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The Correctness of the Definite Assignment
Analysis in C]

Nicu G. Fruja, Computer Science Department, ETH Zürich, Switzerland

The compilation of C] requires a flow analysis to ensure that every local variable
is definitely assigned when any access to its value occurs. A variable is definitely
assigned at a use of its value if every execution path leading to that use contains
an assignment to the variable. Since local variables are uninitialized by default, this
prevents access to uninitialized memory which is a crucial ingredient for the type safety
of C]. We formalize the rules of the definite assignment analysis of C] with data flow
equations and we prove the correctness of the analysis, i.e. if the analysis will infer
a local variable as definitely assigned at a certain program point, then the variable
will actually be initialized at that point during every execution of the program. We
actually prove more than correctness: we show that the solution of the analysis is a
perfect solution (and not only a safe approximation).

1 INTRODUCTION

In C] local variables are not initialized by default, unlike static and instance fields.
Therefore, in order to ensure type-safety — an expression’s value at runtime is always
a subtype of its static type — a C] compiler must guarantee that all local variables
are assigned to before their value is used. The C] compiler enforces this definite
assignment rule by a static flow analysis. Since the problem is undecidable in general,
the C] Language Specification [1, §5.3] contains a definition of a decidable subclass
of the set of variables that get assigned at run-time. The static analysis guarantees
that there is an initialization to a local variable on every possible execution path
before the variable is read.

In this paper, we provide a formalization of the definite assignment analysis in C]

that helps us to prove the analysis correct. So far, the definite assignment analysis
of the Java compiler has been formalized with data flow equations in the work of
Stärk et al. [6] and related to the problem of generating verifiable bytecode from
legal Java source code programs.

The formalization of the C] definite assignment analysis emphasizes in particular
the complications caused by the goto and break statements (incompletely specified
in [1]) and by method calls with ref/out parameters — these are crucial differ-
ences with respect to Java (notice that Java has a break L; statement which has
no corresponding statement in C]). The struct type variables represent another dif-
ference with respect to Java. We consider the treatment of the struct type variables
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THE CORRECTNESS OF THE DEFINITE ASSIGNMENT ANALYSIS IN C]

in detail. We use the idea of data flow equations but due to the goto statement,
the formalization cannot be done as for Java. For a method body without a goto

statement, the equations that characterize the sets of definitely assigned variables
can be solved in a single pass. If goto statements are present then the equations
defined in our formalization do not uniquely determine the sets of variables that
have to be considered definitely assigned. For this reason a fixed-point computa-
tion is performed and the greatest sets of variables that satisfy the equations of the
formalization are computed. Regarding the correctness of the analysis, we prove
that these sets of variables represent exactly the sets of variables assigned on all
possible execution paths and in particular they are a safe approximation. A number
of bugs in the Rotor SSCLI [3] and Mono [4] (version 0.26) C] compilers were dis-
covered during the attempts to build the formalization of the definite assignment.
We present three of them; the rest are described in the Appendix of [5].

The rest of the paper is organized as follows. Section 2 introduces the data flow
equations which formalize the C] definite assignment analysis while Section 3 shows
that there always exists a maximal fixed point solution for the equations. In order
to define the execution paths in a method body, the control flow graph is introduced
in Section 4. The paper concludes in Section 5 with the proof of the correctness of
the analysis, Theorem 1.

2 THE DATA FLOW EQUATIONS

In this section, we formalize the rules of definite assignment analysis from the C]

Specification [1, §5.3] by data flow equations. Since the definite assignment anal-
ysis is an intraprocedural analysis, we restrict our formalization only to a given
method meth. We use labels in order to identify the expressions and the state-
ments. Labels are denoted by small Greek letters and are displayed as prefixed
superscripts, for example, as in αexp or in αstm. We often refer to expressions and
statements using their labels only.

In order to precisely specify all the cases of definite assignment, static functions
before, after , true, false and vars are computed at compile time. Note that true
and false are only defined for boolean expressions. These functions assign sets of
variables to each expression or statement α and have the following meanings:

• before(α) contains the variables definitely assigned before the evaluation of α;

• after(α) contains the variables definitely assigned after the evaluation of α
when α completes normally;

• true(α) consists of the variables (in the scope of which α is located) definitely
assigned after the evaluation of α when α evaluates to true;

• false(α) consists of the variables (in the scope of which α is located) definitely
assigned after the evaluation of α when α evaluates to false;
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The sets true and false are needed because of the conditional operators && and ||,
as we show in an example. The set vars(α) contains the local variables in the scope
of which α is located, i.e. the universal set with respect to α.

For clarity of presentation, we skip those language constructs whose analysis is
very similar to the constructs dealt with explicitly in our framework; examples are
alternative control structures (do, switch, foreach) and the pre- and postfix oper-
ators (++, --). We omit also the statements for and lock since they can be written
in terms of constructs from our framework as observed by the C] Specification in
[§5.3.3.9] and [§8.12], respectively.

Struct type variables. From the point of view of the definite assignment analy-
sis, the struct type variables in C] represent a key difference with respect to Java.
We will treat them separately to simplify the proofs. The interested reader can
find in [5] a formalization with equations that include the struct types. We point
out in Section 3 how they affect the sets of definitely assigned variables the C]

compiler relies on in order to analyze programs. Also, we show in Section 5 that
allowing variables of struct types does not affect the correctness of the analysis. In
the rest of the paper we state explicitly whenever we include struct type variables.

We are now able to state all the data flow equations. A first equation is given
by the method’s initial conditions: for the method body mb of meth we have
before(mb) = ∅. Conceptually, the set before(mb) contains the value and reference
parameters of meth since they are assumed to be definitely assigned when meth is
invoked [1, §5.1].

For the other expressions and statements in mb, instead of explaining how the
functions are computed we simply state the equations they have to satisfy. Table 1
contains the equations for boolean expressions (including for completeness the lit-
erals true and false). If α is the constant true, then false(α) = vars(α) as a
consequence of the definition of the false set and of the fact that true cannot evalu-
ate to false. Similar arguments hold for true(α) = vars(α) when α is the constant
false. We need the sets true and false since the evaluation of boolean expressions
involving the conditional operators && and || does not necessarily require the eval-
uation of all their subexpressions. Consider the following expression:

α(b && (i = 1) >= 0) ? true : γ i > 0

If b evaluates to false, then the test (b && (i = 1) >= 0) immediately evalu-
ates to false and its second operand, i.e. (i = 1) >= 0 is never evaluated. So in
this case i is not assigned; on the other hand, a necessary condition for the test to
be evaluated to true is that both operands of α are evaluated. Therefore, the C]

compiler is sure that i is assigned only if α evaluates to true. Formally, this means
i 6∈ false(α) and i ∈ true(α). Consequently i is not considered definitely assigned
before evaluating γ and the compiler should reject this example. Unfortunately the
Mono C] compiler [4] incorrectly accepts it, as it does also for the other conditional
operator, ||.
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αexp the data flow equations
true true(α) = before(α), false(α) = vars(α)

false false(α) = before(α), true(α) = vars(α)

(! βe) before(β) = before(α), true(α) = false(β),
false(α) = true(β)

(βe0 ? γe1 : δe2) before(β) = before(α), before(γ) = true(β),
before(δ) = false(β), true(α) = true(γ) ∩ true(δ),
false(α) = false(γ) ∩ false(δ)

(βe1 && γe2) before(β) = before(α), before(γ) = true(β),
true(α) = true(γ), false(α) = false(β) ∩ false(γ)

(βe1 || γe2) before(β) = before(α), before(γ) = false(β),
false(α) = false(γ), true(α) = true(β) ∩ true(γ)

Table 1: Definite assignment for boolean expressions

In addition, we have for all expressions in Table 1 the equation after(α) =
true(α) ∩ false(α). For any boolean expression α which is not an instance of one of
the expressions in Table 1, we have true(α) = after(α) and false(α) = after(α).

Table 2 lists the equations specific to arbitrary expressions where loc stands for
a local variable and lit for a literal. Note that the table contains another equation
for the conditional expression when its value is not a boolean. The equation for
the explicitly boolean expression collects additional information. If the boolean
conditional is treated as an arbitrary expression, then the equation for after(α)
would still be correct — it can be derived from the other equations for the boolean
expressions.

In C] a ref parameter is used for “by reference” parameter passing in which
the parameter acts as an alias for a caller-provided argument. An out parameter
is similar to a ref parameter except that the initial value of the caller-provided
argument is not important. The ref arguments must be definitely assigned before
the method invocation, while the out arguments are not necessarily assigned before
the method is invoked. However, the out arguments must be definitely assigned
when the method returns. Note the equation for after(α) of a method invocation in
Table 2: the out arguments, denoted as OutParams(arg1, . . . , argk), get definitely
assigned. We take into consideration static methods as well as instance methods
and we do not care if we have recursive method calls since the definite assignment
analysis is intraprocedural.

For expressions that do not appear in Tables 1 and 2 (e.g. e1|e2, e1+e2), if
αexp is an expression with direct subexpressions β1e1, . . . ,

βn en, then the left-to-right
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αexp the data flow equations
loc after(α) = before(α)

lit after(α) = before(α)

(loc= βe) before(β) = before(α),
after(α) = after(β) ∪ {loc}

(loc op= βe) before(β) = before(α), after(α) = after(β)

(βe0 ? γe1 : δe2) before(β) = before(α), before(γ) = true(β),
before(δ) = false(β), after(α) = after(γ) ∩ after(δ)

c.f after(α) = before(α)

ref βexp before(β) = before(α), after(α) = after(β)

out βexp before(β) = before(α), after(α) = after(β)

c.m(β1arg1, . . . ,
βk argk) before(β1) = before(α),

before(βi+1) = after(βi), i = 1, k − 1,
after(α) = after(βk) ∪ OutParams(arg1, . . . , argk)

Table 2: Definite assignment for arbitrary expressions

evaluation scheme yields the following general data flow equations :

before(β1) = before(α), before(βi+1) = after(βi), i = 1, n− 1, after(α) = after(βn)

The equations specific for statements can be found in Table 3. We assume that
the try statements are either try-catch or try-finally statements (see [11] for a
justification of this assumption).

Notice that for a block of statements α we have the equation after(α) = after(βn)
∩vars(α): the local variables which are definitely assigned after the normal execution
of the block are the variables which are definitely assigned after the execution of the
last statement of the block. However, the variables must still be in the scope of a
declaration. Consider the example:

{ α { int i; i = 1;} {int i; i = 2 * β i;}}

The variable i is not in after(α) since at the end of α i is not in the scope of a
declaration. Thus i 6∈ before(β) and the block is rejected.

For the equation before(βi+1) = after(βi) ∩ goto(βi+1), special attention is given
to the case when βi+1 is a labeled statement. A key point is that if a goto embedded
in a try block (of a try-finally statement) points to a labeled statement which
is not embedded in the try block, then the finally block has to be executed
(before the labeled statement). Thus the set of variables definitely assigned before
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αstm the data flow equations
; after(α) = before(α)

(βexp;) before(β) = before(α), after(α) = after(β)

{β1stm1 . . . βnstmn} before(β1) = before(α),
after(α) = after(βn) ∩ vars(α),
before(βi+1) = after(βi) ∩ goto(βi+1),
i = 1, n− 1

if (βexp) γstm1 else δstm2 before(β) = before(α), before(γ) = true(β),
before(δ) = false(β),
after(α) = after(γ) ∩ after(δ)

while (βexp) γstm before(β) = before(α), before(γ) = true(β),
after(α) = false(β) ∩ break(α)

goto L; after(α) = vars(α)

break; after(α) = vars(α)

continue; after(α) = vars(α)

return; after(α) = vars(α)

return βexp; before(β) = before(α), after(α) = vars(α)

throw; after(α) = vars(α)

throw βexp; before(β) = before(α), after(α) = vars(α)

try βblock
catch(E1 x1) γ1block1 before(β) = before(α),
... before(γi) = before(α) ∪ {xi}, i = 1, n,
catch(En xn) γnblockn after(α) = after(β) ∩

⋂n
i=1 after(γi)

try βblock1 finally γblock2 before(β) = before(α),before(γ) = before(α),
after(α) = after(β) ∪ after(γ)

Table 3: Definite assignment for statements

executing a labeled statement consists of the variables definitely assigned both after
the previous statement and before each corresponding goto statement or after any
of the finally blocks of try-finally statements in which the goto is embedded (if
any). We formalize this as follows. For two statements α and β we consider Fin(α, β)
to be the list [γ1, . . . , γn] of finally blocks of all try-finally statements in the
innermost to outermost order from α to β. Then we define the set JoinFin(α, β) of
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definitely assigned variables after the execution of all these finally blocks:

JoinFin(α, β) =
⋃

γ∈Fin(α,β)

after(γ)

Further, we provide the definition for the set goto of a statement β. If β is a labeled
statement βL:stm, the set goto(β) is defined as follows:

goto(β) =
⋂

αgoto L;

(before(α) ∪ JoinFin(α, β))

where we take only the goto statements in the scope of β. For all of the other
statements as well as for a labeled statement with no goto statements goto(β) is
the universal set vars(β). Now we are able to state the equation before(βi+1) =
after(βi)∩ goto(βi+1) from Table 3. In the case of a labeled statement the equation
formalizes the idea stated above while for a non-labeled statement this equations
reduces simply to before(βi+1) = after(βi).

The following example is a simplification of an example from the C] Specifica-
tion [1, §5.3.3.15]:

int i;
δtry {α goto L;}
finally γ{i = 3;}

βL:Console.WriteLine(i);

The C] Specification explains that in this example i is definitely assigned before β,
i.e. i ∈ before(β). Our equation before(β) = after(δ)∩ goto(β) leads us to the same
conclusion. To compute the set goto(β), we need the list Fin(α, β) = [γ] and the
set JoinFin(α, β) = after(γ). We have:

goto(β) = before(α) ∪ JoinFin(α, β) = before(α) ∪ after(γ)

and i ∈ after(γ) ⊆ after(δ) (see the equations for a try-finally in Table 3). This
means that i ∈ after(δ)∩ goto(β) = before(β). Surprisingly, the example is rejected
by the C] compilers of .NET Framework 1.0 and Rotor SSCLI [3]: we get the error
that i is unassigned. In the meantime this problem is fixed in .NET Framework
1.1 [2] but still exists in Rotor.

Although in the next method body i should be considered definitely assigned
before β the example is rejected by the Mono C] compiler [4].

int i; bool b = false;

if (b) { i = 1; αgoto L; }
δreturn;
βL:Console.WriteLine(i);

Note that i ∈ before(β) since the set before(β) is computed as follows:
before(β) = after(δ) ∩ goto(β) = vars(δ) ∩ before(α) = {i, b} ∩ {i} = {i}.
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The idea for the equation which computes after(α) of a while statement α is
the same as for a labeled statement. Similarly as for the set goto, we define the
set break(α) needed for the equation of after(α) to be the set of variables defi-
nitely assigned before all associated break statements (and possibly after appropri-
ate finally blocks). This means that the set break(α) is defined by

break(α) =
⋂

βbreak;

(before(β) ∪ JoinFin(β, α))

where we take only the break statements for which α is the nearest enclosing
while. If the while statement does not have any break statements, then we de-
fine break(α) = vars(α). With this definition of break(α) we have the equation for
after(α) as stated in Table 3.

Abnormal termination. Finally we consider the equations for abnormally
terminating statements. Suppose we want to state the equation for after of a jump
statement. Let α be the following statement:

if (b) γ{ i = 1; } else δreturn;

It is clear that the variables definitely assigned after α are the variables definitely as-
signed after the then branch and since our equation takes the intersection of after(γ)
and after(δ) it is obvious that one has to require the set-intersection identity for
after(δ). That is why we adopt the convention that after(α) is the universal set
vars(α) for any jump statement α. Consider also the next method body:

δint i = 1;
βL:;

try {
int j = 2;

try { αgoto L; }
finally γ1{ int k = 3; ωthrow new Exception(); }

} finally γ2{}

In our formalization we get: before(β) = after(δ)∩ goto(β) = after(δ)∩ (before(α)∪
JoinFin(α, β)) = after(δ) ∩ (before(α) ∪ after(γ1) ∪ after(γ2)). Note that in the
computation of JoinFin(α, β) we do not care whether γ1 and γ2 complete normally.
In our case γ1 does not complete normally, but we still perform our computations
with γ1 and γ2. The set after(γ1) is vars(ω)∩ vars(γ1) = {i, j, k} ∩ {i, j} = {i, j}.
Note also that after(γ1) involved in the equation of before(β) contains also j, while
β is not in the scope of a declaration of j, i.e. j 6∈ vars(β). There is no worry since
in the equation of before(β) all the sets that might contain variables declared in
“deeper” scopes (like j) are intersected with after(δ) which is supposed to contain
only variables from vars(δ) = vars(β) = {i} (β and δ are at the same nesting level).
These details become more clear in Lemmas 4 and 5 in Section 5. Whenever a state-
ment does not complete normally the set of variables considered definitely assigned
after its evaluation will be a universal set (see also the proofs of Theorems 1 and 2
from Section 5).
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3 THE MAXIMAL FIXED POINT

The computation of the sets of definitely assigned variables from the data flow
equations described in Section 2 is relatively straightforward. The key difference
with respect to Java is the goto statement which brings more complexity to the
analysis. Since the goto statement allows to encode loops, the system of data flow
equations does not have always a unique solution. Here is an example: consider a
method which takes no parameters and has the following body:

{αint i = 1; βL: γgoto L;}

We have the following equations after(α) = {i}, before(β) = after(α) ∩ before(γ)
and before(γ) = before(β). After some simplification, we find that before(β) =
{i}∩before(β). Therefore we get two solutions for before(β) (and also for before(γ)):
∅ and {i}. This is the reason we perform a fixed point iteration — which is not
necessary in the definite assignment analysis for Java. The set of variables definitely
assigned after α is {i}; since β does not ‘unassign’ i, i is obviously assigned when
we enter β. The example and the definition of definitely assigned indicate that the
most informative solution is {i} and therefore the solution we require is the maximal
fixed point MFP . For computing this solution various algorithms exist (see e.g. [8]).

Remark. Although the statements L: goto L; and while (true); are behav-
iorally similar, they are treated differently by the definite assignment analysis. If α
denotes the labeled statement, then the equation for before(α) implies recursion (as
noticed above). If α is the while statement above, then no equation correspond-
ing to α involves recursion. The set after(α) of the above while statement can
be computed according to the equations in a single step (i.e. with no fixed point
iteration) as follows after(α) = false(α) ∩ break(α) = vars(α) ∩ vars(α) = vars(α).
The set before(α) is determined as for any regular statement using only the after set
of the previous statement. Even if a while statement α has an associated continue

statement γ, the equation for before(α) does not involve the continue but only the
previous statement β. The reason is that, at the time the analysis is performed, the
compiler is sure that the continue is embedded in the while body and therefore
the set before(γ) includes the variables in after(β) (if the continue is executed then
necessarily β should have been executed). This is not always the case for a labeled
statement since the associated gotos are not necessarily embedded in the labeled
block (see the last example of Section 2). That is why they are involved in the
equation for before(α).

In the rest of this section we show that there always exists a maximal fixed
point for our data flow equations. In order to prove its existence we first define the
function F which encapsulates the equations. For the domain and codomain of this
function we need the set Vars(meth) of all local variables from the method body mb.
A simple inspection of the equations shows that they all have at the left side either
a before, after , true or a false set and at the right side a combination of these kinds
of sets and vars sets. We define the function F : D → D with D = P(Vars(meth))r
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such that F (X1, . . . , Xr ) = (Y1, . . . , Yr ), where r is the number of equations and the
sets Yi are defined by the data flow equations where the vars sets are interpreted as
constants. For example, in the case of an if-then-else statement, if the equation
for the after set of this statement is the i-th data flow equation, then the set of
variables Yi is defined by Yi = Xj∩Xk where j and k are the indices of the equations
for the after sets of the then and the else branch, respectively.

We define now the relation v on D to be the pointwise set inclusion relation:

Definition 1 If (X1, . . . , Xr) and (X
′
1, . . . , X

′
r) are elements in D, then we have

(X1, . . . , Xr)v (X
′
1, . . . , X

′
r) if Xi ⊆ X

′
i for all i = 1, r.

We are now able to prove the following result:

Lemma 1 (D,v) is a finite lattice.

Proof. D is finite since for a given method body we have a finite number of equations
and local variables. On the other hand, D is a lattice since it is a product of lattices:
(P(Vars(meth)),⊆) is a poset since the set inclusion is a partial order and for every
two sets X,Y ∈ P(Vars(meth)) there exists a lower bound (X ∩ Y ) and an upper
bound (X ∪ Y ). ut

The following result will help us conclude the existence of the maximal fixed point.

Lemma 2 The function F is monotonic on (D,v).

Proof. To prove the monotonicity of F = (F1, . . . , Fr ), it suffices to remark that the
components Fi are monotonic functions. This holds since they consist only of set
intersections and unions which are monotonic (see the form of the equations). ut

The next result guarantees the existence of the maximal fixed point solution for our
data flow equations.

Lemma 3 The function F has a unique maximal fixed point MFP ∈ D.

Proof. (D,v) is a finite lattice (Lemma 1) and therefore a complete lattice. But
in a complete lattice every monotonic function has a unique maximal fixed point
(known also as the greatest fixed point). In our case, F is monotonic (Lemma 2)
and the maximal fixed point MFP is given by

⋂
k F (k)(1D). Here 1D is the r-tuple

(Vars(meth), . . . ,Vars(meth)), i.e. the top element of the lattice D. ut

¿From now on for an expression or statement α we denote by MFPb(α), MFPa(α),
MFPt(α) and MFPf (α) the components of the maximal fixed point MFP corre-
sponding to before(α), after(α), true(α) and false(α), respectively.
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Struct type variables. Up to now we have not considered struct type variables.
However, our analysis can easily be extended to struct type variables. First we
observe that a struct type variable is considered definitely assigned if and only if
all its instance fields are definitely assigned [1, §5.3] (this is because a struct value
can be seen as a tuple consisting of its instance fields).
If a local variable loc of a struct type gets assigned, then all of its instance fields
are considered definitely assigned and if there are struct type instance fields, then
their instance fields get assigned as well and so on. In the following example
we assume that A.m is a static method that takes an out parameter of type P.
The instance field y of p.x is definitely assigned before it is printed since p gets
definitely assigned after the call of A.m.

struct P { class Test {

public Q x; static void Main() {

} P p;

A.m(out p);

struct Q { Console.WriteLine(p.x.y);

public int y; }

} }

According to our formalization, the C] compiler relies on the set MFPa(α) =
after(α) = {p} with α(A.m(out p)) when checking the status of the variable
p.x.y. But, as observed above, after α is evaluated, p.x and p.x.y are considered
assigned as well. So allowing struct type variables requires the compiler to rely on
“expanded” sets: the set {p} is “expanded” to {p, p.x, p.x.y} to include also the
instance fields of p.
Further, if a local variable loc2 which is an instance field of a struct type variable
loc1 gets assigned and each instance field of loc1 except loc2 either is already con-
sidered definitely assigned or gets assigned at the same time as loc2 (this happens,
for example, in case of the out arguments following a method call), then the vari-
able loc1 gets assigned as well and this “lookup” procedure is repeated with loc1

instead of loc2. In the following example the struct type field p.y gets assigned
when its instance field v gets assigned. Next, the instance variable p gets assigned
when its instance field p.x gets assigned since p.y is already assigned.

struct P { class Test {

public int x; static void Main() {

public Q y; P p;

} p.y.u = 1;

p.y.v = 1;

struct Q { p.x = 1;

public int u; P r = p;

public int v; }

} }
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αexp edges
true (B(α), T (α))

false (B(α),F(α))

(! βe) (B(α),B(β)), (F(β), T (α)), (T (β),F(α))

(βe0 ? γe1 : δe2) (B(α),B(β)), (T (β),B(γ)), (F(β),B(δ)),
(T (γ), T (α)), (T (δ), T (α)), (F(γ),F(α)),
(F(δ),F(α))

(βe1 && γe2) (B(α),B(β)), (T (β),B(γ)), (F(β),F(α)),
(T (γ), T (α)), (F(γ),F(α))

(βe1 || γe2) (B(α),B(β)), (T (β), T (α)), (F(β),B(γ)),
(T (γ), T (α)), (F(γ),F(α))

Table 4: Control flow for boolean expressions

In accordance with the formalization, the compiler relies on the set MFPa(α) =
after(α) = {p.y.u, p.y.v, p.x} with α(p.x = 1) when verifying whether p is
definitely assigned before evaluating the assignment to r. Considering also struct
type variables makes the compiler rely on the expanded set of {p.y.u, p.y.v, p.x},
i.e. {p.y.u, p.y.v, p.y, p.x, p}.
Hence we conclude that after the C] compiler determines the MFP sets, it relies
on the expanded MFP sets in order to reject/accept programs. We will say that
an “expansion” function is applied to the MFP sets to propagate the definitely
assigned status.

4 THE CONTROL FLOW GRAPH

So far we have seen the equations used for the analysis and we have proven that the
fixed point iteration for these equations is well-defined. The main result we want to
prove is that the outcome of the analysis is correct: for an arbitrary expression or
statement the sets of local variables MFP b, MFPa (and MFP t, MFP f for boolean
expressions) correspond indeed to sets of definitely assigned variables, i.e. variables
which are assigned on every possible execution path to the appropriate point. The
considered paths are based on the control flow graph CFG (see [5] for more exam-
ples). The nodes of the graph are actually points associated with every expression
and statement. We suppose that every expression or statement α is characterized
by an entry point B(α) and an end point A(α). Beside these two points a boolean
expression α has two more points: a true point T (α) (used when α evaluates to
true) and a false point F(α) (used when α evaluates to false). The edges of
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αexp edges
loc (B(α),A(α))

lit (B(α),A(α))

(loc= βe) (B(α),B(β)), (A(β),A(α))

(loc op= βe) (B(α),B(β)), (A(β),A(α))

(βe0 ? γe1 : δe2) (B(α),B(β)), (T (β),B(γ)), (F(β),B(δ)),
(A(γ),A(α)), (A(δ),A(α))

c.f (B(α),A(α))

ref βexp (B(α),B(β)), (A(β),A(α))

out βexp (B(α),B(β)), (A(β),A(α))

c.m(β1arg1, . . . ,
βk argk) (B(α),B(β1)), (A(βk),A(α)),

(A(βi),B(βi+1)), i = 1, k − 1

Table 5: Control flow for arbitrary expressions

the graph are given by the control transfer defined in the C] Specification [1, §8].
Tables 4 and 5 show the edges specific to each boolean and arbitrary expression,
respectively. If the expression α is not an instance of one expression in these tables
(e.g. exp1|exp2) and has the direct subexpressions β1, . . . , βn, then the left-to-right
evaluation scheme adds also the following edges to the flow graph:

(B(α),B(β1)), (A(βi),B(βi+1)), i = 1, n− 1 and (A(βn),A(α))

For every boolean expression α in Table 4 we define the supplementary edges
(T (α),A(α)) and (F(α),A(α)) which connect the boolean points of α to the end
point of α. These edges are necessary for the control transfer in cases when it does
not matter whether α evaluates to true or false. For example, if β is the method
invocation c.m(true) and α is the argument true, then the control is transferred
from the end point of the last argument — that is A(α) — to the end point of the
method invocation — that is A(β). But since in Table 4 we have no edge leading
to A(α) we also need to define the supplementary edge (T (α),A(α)).

For a boolean expression α which is not an instance of any expression from Ta-
ble 4 we add the edges (A(α), T (α)), (A(α),F(α)) to the graph. They are needed if
control is transferred from a boolean expression α to different points depending on
whether α evaluates to true or false. For example, if α is of the form exp1|exp2

and occurs in β(!(exp1|exp2)), then control is transferred from F(α) to T (β) (if
α evaluates to false) or from T (α) to F(β) (if α evaluates to true). The neces-
sity of the edges (A(α), T (α)), (A(α),F(α)) arises since so far we have defined for
exp1|exp2 only edges to A(α).

VOL 3, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 41



THE CORRECTNESS OF THE DEFINITE ASSIGNMENT ANALYSIS IN C]

αstm edges
; (B(α),A(α))

(βexp;) (B(α),B(β)), (A(β),A(α))

{β1stm1 . . . βnstmn} (B(α),B(β1)), (A(βn),A(α)),
(A(βi),B(βi+1)), i = 1, n− 1

if (βexp) γstm1 else δstm2 (B(α),B(β)), (T (β),B(γ)), (F(β),B(δ)),
(A(γ),A(α)), (A(δ),A(α))

while (βexp) γstm (B(α),B(β)), (T (β),B(γ)), (F(β),A(α)),
(A(γ),A(α))

L: βstm (B(α),B(β)), (A(β),A(α))

goto L; ThroughFinb(α, β),
where βL:stm is the statement to which α points

break; ThroughFina(α, β),
where β is the nearest enclosing while
with respect to α

continue; ThroughFinb(α, β),
where β is the nearest enclosing while
with respect to α

return; no edges

return βexp; (B(α),B(β))

throw; no edges

throw βexp; (B(α),B(β))

try βblock
catch(E1 x1) γ1block1 (B(α),B(β)), (A(β),A(α))

... (B(α),B(γi)), (A(γi),A(α)) i = 1, n
catch(En xn) γnblockn

try βblock1 finally γblock2 (B(α),B(β)),(B(α),B(γ)), (A(β),B(γ))
and (A(γ),A(α)) conditioned by A(β)

Table 6: Control flow for statements

Table 6 introduces the edges of the control flow graph for each statement. We
assume that the boolean constant expressions are replaced by true or false in the
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abstract syntax tree. For example, we consider that true||b is replaced by true in
the following if statement:

αif β(true||b) δi = 1;

else γ{ int j = i; }

Although the new test (i.e. true) cannot evaluate to false, we still add to the
graph the edge (F(β),B(γ)): however the false point of true is never reachable (see
Table 4).

In the presence of finally blocks the jump statements goto, continue and
break bring more complexity to the graph. When a jump statement exits a try

block, control is transferred first to the innermost finally block. If control reaches
the end point of that finally block, then it is transferred to the next innermost
finally block and so on. If control reaches the end point of the outermost finally
block, then it is transferred to the target of the jump statement. For these control
transfers we have special edges in our graph. But one needs to take care of some
important details: these special edges cannot be used for paths other than those
which connect the jump statement with its target. In other words, if a path uses such
an edge, then necessarily the path contains the entry point of the jump statement.
For this reason, we say that an edge e is conditioned by a point i with the meaning
that e can be used only in paths that contain i . If we do not make this restriction,
then [B(mb)B(α1)B(α2)B(α3)B(α4)B(α5)A(α5)B(α6)] would be a possible execution
path to the labeled statement in the following method body

α1try α2 {
α3( α4(i = 3/j);)

αgoto L;

} finally α5{}
α6L:Console.WriteLine(i);

in case the evaluation of α4 would throw an exception. But this does not match the
control transfer described in the C] Specification.

The following sets introduce the above described edges. If α and β are two state-
ments and Fin(α, β) is the list [γ1, . . . , γn], then the set ThroughFinb(α, β) consists
of the edges (B(α),B(γ1)), (A(γn),B(β)), (A(γi),B(γi+1)), i = 1, n− 1, all condi-
tioned by B(α), while the set ThroughFina(α, β) contains the edges (B(α),B(γ1)),
(A(γn),A(β)), (A(γi),B(γi+1)), i = 1, n− 1 all conditioned by B(α). If Fin(α, β)
is empty, then the set ThroughFinb(α, β) contains only the edge (B(α),B(β)) while
ThroughFina(α, β) refers to the edge (B(α),A(β)). In the previous example the
list Fin(α, α6) is given by [α5] while the set ThroughFinb(α, α6) contains the edges
(B(α),B(α5)), (A(α5),B(α6)) conditioned by B(α).

Note that in Table 6, for goto and continue, the set of edges ThroughFinb is
added to the graph, since after executing the finally blocks control is transferred
to the entry point of the labeled statement and while statement, respectively. How-
ever, in case of break the set ThroughFina is considered since at the end control is
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transferred to the end point of the while statement.

There are two more remarks concerning the try statement. First of all, since
a reason for abruption (e.g. an exception) can occur anytime in a try block, we
should have edges from every point in a try block to: every associated catch block,
every catch of enclosing try statements (if the catch clause matches the type of
the exception) and to every associated finally block (if none of the catch clauses
matches the type of the exception). We do not consider all these edges since the
definite assignment analysis is an “over all paths” analysis. It is equivalent to
consider only one edge to the entry points of the catch and finally blocks — from
the entry point of the try block (see Table 6).

The next remark concerns the end point A(α) of a try-finally statement α.
The C] Specification states in [§8.10] that A(α) is reachable only if both end points
of the try block β and finally block γ are reachable. The only edge to A(α) is
(A(γ),A(α)) and we know that the finally block can be reached either through
a jump or through a normal completion of the try block. In the case of a jump, if
control reaches the end point A(γ) of the finally, then it is transferred further to
the target of the statement which generated the jump and not to A(α). This means
that all paths to A(α) contain also the end point A(β) of the try block. That is
why we require that the edge (A(γ),A(α)) is conditioned by A(β) (see Table 6) —
otherwise in the following example A(α) would be reachable in our graph (under
the assumption that B(α) is reachable):

α try β{ goto L; } finally γ {}

Therefore we will not consider all the paths in the graph but only the valid paths,
that is the paths p for which the following is true: if p uses a conditioned edge, then
it contains also the point which conditions the edge. Formally:

valid([α1, . . . , αn]) ≡ for every conditioned edge (αi, αi+1),
∃ j < i such that (αi, αi+1) is conditioned by αj

If α is an expression or a statement, then pathb(α) is the set of all valid paths from
the entry point of the method body B(mb) to the entry point B(α) of α:

pathb(α) = {[α1, . . . , αn] | α1 = B(mb), αn = B(α), (αi, αi+1) ∈ CFG , i = 1, n− 1
and valid([α1, . . . , αn])}

Similarly patha(α) is the set of all valid paths from the entry point of the method
body B(mb) to the end point A(α) of α, while if α is a boolean expression, patht(α)
and pathf (α) are the sets of all valid paths from B(mb) to the true point T (α) and
to the false point F(α) of α, respectively.

In the proofs in the next section we use the following two notations. If p is a
path, then p[i, j] is the subpath of p which connects the point i with the point j.
Also over the set of all paths we consider the operation ⊕ to be path concatenation
(defined also for infinite paths).
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5 CORRECTNESS OF THE ANALYSIS

We prove that when a C] compiler relies on the sets MFP b, MFPa, MFP t and MFP f

derived from the maximal fixed point of the data flow equations in Section 2 (or
on their expanded sets if we allow struct type variables), then all accesses to the
value of a local variable occur after it is initialized. In other words, the correctness
of the analysis means that if a local variable is in one of the four sets — that is
the analysis infers the variable as definitely assigned at a certain program point —
then this variable will actually be assigned at that point during every execution
path of the program. A variable loc is assigned on a path if the path contains an
initialization of loc or a catch clause whose exception variable is loc. We describe
in the following definition what we mean by initialization.

Definition 2 A path p contains an initialization of a local variable loc if at least
one of the following is true:

• p contains a simple assignment (not a compound assignment) to loc, or

• p contains a method invocation for which loc is an out argument.

Struct type variables. The definition above has to be extended if we also want
to allow variables of struct types. Thus a path p contains an initialization of a
local variable loc also in one of the following cases:

• loc is an instance field of a struct type variable x and p contains an initial-
ization of x , or

• loc is of a struct type and p contains initializations for each instance field of
loc.

We prove actually more than the correctness. We show that the components of
the maximal fixed point MFP are exactly the sets of variables which are assigned
on every possible execution path to the appropriate point (and not only a safe-
approximation). In order to formalize this we define the following sets. If α is an
arbitrary expression or statement, then APb(α) denotes the set of local variables in
vars(α) (the variables in the scope of which α is) assigned on every path in pathb(α):

APb(α) = {x ∈ vars(α) | x is assigned on every path p ∈ pathb(α)}

APa(α) is the set of variables in vars(α) which are assigned on every path in
patha(α), while for a boolean expression α the sets APt(α) and APf (α) are defined
similarly as above, but with respect to paths in patht(α) and pathf (α), respectively.

Struct type variables. If we consider also variables of struct types, the definition
of “is assigned on” is extended as pointed out above. The definitions of the sets
APb, APa, APt and APf are also adapted. But considering the new definition for
“is assigned”, one can easily observe that the definitions of the AP sets to include
struct type variables are nothing else than their expanded sets. So actually the
same “expansion” function we mentioned in Section 3 is applied also to the AP
sets in order to include struct type variables.
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The following result is used to prove Lemma 5.

Lemma 4 For every expression or statement α, if MFPb(α) ⊆ vars(α) holds, then
we have MFPa(α) ⊆ vars(α). Moreover, if α is a boolean expression, then we have
also MFPt(α) ⊆ vars(α) and MFPf (α) ⊆ vars(α).

Proof. The proof proceeds by induction over the structure of expressions and state-
ments. Thus, we first prove the base cases of the induction, i.e. the above stated
implications for all possible leaves of the abstract syntax tree (AST) of our method
body. The expressions which are leaves in the AST are the following: true, false,
loc, lit and c.f . Since MFP is in particular a solution of the data flow equations, it
is obvious that the implications stated in our lemma are satisfied. The statements
considered leaves in the AST are the empty-statement, goto L, break, continue,
return and throw. For the last five, from the equations above we obviously have
MFPa(α) ⊆ vars(α). For the empty-statement this is true as well since our hypoth-
esis is MFPb(α) ⊆ vars(α).

In the induction step the implications for each expression and statement are proved
under the assumption that their “children” (subexpressions/substatements) satisfy
the implications. ut

The next lemma is used in the proof of the correctness theorem (Theorem 1). It
claims that the MFP sets of an expression or statement α consist of variables in the
scope of which α is located.

Lemma 5 For every expression or statement α, we have MFPb(α) ⊆ vars(α) and
MFPa(α) ⊆ vars(α). Moreover, if α is a boolean expression, then also we have
MFPt(α) ⊆ vars(α) and MFPf (α) ⊆ vars(α).

Proof. We show the above inclusions for all expressions and statements by an induc-
tion over the AST, starting at the root, i.e. the method body (the basis of induction).
Notice that the induction schema is in the opposite direction compared to that in
Lemma 4. Therefore the induction step is: under the assumption that a node of
the AST satisfies the inclusions, all its “children” (subexpressions/substatements)
satisfy the inclusions as well.

According to Lemma 4 it is enough to prove for all labels α: MFPb(α) ⊆ vars(α).
For our method body this is trivial: the relation MFPb(mb) ⊆ vars(mb) holds
since MFPb(mb) = vars(mb) = ∅. Lemma 4 is used again in the next step of the
proof, which consists in showing for each expression and statement that under the
assumption MFPb(α) ⊆ vars(α), each of its direct subexpressions/substatements β
satisfies MFPb(β) ⊆ vars(β). ut

The correctness of the definite assignment analysis in C] is proved in the following
theorem, which claims that the analysis is a safe approximation.

Theorem 1 (safe approximation) For every expression or statement α, the fol-
lowing relations are true: MFPb(α) ⊆ APb(α) and MFPa(α) ⊆ APa(α). More-
over, if α is a boolean expression, then we have also MFPt(α) ⊆ APt(α) and
MFPf (α) ⊆ APf (α).
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Proof. We consider the following definitions. The set APn
b (α) is defined in the same

way as APb(α), except that we consider only paths of length less than n. Similarly,
we also define the sets APn

a(α), APn
t (α), APn

f (α) (analogously, we have definitions
for the sets of paths pathn

b , pathn
a , pathn

t , pathn
f ). According to these definitions, the

following set equalities hold for every α:

APb(α) =
⋂
n

APn
b (α), APa(α) =

⋂
n

APn
a(α)

If α is a boolean expression, then similar equalities hold for APt(α) and APf (α).

Therefore, to complete the proof it suffices to show for every n: if α is an expression
or statement, then MFPb(α) ⊆ APn

b (α) and MFPa(α) ⊆ APn
a(α). In addition, if α

is a boolean expression, then MFPt(α) ⊆ APn
t (α) and MFPf (α) ⊆ APn

f (α). This is
done by induction on n.

Basis of induction. [B(mb)] is the only path of length 1 (the entry point of the
method body). Obviously, no local variable is assigned on this path and therefore we
have AP1

b(mb) = ∅ which satisfies MFPb(mb) ⊆ AP1
b(mb) since from the equations

MFPb(mb) = ∅. From the definition of AP1
a, we get AP1

a(mb) = vars(mb) = ∅ and
from the equations of a block, we derive also MFPa(mb) ⊆ vars(mb) and implicitly
MFPa(mb) ⊆ AP1

a(mb). If α 6= mb, then AP1
b(α) = AP1

a(α) = vars(α) and if α is
a boolean expression AP1

t (α) = AP1
f (α) = vars(α). If we apply Lemma 5, then the

basis of the induction is complete.

Induction step. The proof has the following pattern: we show for every expression
or statement α from Tables 1, 2, and 3 the relation for MFPa(α), and where applica-
ble for MFPt(α) and MFPf (α) and, for every direct subexpression/substatement of
α, the relations for MFPb. In this way, all the relations for all expressions/statements
are proved except MFPb(mb) ⊆ APn+1

b (mb) (since mb has no “superstatement”)
which holds anyway since MFPb(mb) = ∅.
We consider here only two critical cases (see [5] for the complete proof).

Case 1 block of statements
Let us consider the case when α is a block of statements: {β1stm1 . . . βnstmn}.
We prove MFPb(βi+1) ⊆ APn+1

b (βi+1) for an embedded statement βi+1. If we ar-
bitrarily choose a local variable x in MFPb(βi+1), then we obtain x ∈ MFPa(βi)
and x ∈ goto(βi+1) (MFP is a solution of the flow equations). Note that, at
this point, goto(βi+1) depends only on MFP sets and on the control flow graph.
From the induction hypothesis, we get x ∈ APn

a(βi). In particular, this means
x ∈ vars(βi) = vars(βi+1), i.e. βi+1 is in the scope of a declaration of x.

Case 1.1 βi+1 is not a labeled statement
Let us suppose that βi+1 is not a labeled statement. In this situation we have
goto(βi+1) = vars(βi+1) from the definition of the goto set.

Case 1.1.1 βi+1 is not a while statement
If additionally βi+1 is not a while statement, then there exists in the CFG only one
edge to B(βi+1), namely (A(βi),B(βi+1)). This means

pathn+1
b (βi+1) = pathn

a(βi)⊕ B(βi+1)
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and implicitly x ∈ APn+1
b (βi+1) since x ∈ APn

a(βi) (induction hypothesis). Remem-
ber that we derived earlier that βi+1 is in the scope of x, i.e. x ∈ vars(βi+1).

Case 1.1.2 βi+1 is a while statement
If βi+1 is a while statement, then there could be many edges to B(βi+1) in the CFG
(if the while has associated continue statements). If there are no continue state-
ments corresponding to our while statement, then the proof is as in Case 1.1.1.

If there are continue statements, we would like to show that x is assigned on every
path p to B(βi+1) of length at most n+1. If p contains no continue statements, then
necessarily p has the last edge (A(βi),B(βi+1)), i.e. p passes through A(βi). If p con-
tains a continue statement associated to our while and eventually passes through
finally blocks associated to try blocks that contain the continue statement, then
necessarily p passes through A(βi) because the CFG shows that it is not possible to
“jump” into the while body (in which our continue is embedded). On the other
hand, since x ∈ MFPa(βi), we get x ∈ APn

a(βi) from the induction hypothesis, i.e.
x is assigned on every path to A(βi) of length at most n. Consequently, p assigns
x since p passes through A(βi). Now we are sure that x is assigned on every path
to B(βi+1) of length at most n + 1 and therefore we can conclude x ∈ APn+1

b (βi+1).

Case 1.2 βi+1 is a labeled statement
Let us suppose now that βi+1 is a labeled statement L:stm. Then, as in the case of
a while statement, there could be many edges to B(βi+1) in the CFG (if there are
goto statements pointing to our labeled statement). If there are no associated goto

statements, then the proof is the same as in the case of a while statement with no
associated continue statements.

We want to show that x is assigned on every path p to B(βi+1) of length at most n+1.
If p contains no goto L statements, then necessarily p passes through A(βi). And
since x is assigned on every path to A(βi) of length at most n (because of x ∈
APn

a(βi)), we are sure p assigns x.

Suppose that p passes through a γgoto L statement and eventually through finally

blocks associated to try blocks in which γ is embedded. Considering the definition
of the goto set, we can derive x ∈ MFPb(γ) ∪ JoinFin(γ, βi+1) since x ∈ goto(βi+1).

If there are no finally blocks in the list Fin(γ, βi+1), then JoinFin(γ, βi+1) = ∅ and
implicitly x ∈ MFPb(γ). Using the induction hypothesis, we obtain x ∈ APn

b (γ). It
means that p, which is of length at most n + 1 and contains B(γ), assigns x.

Let us suppose now that the list Fin(γ, βi+1) is non-empty: Fin = [γ1, . . . , γk]. From
the definition of the set JoinFin(γ, βi+1) we get

x ∈ MFPb(γ) ∪
k⋃

j=1

MFPa(γj)

If x ∈ MFPb(γ), then from the induction hypothesis we derive x ∈ APn
b (γ) and we

are sure that p, which passes through B(γ), assigns x.

If there is a finally block γj such that x ∈ MFPa(γj), then the induction hypothesis
implies x ∈ APn

a(γj). And since necessarily p passes through A(γj) we are sure that
p assigns x.
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Thus, we have analyzed every possible path to B(βi+1) of length at most n + 1 and
we showed that each such a path assigns x, i.e x ∈ APn+1

b (βi+1).

Case 2 try-finally statement
Let us consider now the case where α is of the form try βblock 1 finally γblock 2.

Here we study the proof for MFPb(γ) ⊆ APn+1
b (γ). Let x be a local variable in

the set MFPb(γ). Following the data flow equations, we get x ∈ MFPb(α). The
induction hypothesis implies then x ∈ APn

b (α) and in particular x ∈ vars(α).

It is important to notice that in the CFG there could be many edges to B(γ): from
the entry point of the try-finally statement (B(α),B(γ)), from the end point of
the try block (A(β),B(γ)), from a goto, break or continue statement (B(δ),B(γ))
(within a conditioned path), and from the end point of another finally block
(A(ω),B(γ)) (within a conditioned path). We claim that independent of the last
edge of a path p to B(γ), p passes through the entry point B(α) of the try-finally
statement.

• If the last edge of p is (B(α),B(γ)), then there is nothing to prove.

• If the last edge is (A(β),B(γ)), then the claim holds since the end point A(β)
can be reached only through B(α) (according to the CFG , it is not possible
to “jump” into the try block).

• If the last edge is (B(δ),B(γ)), then the claim can be justified in the same
way as above, because the respective jump statements are supposed to be
embedded in the try block.

• If the last edge of p is a conditioned edge (A(ω),B(γ)), then necessarily the
finally block ω (as well as the jump statement which triggered the condi-
tioning) is embedded in our try block. This means that in order to justify the
claim we can apply the same argument as above.

So all the paths to B(γ) should pass through B(α), and since x ∈ APn
b (α), we can

be sure that x ∈ vars(γ) = vars(α) is assigned on every path to B(γ) of length at
most n + 1, i.e. x ∈ APn+1

b (γ) and the proof of the considered relation is done. ut

As explained above we can actually prove more: the MFP solution is not only an
approximation of AP but it is a perfect solution (Theorem 3). For this, we also use
the following theorem that states that the MFP solution contains the local variables
which are initialized over all possible paths.

Theorem 2 For every expression or statement α, the following relations are true:
APb(α) ⊆ MFPb(α) and APa(α) ⊆ MFPa(α). Moreover, if α is a boolean expres-
sion, then we have also APt(α) ⊆ MFPt(α) and APf (α) ⊆ MFPf (α).

Proof. Tarski’s fixed point theorem [13] states that MFP is the lowest upper bound
(with respect to v) of the set Ext(F ) = {X ∈ D | X v F (X)}. It then suffices to
show that the r -tuple consisting of the AP sets is an element of Ext(F ) since MFP
is in particular an upper bound of this set. Since v is the pointwise subset relation,
the idea is to prove the left-to-right subset relations for the data flow equations in
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Tables 1, 2, and 3, where instead of the sets before, after , true and false we have
the sets AP b, APa AP t and AP f , respectively.

Here we consider only one critical case, encountered for a block of statements (see [5]
for the complete proof): assuming that βi+1 is a labeled statement L:stm in a block α
given by {β1stm1 . . . βnstmn}, we want to prove APb(βi+1) ⊆ APa(βi) ∩ goto(βi+1).
Note that here, goto(βi+1) depends only on the AP sets and on the control flow
graph CFG .

Let x be a variable in APb(βi+1), i.e. x is assigned on every path to B(βi+1). An
immediate consequence is x ∈ APa(βi) since all the paths to A(βi) are — “modulo”
the edge (A(βi),B(βi+1)) — also paths to B(βi+1) and no variable is assigned on
this edge.

In order to show x ∈ goto(βi+1) we need to prove that the variable x is in the set
APb(γ)∪ JoinFin(γ, βi+1) for every γgoto L whose target is our labeled statement.

If there is no such goto statement, then we obviously have x ∈ goto(βi+1) since in
this case goto(βi+1) = vars(βi+1) and x ∈ APb(βi+1) ⊆ vars(βi+1). Let us suppose
now there exists at least one goto statement γ pointing to βi+1.

Case 1 B(γ) not reachable
If B(γ) is not reachable in the CFG , then pathb(γ) is empty and consequently we
get x ∈ APb(γ) ∪ JoinFin(γ, βi+1) because APb(γ) = vars(γ) ⊇ vars(βi+1) and
x ∈ vars(βi+1). The last subset relation holds because, in C], a goto statement
should be always in the scope of the corresponding labeled statement.

Case 2 B(γ) reachable
If B(γ) is reachable in the CFG , then let p be an arbitrary path to B(γ). Here we will
only consider the case there are finally blocks from γ to βi+1, i.e. Fin(γ, βi+1) =
[γ1, . . . , γk] (the proof of the case where there are no finally blocks is much simpler
and we refer the interested reader to [5]). Accordingly, also the edges

(B(γ),B(γ1)), (A(γk),B(βi+1)), (A(γj),B(γj+1)), j = 1, k − 1

defined by the set ThroughFinb(γ, βi+1) are added to the CFG .

We will prove x ∈ APb(γ) ∪ JoinFin(γ, βi+1) by contradiction. Let us assume that
x 6∈ APb(γ) ∪ JoinFin(γ, βi+1). This is equivalent to x 6∈ APb(γ) and x 6∈ APa(γj)
for all j = 1, k. This means that the paths p0 ∈ pathb(γ) and pj ∈ patha(γj) for
j = 1, k exist, such that x is not assigned on any of these paths. A simple inspection
of the CFG shows that the point B(γj) necessarily occurs on the path pj for every
j = 1, k since it is not possible to “jump” into a finally block. We want to prove
now that the following list

q := p0 ⊕ p1[B(γ1),A(γ1)]⊕ . . .⊕ pk[B(γk),A(γk)]⊕ B(βi+1)

represents a valid path to B(βi+1). The only problem that could arise is con-
cerning the conditioned edges. Remember that the edges conditioned by a cer-
tain goto, break or continue statement can be used only in paths (or subpaths)
that contain the entry point of the respective jump statement. The use of edges
(B(γ),B(γ1)), . . . (A(γk),B(βi+1)) is correct as long as our path q contains B(γ).
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Let us consider one of the subpaths pj[B(γj),A(γj)] used in q. If this subpath con-
tains a conditioned edge, then since the conditioned edges connect jump statements
with finally blocks we would be sure that these finally blocks are embedded in
our finally block γj. The respective jump statement is embedded into the try

blocks (associated to the conditioned “connected” finally blocks) which necessar-
ily should be in γj (this is an immediate consequence of the C] grammar). So the
jump statement is necessarily embedded in the finally block γj. Considering that
the subpath pj[B(γj),A(γj)] contains conditioned edges, we get that also pj uses the
same conditioned edges and since we assumed that pj is a valid path, necessarily pj

should contain the entry point of the respective jump statement which, as we proved
above, is embedded in our finally block, and consequently appears in the subpath
pj[B(γj),A(γj)]. It means that this subpath is valid. Obviously, this is true for all
the considered subpaths in q.

The above defined path q is a valid path to B(βi+1) which does not assign x. Obvi-
ously, this contradicts x ∈ APb(βi+1) and therefore our assumption is wrong. Hence,
we obtain the desired x ∈ APb(γ) ∪ JoinFin(γ, βi+1). ut
The following result is then an obvious consequence of Theorem 1 and Theorem 2:

Theorem 3 The maximal fixed point solution of the data flow equations in Tables 1,
2, and 3 represents the sets of local variables which are assigned over all possible
execution paths. More exactly, for every expression or statement α, the following
are true: APb(α) = MFPb(α) and APa(α) = MFPa(α). Moreover, if α is a boolean
expression: APt(α) = MFPt(α) and APf (α) = MFPf (α).

Struct type variables. Suppose now that we include for the analysis also vari-
ables of struct types. In this case, the C] compiler relies on the expanded MFP
sets and the correctness of the analysis would mean that the expanded MFP sets
are a safe approximation of the expanded AP sets. On the other hand, we proved
in Theorem 3, that the MFP and AP sets coincide. Then, also the expanded MFP
sets will coincide with the expanded AP sets; so they are, in particular, a safe
approximation. This means that, allowing variables of struct types does not affect
the correctness of the definite assignment analysis. One can justify the correct-
ness also by applying Theorem 1 and observing that the “expansion” function is
monotonic.

6 CONCLUSION

In this paper we have formalized the definite assignment analysis of C] by data flow
equations. Since the equations do not always have a unique solution, we defined the
outcome of the analysis as the solution of a fixed point iteration. We proved that
there always exists a maximal fixed point solution MFP. We showed the correctness
of the analysis, i.e. MFP is a safe approximation of the sets of variables assigned over
all possible paths. This is a key property for the type safety of C]. The formalization
of the type safety is future work as well as proving the correctness of C] compilers.
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Our formalization cannot be done as in Java (see [6, 7]), because as we have
seen, certain key aspects of C] (e.g. goto, ref/out, structs) are not present in Java
(this makes the analysis simpler in Java). Moreover, because of the goto statement,
solving the analysis in C] requires a fixed point iteration. Therefore, the type system
approach of Schirmer [7] cannot be applied for C].

This paper is part of a research project focusing on formalizing and verifying
important aspects of C]. So far we have an ASM model for the operational semantics
of C] in [11]. During the attempts to build this model a few discrepancies between
the C] Specification and different implementations of C] were discovered [12].
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