
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 8, September-October 2004

Cite this column as follows: Richard Wiener: “Some Examples of Generics in Java 1.5 and C#
2.0”, in Journal of Object Technology, vol. 3, no. 8, September-October 2004, pp. 81-96.
http://www.jot.fm/issues/issue_2004_09/column8

Some Examples of Generics in Java 1.5
and C# 2.0

Dr. Richard Wiener, Editor-in-Chief, JOT, Associate Professor of Computer
Science, University of Colorado at Colorado Springs

The forthcoming releases of Java JDK v1.5 and C# v2.0 support generic classes (classes
with generic type parameters) and generic methods. Furthermore, each also supports
constrained generic types.

Much has been written about generic types. In “A Comparative Study of Language
Support for Generic Programming” by Garcia et al
(http://www.osl.iu.edu/publications/pubs/2003/comparing_generic_programming03.pdf),
details of generic types and programming in C++, Haskell, Standard ML, Eiffel, Java and
C# are compared. Useful details and generic coding examples from the soon to be
released Java JDK 1.5 (now in beta) are presented in the paper “Generics in the Java
Programming Language” by Gilad Bracha. Some of the examples used in this column
were inspired by this paper.

Generic types in Java and C# introduce more expressiveness at the source code level
and move type checking from run-time to compile-time when inserting objects into
generic collections. In the current pre-generic versions of Java and C#, genericity in
collections is obtained through the backdoor of using the universal super type Object as a
polymorphic placeholder for the actual reference type that defines the objects to be
inserted into the collection. Other than programmer comments, there is little in the source
code that reveals the type of object that the programmer intends to hold in the collection.
Only by carefully reverse-engineering the source code does this become apparent if in
fact only a single type is inserted into the non-generic collection. Generic collections in
both Java and C# provide useful self-documentation in the source code in addition to
strengthening compile-time type checking.

Java and C# use invariant generic typing in contrast with Eiffel which uses covariant
typing. In Java and C# a List<String> is not a subtype of a List<Object>. These are
considered separate stand-alone classes. In Eiffel, a List would be considered a
subtype of a List<A> if B conforms to A (B is a descendent of A or equal to A).
Although covariant typing generally leads to more flexibility in the use of generics, it has
been shown to allow code that is statically correct but fails at runtime (see “Type-Save

http://www.jot.fm
http://www.osl.iu.edu/publications/pubs/2003/comparing_generic_programming03.pdf
http://www.jot.fm/issues/issue_2004_09/column8

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.0

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

Covariance: Competent Compilers Can Catch All Catcalls” by Mark Howard et al).
Wildcards have been introduced into the generic lexicon of Java 1.5 to provide more
flexibility in the absence of covariant typing.

The declaration Collection<T> myCollection declares myCollection as a collection
with some unknown element type.

// Assume class Person has been defined elsewhere
Collection<?> myCollection = new ArrayList<Person>();
myCollection.add(new Object()); // COMPILE-TIME ERROR

The add command cannot be invoked on the myCollection object since the wildcard
represents some unknown type. Since we do not know the type, we are not allowed to
pass anything except the value null into add.

There is no direct equivalent to wildcards in C# generics but the same functionality
can be achieved indirectly. We consider an example used in Gilad Bracha’s “Generics in
the Java Programming Language.” Thanks go to Peter Sestoft (Professor in Information
Technology at the Department of Mathematics and Physics, http://www.matfys.kvl.dk/ of
the Royal Veterinary and Agricultural University, http://www.kvl.dk, in Denmark) for his
thoughtful comments concerning the C# version of the implementation.

We wish to store and maintain a list of lists that contain elements that conform to an
abstract class Shape (are of type Shape or a descendent of Shape). We present the Java
solution first using wildcards and then show how, without wildcards, we can achieve the
same functionality using generic C#.

Listing 1 – List of generic lists extending Shape in Java

public abstract class Shape {
 // Commands
 public abstract void draw(Canvas c);
}

public class Circle extends Shape {
 // Fields
 private int x, y, radius;

 // Constructor
 public Circle(int x, int y, int radius) {
 this.x = x;
 this.y = y;
 this.radius = radius;
 }

 public void draw(Canvas c) {
 System.out.println("In draw method of class Circle. x = " +
 x + " y = " + y + " radius = " + radius);
 }
}

public class Rectangle extends Shape {

http://www.matfys.kvl.dk/
http://www.kvl.dk

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 83

 // Fields
 private int x, y, width, height;

 // Constructor
 public Rectangle(int x, int y, int width, int height) {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 }

 // Commands
 public void draw(Canvas c) {
 System.out.println("In draw method in class Rectangle. x = " +
 x + " y = " + y + " width = " + width + " height = " +
 height);
 }
}

public class RightTriangle extends Shape {
 // Fields
 private int x, y, baseTriangle, height;

 // Constructor
 public RightTriangle(int x, int y,
 int baseTriangle, int height) {
 this.x = x;
 this.y = y;
 this.baseTriangle = baseTriangle;
 this.height = height;
 }

 // Commands
 public void draw(Canvas c) {
 System.out.println(
 "In draw method in class RightTriangle. x = " + x +
 " y = " + y + " base = " + baseTriangle +
 " height = " + height);
 }
}

public class Canvas {

 // Commands
 public void draw(Shape s) {
 s.draw(this);
 }
}

import java.util.*;

public class Generics {

 /* A list of lists available in the global namespace of the system.
 Each list contains a list of some shape bounded by Shape
 */

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.0

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

 static List<List<? extends Shape>> history =
 new ArrayList<List<? extends Shape>>();

 /* The generic parameter List<? extends Shape> represents
 all classes that are bounded by the supertype Shape.
 */
 public void drawShapeList(List<? extends Shape> shapes) {
 history.add(shapes);
 for (Shape s : shapes) {
 s.draw(new Canvas());
 }
 }

 public static void outputHistory() {
 System.out.println("\nIn outputHistory method.");
 int index = 0;
 for (List<? extends Shape> lst : history) {
 for (Shape shape : lst) {
 shape.draw(new Canvas());
 }
 }
 }

 public static void main(String [] args) {

 List<Circle> circleList = new ArrayList<Circle>();
 circleList.add(new Circle(3, 0, 5));
 circleList.add(new Circle(1, 4, 10));

 List<Rectangle> rectangleList = new ArrayList<Rectangle>();
 rectangleList.add(new Rectangle(0, 0, 10, 20));
 rectangleList.add(new Rectangle(3, 4, 20, 30));
 rectangleList.add(new Rectangle(20, 40, 1, 2));

 List<RightTriangle> triangleList = new
 ArrayList<RightTriangle>();
 triangleList.add(new RightTriangle(0, 0, 10, 20));
 triangleList.add(new RightTriangle(3, 4, 20, 30));
 triangleList.add(new RightTriangle(20, 40, 1, 2));
 triangleList.add(new RightTriangle(200, 400, 11, 21));
 triangleList.add(new RightTriangle(78, 42, 17, 21));

 Generics app = new Generics();
 app.drawShapeList(circleList);
 app.drawShapeList(rectangleList);
 app.drawShapeList(triangleList);
 outputHistory();
 }
}

Program output
In draw method of class Circle. x = 3 y = 0 radius = 5
In draw method of class Circle. x = 1 y = 4 radius = 10
In draw method in class Rectangle. x = 0 y = 0 width = 10 height = 20

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 85

In draw method in class Rectangle. x = 3 y = 4 width = 20 height = 30
In draw method in class Rectangle. x = 20 y = 40 width = 1 height = 2
In draw method in class RightTriangle. x = 0 y = 0 base = 10 height = 20
In draw method in class RightTriangle. x = 3 y = 4 base = 20 height = 30
In draw method in class RightTriangle. x = 20 y = 40 base = 1 height = 2
In draw method in class RightTriangle. x = 200 y = 400 base = 11 height = 21
In draw method in class RightTriangle. x = 78 y = 42 base = 17 height = 21

In outputHistory method.
In draw method of class Circle. x = 3 y = 0 radius = 5
In draw method of class Circle. x = 1 y = 4 radius = 10
In draw method in class Rectangle. x = 0 y = 0 width = 10 height = 20
In draw method in class Rectangle. x = 3 y = 4 width = 20 height = 30
In draw method in class Rectangle. x = 20 y = 40 width = 1 height = 2
In draw method in class RightTriangle. x = 0 y = 0 base = 10 height = 20
In draw method in class RightTriangle. x = 3 y = 4 base = 20 height = 30
In draw method in class RightTriangle. x = 20 y = 40 base = 1 height = 2
In draw method in class RightTriangle. x = 200 y = 400 base = 11 height = 21
In draw method in class RightTriangle. x = 78 y = 42 base = 17 height = 21

Discussion of Listing 1

The declaration,

static List<List<? extends Shape>> history =
 new ArrayList<List<? extends Shape>>();

defines the static field history as an ArrayList containing a List of Shape objects where
Shape is a polymorphic placeholder for any conforming sub-type (Circle, Rectangle or
RightTriangle).

Method drawShapeList first adds a new List, shapes, to history. It then uses the new
for loop construct (C#’s foreach loop) to iterate through the shapes and send each shape
the draw command (which produces output to the console).

Finally, method outputHistory uses two nested for loops to iterate through the lists
and then for each list to iterate through the shapes contained within that list.

We next examine how to achieve the same functionality in generic C#.

Listing 2 – List of generic lists extending Shape in C#

namespace Generics {

 public abstract class Shape {

 // Commands
 public abstract void Draw(Canvas c);

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.0

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

 }
}

namespace Generics {

 public class Circle : Shape {

 // Fields
 private int x, y, radius;

 // Constructor
 public Circle(int x, int y, int radius) {
 this.x = x;
 this.y = y;
 this.radius = radius;
 }

 public override void Draw(Canvas c) {
 System.Console.WriteLine(
 "In draw method of class Circle. x = " +
 x + " y = " + y + " radius = " + radius);
 }
 }
}

namespace Generics {

 public class Rectangle : Shape {
 // Fields
 private int x, y, width, height;

 // Constructor
 public Rectangle(int x, int y, int width, int height) {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 }

 // Commands
 public override void Draw(Canvas c) {
 System.Console.WriteLine(
 "In draw method in class Rectangle. x = " + x +
 " y = " + y + " width = " + width + " height = " +
 height);
 }
 }
}

namespace Generics {

 public class RightTriangle : Shape {
 // Fields
 private int x, y, baseTriangle, height;

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 87

 // Constructor
 public RightTriangle(int x, int y, int baseTriangle,
 int height) {
 this.x = x;
 this.y = y;
 this.baseTriangle = baseTriangle;
 this.height = height;
 }

 // Commands
 public override void Draw(Canvas c) {
 System.Console.WriteLine(
 "In draw method in class RightTriangle. x = " + x +
 " y = " + y + " base = " + baseTriangle +
 " height = " + height);
 }
 }
}

namespace Generics {

 public class Canvas {

 // Commands
 public void Draw(Shape s) {
 s.Draw(this);
 }
 }
}

using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;

namespace Generics {
 public class GenericApp {
 public static class Consts<E> where E : Shape {
 public static List<List<E>> history = new List<List<E>>();
 private static void AddShapeList<F>(List<F> shapes)
 where F : E {
 List<E> lst = new List<E>();
 foreach (Shape s in shapes) {
 lst.Add((E) s);
 }
 history.Add((List<E>)lst);
 }

 public static void DrawShapeList<F>(List<F> shapes)
 where F : E {
 AddShapeList((List<F>) shapes);
 foreach (Shape s in shapes) {
 s.Draw(new Canvas());

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.0

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

 }
 }

 public static void OutputHistory<F>() where F : E {
 Console.WriteLine("\nIn OutputHistory method");
 for (int index = 0; index < history.Count; index++) {
 List<E> list = history[index];
 foreach (Shape shape in list) {
 shape.Draw(new Canvas());
 }
 }
 }
 }

 public static void Main() {

 List<Circle> circleList = new List<Circle>();
 circleList.Add(new Circle(3, 0, 5));
 circleList.Add(new Circle(1, 4, 10));

 List<Rectangle> rectangleList = new List<Rectangle>();
 rectangleList.Add(new Rectangle(0, 0, 10, 20));
 rectangleList.Add(new Rectangle(3, 4, 20, 30));
 rectangleList.Add(new Rectangle(20, 40, 1, 2));

 List<RightTriangle> triangleList = new List<RightTriangle>();
 triangleList.Add(new RightTriangle(0, 0, 10, 20));
 triangleList.Add(new RightTriangle(3, 4, 20, 30));
 triangleList.Add(new RightTriangle(20, 40, 1, 2));
 triangleList.Add(new RightTriangle(200, 400, 11, 21));
 triangleList.Add(new RightTriangle(78, 42, 17, 21));

 Consts<Shape>.DrawShapeList(circleList);
 Consts<Shape>.DrawShapeList(rectangleList);
 Consts<Shape>.DrawShapeList(triangleList);

 Consts<Shape>.OutputHistory<Shape>();
 System.Console.ReadLine();
 }
 }
}

Program Output
In draw method of class Circle. x = 3 y = 0 radius = 5
In draw method of class Circle. x = 1 y = 4 radius = 10
In draw method in class Rectangle. x = 0 y = 0 width = 10 height = 20
In draw method in class Rectangle. x = 3 y = 4 width = 20 height = 30
In draw method in class Rectangle. x = 20 y = 40 width = 1 height = 2
In draw method in class RightTriangle. x = 0 y = 0 base = 10 height = 20
In draw method in class RightTriangle. x = 3 y = 4 base = 20 height = 30
In draw method in class RightTriangle. x = 20 y = 40 base = 1 height = 2
In draw method in class RightTriangle. x = 200 y = 400 base = 11 height = 21

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 89

In draw method in class RightTriangle. x = 78 y = 42 base = 17 height = 21

In OutputHistory method
In draw method of class Circle. x = 3 y = 0 radius = 5
In draw method of class Circle. x = 1 y = 4 radius = 10
In draw method in class Rectangle. x = 0 y = 0 width = 10 height = 20
In draw method in class Rectangle. x = 3 y = 4 width = 20 height = 30
In draw method in class Rectangle. x = 20 y = 40 width = 1 height = 2
In draw method in class RightTriangle. x = 0 y = 0 base = 10 height = 20
In draw method in class RightTriangle. x = 3 y = 4 base = 20 height = 30
In draw method in class RightTriangle. x = 20 y = 40 base = 1 height = 2
In draw method in class RightTriangle. x = 200 y = 400 base = 11 height = 21
In draw method in class RightTriangle. x = 78 y = 42 base = 17 height = 21

Discussion of Listing 2

It is not possible in C# to declare history as a stand-alone field with a constrained generic
parameter as was done in Java. It is necessary to embed the history field inside of a static
generic class Consts that explicitly establishes the generic constraint through,

public static class Consts<E> where E : Shape {
 public static List<List<E>> history = new List<List<E>>();
 …
}

This class also contains the public methods DrawShapeList and OutputHistory. Each of
these methods utilizes a generic parameter F that extends the constrained generic
parameter E.

public static void DrawShapeList<F>(List<F> shapes) where F : E {…}

public static void OutputHistory<F>() where F : E {…}

The private static method AddShapeList requires two downcasts as well.

From the three method invocations,

Consts<Shape>.DrawShapeList(circleList);
Consts<Shape>.DrawShapeList(rectangleList);
Consts<Shape>.DrawShapeList(triangleList);

the DrawShapeList method is able to infer the parameter F (inner list type).
Clearly there is more complexity and subtlety associated with the generic C#

implementation than the generic Java implementation.

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.0

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

Since generics in Java was designed to be totally compatible with the existing JVM
(Java virtual machine), it offers no performance improvement over straight non-generic
Java. One may in fact view Java generics as an extension to the allowable syntax of
standard Java with the compiler translating generic code first to standard non-generic
code. So the declaration,

Collection<Integer> is seen by the virtual machine as Collection<Object>.
Generics were designed into the .NET framework so List<int> (aka List<Int32>)

does not translate to List<Object>. There is no wrapping and unwrapping overhead
required when constructing collections of value types such as int in generic C#. C# uses
code specialization (like C++) when implementing collections of value types and uses
code sharing (like Java) when implementing collections of non-value types (ordinary
reference types). A simple experiment was designed to enable performance comparisons
to be undertaken so that the efficiency of C# generics could be compared with that of
generic Java both for value types (primitive types in Java) and reference types. Listings 3
and 4 contain the code that was used in this simple experiment. In each experiment, four
stacks of base-type integer (int in C# and Integer in Java) were constructed by pushing
one million integer objects onto the first stack and then popping that stack while loading
the contents of the first stack onto the second stack and repeating this process until the
fourth and last of the stacks is loaded with a million objects and then the objects popped
from this last stack. The same scenario was repeated only using String as the base type
rather than integer objects. Since String is a reference type in both languages this second
experiment allows us to see whether any significant differences exist between the
performance on generic reference types versus value types.

Listing 3 – Benchmark for Java Generics

import java.util.*;

public class LinkedStack<T> {

 // Fields
 private Node<T> top = null;
 private int numberElements = 0;

 // Commands
 public void push(T item) {
 Node<T> newNode = new Node<T> (item, top);
 top = newNode;
 numberElements++;
 }

 public void pop() {
 if (isEmpty())
 throw new NoSuchElementException("Stack is empty.");
 else {
 Node<T> oldNode = top;
 top = top.next;
 numberElements--;

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 91

 oldNode = null;
 }
 }

 // Queries
 public T top() {
 if (isEmpty())
 throw new NoSuchElementException("Stack is empty.");
 else
 return top.item;
 }

 public boolean isEmpty() {
 return top == null;
 }

 public int size() {
 return numberElements;
 }

 private class Node<T> {

 // Fields
 public T item;
 public Node<T> next;

 // Constructors
 public Node(T element, Node<T> link) {
 item = element;
 next = link;
 }
 }

 static public void main(String[] args) {
 LinkedStack<Long> intStack = new LinkedStack<Long>();
 TimeInterval time = new TimeInterval();
 time.startTiming();
 // Push 1,000,000 ints onto the stack
 for (int i = 0; i < 1000000; i++) {
 intStack.push((long) i);
 }

 LinkedStack<Long> intStack2 = new LinkedStack<Long>();
 // Get sum of ints on stack
 long sum = 0L;
 for (int i = 0; i < 1000000; i++) {
 sum += intStack.top();
 intStack2.push(intStack.top());
 intStack.pop();
 }
 LinkedStack<Long> intStack3 = new LinkedStack<Long>();
 for (int i = 0; i < 1000000; i++) {
 sum += intStack2.top();
 intStack3.push(intStack2.top());
 intStack2.pop();

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.0

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

 }
 LinkedStack<Long> intStack4 = new LinkedStack<Long>();
 for (int i = 0; i < 1000000; i++) {
 sum += intStack3.top();
 intStack4.push(intStack3.top());
 intStack3.pop();
 }
 for (int i = 0; i < 1000000; i++) {
 sum += intStack4.top();
 intStack4.pop();
 }
 time.endTiming();
 System.out.println("sum = " + sum);
 System.out.println("Elapsed time for intStack = " +
 time.elapsedTime() + " seconds.");

 LinkedStack<String> strStack = new LinkedStack<String>();
 time = new TimeInterval();
 time.startTiming();
 // Push 1,000,000 ints onto the stack
 for (int i = 0; i < 1000000; i++) {
 strStack.push("ABCDEFG");
 }

 LinkedStack<String> strStack2 = new LinkedStack<String>();
 for (int i = 0; i < 1000000; i++) {
 strStack2.push(strStack.top());
 strStack.pop();
 }
 LinkedStack<String> strStack3 = new LinkedStack<String>();
 for (int i = 0; i < 1000000; i++) {
 strStack3.push(strStack2.top());
 strStack2.pop();
 }
 LinkedStack<String> strStack4 = new LinkedStack<String>();
 for (int i = 0; i < 1000000; i++) {
 strStack4.push(strStack3.top());
 strStack3.pop();
 }
 for (int i = 0; i < 1000000; i++) {
 strStack4.pop();
 }
 time.endTiming();
 System.out.println("sum = " + sum);
 System.out.println("Elapsed time for strStack = " +
 time.elapsedTime() + " seconds.");

 }
}

public class TimeInterval {

 private long startTime, endTime;
 private long elapsedTimeInterval; // Time interval in milliseconds

 // Commands

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 93

 public void startTiming() {
 elapsedTimeInterval = 0;
 startTime = System.currentTimeMillis();
 }

 public void endTiming() {
 endTime = System.currentTimeMillis();
 elapsedTimeInterval = endTime - startTime;
 }

 // Queries
 public double elapsedTime() {
 return (double) elapsedTimeInterval / 1000.0;
 }
}

Program Output
sum = 1999998000000
Elapsed time for intStack = 2.11 seconds.
sum = 1999998000000
Elapsed time for strStack = 0.937 seconds.

Listing 4 - Benchmark for Java Generics

using System;
using System.Collections.Generic;
using System.Text;
using Timer;

namespace Stackbenchmark {

 public class StackBenchmarkApp {

 static public void Main() {
 LinkedStack<long> intStack = new LinkedStack<long>();
 Timing time = new Timing();
 time.StartTiming();
 // Push 1,000,000 ints onto the stack
 for (int i = 0; i < 1000000; i++) {
 intStack.Push((long)i);
 }

 LinkedStack<long> intStack2 = new LinkedStack<long>();
 // Get sum of ints on stack
 long sum = 0L;
 for (int i = 0; i < 1000000; i++) {
 sum += intStack.Top();
 intStack2.Push(intStack.Top());
 intStack.Pop();
 }
 LinkedStack<long> intStack3 = new LinkedStack<long>();
 for (int i = 0; i < 1000000; i++) {
 sum += intStack2.Top();

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.0

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

 intStack3.Push(intStack2.Top());
 intStack2.Pop();
 }
 LinkedStack<long> intStack4 = new LinkedStack<long>();
 for (int i = 0; i < 1000000; i++) {
 sum += intStack3.Top();
 intStack4.Push(intStack3.Top());
 intStack3.Pop();
 }
 for (int i = 0; i < 1000000; i++) {
 sum += intStack4.Top();
 intStack4.Pop();
 }

 time.EndTiming();
 Console.WriteLine("sum = " + sum);
 Console.WriteLine("Elapsed time for int stack = " +
 time.ElapsedTime() + " seconds.");

 LinkedStack<String> strStack = new LinkedStack<String>();
 time = new Timing();
 time.StartTiming();
 // Push 1,000,000 ints onto the stack
 for (int i = 0; i < 1000000; i++) {
 strStack.Push("ABCDEFG");
 }

 LinkedStack<String> strStack2 = new LinkedStack<String>();
 for (int i = 0; i < 1000000; i++) {
 strStack2.Push(strStack.Top());
 strStack.Pop();
 }
 LinkedStack<String> strStack3 = new LinkedStack<String>();
 for (int i = 0; i < 1000000; i++) {
 strStack3.Push(strStack2.Top());
 strStack2.Pop();
 }
 LinkedStack<String> strStack4 = new LinkedStack<String>();
 for (int i = 0; i < 1000000; i++) {
 strStack4.Push(strStack3.Top());
 strStack3.Pop();
 }
 for (int i = 0; i < 1000000; i++) {
 strStack4.Pop();
 }
 time.EndTiming();
 Console.WriteLine("Elapsed time for str stack = " +
 time.ElapsedTime() + " seconds.");
 Console.ReadLine();
 }
 }
}

using System;

namespace Timer {

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 95

 public class Timing {
 // Fields
 private long startTicks, endTicks;

 public void StartTiming() {
 DateTime t = DateTime.Now;
 startTicks = t.Ticks;
 }

 public void EndTiming() {
 DateTime t = DateTime.Now;
 endTicks = t.Ticks;
 }

 public double ElapsedTime() {
 return (endTicks - startTicks) / 10000000.0;
 }
 }
}

Program Output
sum = 1999998000000
Elapsed time for int stack = 0.921875 seconds.
Elapsed time for str stack = 0.78125 seconds.

Discussion of Listing 3 and 4

The experiments were conducted on the same computer. The ratio of execution times is
interesting.

For integer types (primitive type in Java and value type in C#), generic Java was
2.29 slower than generic C#. That is significant. For reference types, generic Java was
1.20 times slower. That is not significant and is in part due to the overall efficiency of
Java JIT compared with the C# JIT (other experiments have suggested that the C# JIT is
slightly more efficient than the Java 1.5 JIT).

In conclusion, the design decision to use code specialization for value types in C#
has paid off in performance benefits. The wildcard semantics in generic Java appear to
provide a more straight-forward mechanism for expressing complex generic constructions
than the equivalent C# implementation.

SOME EXAMPLES OF GENERICS IN JAVA 1.5 AND C# 2.0

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

About the author

Richard Wiener is Associate Professor of Computer Science at the
University of Colorado at Colorado Springs. He is also the Editor-in-
Chief of JOT and former Editor-in-Chief of the Journal of Object
Oriented Programming. In addition to University work, Dr. Wiener has
authored or co-authored 21 books and works actively as a consultant
and software contractor whenever the possibility arises.

