // is this employed person also studying?
 [Studying s] {...}
}

10 RELATED WORK

In 1997 members of our group published a paper entitled "Attribute Types and Bracket
Implementations" [3] which presented in outline ideas developed for the experimental
language L1. The paper outlined in nascent form the basic concepts both of Timor
attribute types, presented in the present paper, and of Timor qualifying types (cf. [7, 8]).
Although the ideas for both have since been considerably refined and improved for
Timor, the idea that a programming language should support not only types based on
nouns but also further types based on adjectives, together with a technique allowing new
types (corresponding to noun phrases) to be composed from these, was already
emphasized in that paper.

Others have also pointed out that the object oriented paradigm could be enriched by
taking adjectives more seriously (e.g. [1, 2]) but have not described a technique for doing
this corresponding to attribute types.

The need for adjectival types in the object oriented paradigm has become visible
partly through Java interfaces and the tendency to name some of these adjectivally, e.g.
Runnable, Serializable. However, in contrast with Timor's attribute types, Java interfaces
do not provide a solution with full code re-use for diamond inheritance from a common
concrete ancestor nor a solution to repeated inheritance involving a common concrete
ancestor.

11 CONCLUSION

The paper has presented some aspects of an alternative programming paradigm to
inheritance, based on the idea of adjectives in natural language. In doing so we have
shown that the technique can easily master issues such as diamond inheritance and
repeated inheritance from a common concrete ancestor. This technique can be used in
Timor to complement both the conventional object oriented programming paradigm
(which can be effectively used for subtyping involving single inheritance and cases of
multiple inheritance from a common abstract ancestor) and the parts inheritance
technique (which is especially suitable for repeated inheritance and for multiple
inheritance from distinct concrete types).

DIAMOND INHERITANCE AND ATTRIBUTE TYPES IN TIMOR

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

Attribute types have two significant characteristics: they are very modular units and
they cannot redefine the methods of their attribute base type. It is these features which
allow them to be easily mixed and matched to compose new types, as we have described
in the paper. But these characteristics endow them with a further advantage: such mixing
and matching need not be limited to static type definitions. In a future paper we will show
how individual attributes can be dynamically added at run-time to appropriate attribute
base objects, thus allowing, for example, a Person object to change its specialisations
dynamically over time. In this sense attribute types should make Timor especially
attractive for data base applications in which objects need to change over time to reflect
changes in the world which is being modelled.

Finally we point out that the other "adjectival" form of type in Timor, qualifying
types, can also be statically defined, and in fact the same rules as we saw in section 5 for
composing attribute types into new types are used for qualifying types. Because the rules
required for qualifying types are somewhat more complex (in view of the existence of
bracket methods) we have deferred a full discussion of that syntax until a later paper in
which statically defined qualifying types are presented.

ACKNOWLEDGEMENTS

Special thanks are due to Dr. Axel Schmolitzky for his invaluable contributions to
discussions of Timor and to the ideas which have been taken over from earlier projects.
Without his ideas and comments Timor would not have been possible.

REFERENCES

[1] M. C. Feathers, "Factoring Class Capabilities with Adjectives," Journal of Object
Oriented Programming, vol. 12, no. 1, pp. 28-34, 1999.

[2] I. Forman and S. Danforth, Putting Metaclasses to Work. Reading, MA. Addison-
Wesley, 1998.

[3] J. L. Keedy, M. Evered, A. Schmolitzky, and G. Menger, "Attribute Types and
Bracket Implementations," 25th International Conference on Technology of Object-
Oriented Languages and Systems, Melbourne, 1997, pp. 325-338.

[4] J. L. Keedy, G. Menger, and C. Heinlein, "Support for Subtyping and Code Re-use
in Timor," 40th International Conference on Technology of Object-Oriented
Languages and Systems (TOOLS Pacific 2002), Sydney, Australia, 2002,
Conferences in Research and Practice in Information Technology, vol. 10, pp. 35-
43.

CONCLUSION

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 141

[5] J. L. Keedy, G. Menger, and C. Heinlein, "Inheriting from a Common Abstract
Ancestor in Timor," Journal of Object Technology, vol. 1, no. 1, May 2002, pp. 81-
106. http://www.jot.fm/issues/issue_2002_05/article2.

[6] J. L. Keedy, G. Menger, and C. Heinlein, "Taking Information Hiding Seriously in
an Object Oriented Context," Net.ObjectDays, Erfurt, Germany, 2003, pp. 51-65.

[7] J. L. Keedy, G. Menger, C. Heinlein, and F. Henskens, "Qualifying Types
Illustrated by Synchronisation Examples," in Objects, Components, Architectures,
Services and Applications for a Networked World, International Conference
NetObjectDays, NODe 2002, Erfurt, Germany, vol. LNCS 2591, M. Aksit, M.
Mezini, and R. Unland, Eds.: Springer, 2003, pp. 330-344.

[8] J. L. Keedy, K. Espenlaub, G. Menger, and C. Heinlein, "Qualifying Types with
Bracket Methods in Timor," in Journal of Object Technology, vol. 3, no. 1,
January-February 2004, pp. 101-121, http://www.jot.fm/issues/issue_2004_01/
article1

[9] J. L. Keedy, K. Espenlaub, G. Menger, and C. Heinlein, "Statically Qualified Types
in Timor," (accepted for publication in JOT, September-October 2005)

[10] J. L. Keedy, G. Menger, and C. Heinlein, "Inheriting Multiple and Repeated Parts
in Timor," Journal of Object Technology, vol. 3, no. 10, November-December
2004, pp. 99-120. http://www.jot.fm/issues/issue_2004_11/article1

[11] B. Liskov and J. M. Wing, "A Behavioral Notion of Subtyping," ACM Transactions
on Programming Languages and Systems, vol. 16, no. 6, pp. 1811-1841, 1994.

About the authors

 J. Leslie Keedy is Professor and Head, Department of Computer
Structures, University of Ulm, Germany, where he leads the Timor
language design and the Speedos operating system design groups. His
email address is keedy@informatik.uni-ulm.de. His biography can be
visited at http://www.informatik.uni-ulm.de/rs/mitarbeiter/jlk/

Mark Evered is a Senior Lecturer in the School of Mathematics,
Statistics and Computer Science at the University of New England in
Armidale, Australia. He completed his PhD at the Technical University
of Darmstadt in Germany. His research interests include Object-based
Systems, Security, Persistence and Programming Language Design and
Implementation. His email address is: markev@mcs.une.edu.au.

http://www.jot.fm/issues/issue_2002_05/article2
http://www.jot.fm/issues/issue_2004_01/article1
http://www.jot.fm/issues/issue_2004_01/article1
http://www.jot.fm/issues/issue_2004_11/article1
http://www.informatik.uni-ulm.de/rs/mitarbeiter/jlk/
mailto:keedy@informatik.uni-ulm.de
mailto:markev@mcs.une.edu.au

DIAMOND INHERITANCE AND ATTRIBUTE TYPES IN TIMOR

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

Christian Heinlein received a Ph.D. in Computer Science from the
University of Ulm in 2000. Currently, he works as a scientific assistant
in the Department of Computer Structures at the University of Ulm. His
research interests include programming language design in general,
especially genericity, extensibility and non-standard type systems. His
email address is heinlein@informatik.uni-ulm.de.

Gisela Menger received a Ph.D. in Computer Science from the
University of Ulm in 2000. Currently she works as a scientific assistant
in the Department of Computer Structures at the University of Ulm. Her
research interests include programming language design and software
engineering. Her email address is menger@informatik.uni-ulm.de.

1 see http://www.timor-programming.org
2 As will become clear, this differs from the bases from which a type can inherit (in Timor using the

keywords extends and/or includes) in the conventional OO sense. We refer to such bases as
inherited bases.

3 It can however be defined to extend and/or include other types in the usual way.
4 It can however have a redefines section in which methods of its inherited bases can be

redefined.
5 Although an attribute type may not redefine the methods of its base type, the designer of a type

which composes an attribute type with its attribute base can make such redefinitions.

mailto:heinlein@informatik.uni-ulm.de
mailto:menger@informatik.uni-ulm.de
http://www.timor-programming.org

