
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No.8, September-October 2004

Cite this column as follows: Donald Firesmith: “Prioritizing Requirements”, in Journal of Object
Technology, vol. 3, no. 8, September-October 2004, pp. 35-47.
http://www.jot.fm/issues/issue_2004_09/column4

Prioritizing Requirements
Donald Firesmith, Software Engineering Institute, U.S.A.

Abstract
In this column, I address the often difficult task of prioritizing requirements so that the
highest priority requirements can be implemented first as part of the scheduling of an
incremental, iterative, and time-boxed development cycle. After defining the meaning of
the term “priority”, the purpose and benefits of requirements prioritization are listed. This
is followed by a brief discussion of the challenges and risks that a requirements team
must face when prioritizing requirements. Then, various techniques for prioritizing
requirements are identified, and finally a set of recommendations (including a
recommended prioritization process) are made.

1 INTRODUCTION

On projects producing large complex software-intensive systems, it is not unusual to have
hundreds and even thousands of individual requirements. And it is also not unusual for
the customer organization acquiring such systems to have valid reasons to want each and
every one of its requirements implemented. Yet, such projects cannot avoid the following
fundamental facts of life:

• Differences in importance. Not all requirements are equally important, and the
many different stakeholders in the system typically will not agree as to which
requirements are most important.

• Limited project resources. All projects have limited resources in terms of
budget, staff, and schedule. It is usually impossible to implement all of the
requirements, at least not during the system’s current release. Thus, non-trivial
systems are typically implemented using an incremental development cycle in
which the requirements are incrementally developed and implemented.

• Long schedule. Such large incrementally-developed systems require many
months or often multiple years to develop, during which the requirements are
subject to significant iteration as the business environment changes, business
needs change, and new requirements are identified.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_09/column4

PRIORITIZING REQUIREMENTS

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

• Small RE budget. Requirements engineering rarely receives more than 2-4% of
the project budget, although several studies show that projects are more successful
when 3-4 times as much of the budget and schedule is invested in getting the
requirements right. Thus although requirements activities and tasks are typically
time-boxed, the boxes allocated to requirements engineering are typically much
too small and work must be properly prioritized.

These facts of life make the prioritization of requirements a critically important part of
requirements analysis that every requirements engineer must perform. Unfortunately,
there is little agreement within industry as to how, when, and why requirements should be
prioritized. In fact, some books provide no guidance beyond merely stating that
prioritizing requirements is important [Schneider 1998]. Hopefully, this column will help
clarify requirements prioritization and make it easier for the reader to prioritize
requirements and effectively use their priorities.

2 POSSIBLE MEANINGS OF PRIORITY

A fundamental problem with prioritizing requirements is that the phrase “prioritizing
requirements” can have very different meanings to different stakeholders. So let’s start by
looking in the dictionary. According to the Merriam-Webster Online Dictionary, the term
“priority” means:

1. The state of being prior (i.e., given precedence in terms of date or time)
2. Given or meriting attention before competing alternatives
3. Given preference

Although all three of the preceding definitions are closely related, definitions 1 and 2 are
very different from definition 3 in terms of their impact on how and why requirements are
prioritized and on how the resulting prioritizations are used. The first two definitions deal
with scheduling, whereas the third definition deals with relative importance. And it is not
unreasonable to schedule based on more than importance (as is implied by rate monotonic
scheduling and the prioritization dimensions listed in section 5).

Some authors (e.g., [Sommerville 1997]) recommend another approach. For them,
prioritizing requirements means categorizing raw potential requirements from the
standpoint of importance into:

1. Essential requirements that must be included in the system (i.e., the actual
requirements)

2. Useful capabilities that would reduce system effectiveness if left out
3. Desirable capabilities that make the system more desirable to certain

stakeholders
Although this categorization implies that some requirements are merely useful
capabilities or desirable “nice-to-haves”, it also contradicts the very nature of
requirements as being mandatory or required. Clearly, only the first category of potential

POSSIBLE MEANINGS OF PRIORITY

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 37

requirements above contains real requirements. The rest, although useful information, are
not requirements and are thus outside the scope of prioritizing requirements.

Based on the preceding, prioritizing real requirements could mean:
1. Prioritization by implementation order. Prioritizing requirements is the

requirements task of determining the implementation order of the requirements in
an incremental and iterative development cycle.

2. Prioritization by importance. Prioritizing requirements is determining the order
of importance to some stakeholder or class of stakeholders of the requirements
along one or more dimensions (e.g., personal preference, business value, cost of
implementation, and risk).

The remainder of this column is largely an argument that requirements prioritization is
determining the implementation order of requirements and that prioritization by
importance is merely one means to that end.

3 PURPOSE AND BENEFITS

The purpose of requirements priority can thus be to:
• Determine the relative necessity of the requirements. Whereas all requirements

are mandatory, some are more critical than others. For example, failure to
implement certain requirements may have grave business ramifications that would
make the system a failure, while others although contractually binding would
have far less serious business consequences if they were not implemented or not
implemented correctly.

• Help programs through negotiation and consensus building to eliminate
unnecessary potential “requirements” (i.e., goals, desires, and “nice-to-haves” that
do not merit the mandatory nature of true requirements).

• Schedule the implementation of requirements (i.e., help determine what
capabilities are implemented in what increment).

Properly prioritizing requirements provides the following significant benefits to the
project:

• Modify schedule. When using an iterative incremental development cycle, it
enables the project manager and customer to modify the project schedule to deal
with the project realities of limited resources and fixed deadlines.

• Improved customer satisfaction. It improves customer satisfaction by increasing
the likelihood that the customer’s most important requirements are implemented
and delivered first.

• Lower risk of cancellation. The project is less likely to be cancelled during
development because valuable progress is being demonstrated with each
increment. And even if the project must be cancelled before the delivery of the

PRIORITIZING REQUIREMENTS

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

final increment, it is not a total loss because some important functionality has
been implemented and delivered.

• Address all requirements. Prioritizing requirements is a good way to force
stakeholders to address all requirements and not just their own.

• Estimate benefits. Priorities provide management and engineering with a rough
estimate of the benefit of the different requirements, which is useful when
performing cost/benefit analyses of the requirements to determine where best to
expend limited project resources in preparation for requirements negotiation.

• Prioritize investments. Requirements priorities can help determine how to
prioritize the investment of limited project resources. For example, the project can
allocate most of its limited resources for quality assurance and system testing
according to the highest priority requirements.

4 CHALLENGES AND RISKS

There are numerous challenges and associated risks that must be addressed when
prioritizing requirements including:

• Mandatory nature of requirements. By definition, all requirements are required
(i.e., mandatory). This leads some stakeholders in the requirements to believe that
all requirements should have the same highest priority. However, although all real
requirements are mandatory at a given instant in time, they are not all equal in
terms of current importance or value to the customer or other stakeholders. Even
when they admit that in theory different requirements can have different priorities,
they may still strongly push for having 85-90% of the requirements be classified
as high priority, thereby eliminating the benefits of prioritization [Wiegers 1999].
Priorities should have a reasonable distribution [Wiegers 2000], although
enforcing a strict distribution can also lead to problems (e.g., as when grading on
the curve in a class of legitimate A students).

• Large number of requirements. A very large number of requirements need to be
prioritized. It is not unusual to have hundreds of requirements, and very large
systems and systems of systems often have thousands of individual requirements.
It is difficult to consistently prioritize such a large number of requirements. This is
why priorities are often grouped into a manageably small number of categories.
This is also why techniques for determining the priorities of all requirements such
as pair-wise comparisons or Quality Function Deployment (QFD) typically do not
scale unless requirements are previously grouped in some manner (e.g., by major
system function or by limiting the requirements to those that are needed for the
very next release). Another approach is to only apply semi-quantitative
prioritization schemes to requirements of intermediate priority [Wiegers 1999].

CHALLENGES AND RISKS

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 39

• Limited resources. Because of cost and schedule limitations, it is rarely possible
to implement all requirements in any given increment. It is also difficult to
determine how much of the project’s limited resources are worth expending to
implement the different requirements.

• Quality requirements. The architecture and costs, both development and
maintenance, of most systems is largely driven by such quality requirements as
availability, interoperability, performance, portability, reliability, safety, security,
and usability. Unfortunately, these types of requirements are often given far too
little priority, are not specified at all, or are specified in a vague untestable
manner. If the quality requirements are not specified or not specified properly,
they will not be properly prioritized.

• Goals vs. requirements. System and software requirements are typically multiple
levels below the business goals and needs that drive them. Thus, it is often
difficult to directly relate requirement priority to business goal importance.

• Changing priorities. The priorities of requirements will typically change over
time because:
– The business environment and needs change.
– The stakeholders in the requirements may change.
– The requirements stakeholders change their minds as to which requirements

are most important to them, especially once they understand the cost and
schedule implications [Wiegers 1999].

– Individual requirements change.
– The system may be incrementally developed so that some of the requirements

are implemented before others. Thus, the important priorities become the
priorities of those remaining requirements that have yet to be implemented.

– As new requirements are added, the relative priorities of existing requirements
may need to change accordingly [Fellows 1998].

• Incompatible priorities. Different types of stakeholders tend to prioritize
requirements differently (e.g., they tend to prioritize use cases higher when they
are the actor that benefits from the execution of the use case). Even different
stakeholders within the same stakeholder type prioritize them differently because
of their different individual needs, experiences, and levels of training.

• Stakeholder and developer collaboration. Only the stakeholders can properly
prioritize the requirements, while only the developers can properly estimate the
cost and schedule consequences of the stakeholders’ priorities [Wiegers 1999].
This requires the stakeholders and developers to collaborate during requirements
prioritization, and this may be difficult due to contractual and organizational
factors.

• Incompatible requirements. Some requirements types may be incompatible
(e.g., performance vs. maintainability and reliability, usability vs. security) in the

PRIORITIZING REQUIREMENTS

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

sense the increasing compliance with one requirement makes it more difficult to
achieve the other requirement.

• Lack of trust. Customers desiring the immediate implementation of all
requirements might mistakenly assume that the real reason to prioritize the
requirements is the developers’ devious desire to eliminate some of the more
difficult or risky requirements.

• Non-requirements. The initial set of raw unanalyzed requirements prior to
prioritization and negotiation often includes desired capabilities or items from
somebody’s wish list that are not really requirements (i.e., not mandatory) and
thus do not deserve a priority.

• Subjective prioritization. Most prioritization approaches are subjective, biased,
and influenced by project politics. They also ignore the reasons why stakeholders
set their priorities the way they have. However, more objective approaches (such
as the number of other requirements that depend on a requirement, the number of
objects and stakeholders that interact with a requirement, the estimated cost of
implementing the requirement, numerical weightings, etc.) are often expensive,
impractical, and do not scale well when applied to large numbers of requirements.

• Consequences of poor prioritization. Incorrectly prioritizing and scheduling
requirements for implementation can lead to serious financial consequences
[Davis 2003] as well as significant stakeholder dissatisfaction.

5 TECHNIQUES

Prioritization Dimensions

Requirements can be prioritized along many different, related and even opposing
dimensions. And these dimensions can be valued differently by different stakeholders.
For example, requirements can be prioritized by:

• Personal preference. Different stakeholders (e.g., customers, users, marketing,
operators, maintainers, and architects) will prefer certain requirements over others.
This is especially true when practical reasons such as schedule and budget mean
that all of the requirements cannot be implemented and released during the current
build of an incremental development cycle.

• Business value. When implemented, different requirements will have different
values to the business. Some requirements will be critical, whereas others will be
less important though still mandatory. Some potential requirements are not
requirements at all but merely desirable though not necessary features or
characteristics, and others will be merely characteristics that would be nice to

TECHNIQUES

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 41

have or items on someone’s wish list. Also, some requirements have a tactical
usefulness, whereas others have a more long-term strategic value to the business.

• Harm avoidance. The opposite of prioritizing requirements in terms of their
business value when implemented is to prioritize requirements in terms of the
harm that can or will occur if the requirement is not implemented. This would
especially be true of safety and security requirements, which are specifically
specified to avoid accidental and malicious harm to valuable assets due to hazards
and threats of attack respectively. Also, stakeholders who are risk adverse would
tend to prioritize all requirements in terms of the damage or danger to be avoided
if the requirement is implemented

• Risk. Related to harm avoidance is risk management. It may well make sense to
prioritize requirements by the risks associated with their implementation. For
example, one can attempt to implement those requirements having the highest risk
first so as to deal with the resulting problems during development. On the other
hand, it may make sense to implement the lowest risk requirements first in order
to maximize the amount of the system implemented by ensuring that limited
resources are not wasted on trying to implement high risk aspects of the system
that may be impossible to successfully implement. Postponing the implementation
of high risk requirements can also maximize the time available to research the
risks and determine appropriate risk mitigation approaches.

• Cost. The implementations of different requirements have different development
or life-cycle costs. Given limited budgets, cost can be an important and even
overriding factor when prioritizing requirements. Thus, the highest priority
requirements may be those that the project can afford to implement first.

• Difficulty. Related to prioritizing requirements by risk and cost is prioritizing
requirements by their estimated difficulty to implement. As with risk, one can
implement either the difficult or the easy requirements first, based on whether one
considers it more important to deal with difficult requirements first or to hold off
on the most difficult so that a larger number of easy requirements can be
implemented first.

• Time to market. Some requirements take more effort and thus more calendar
time to implement given limited development resources. In certain application
domains in which competitors are marketing competing systems, time to market
can be an important factor when prioritizing requirements.

• Requirements stability. Some requirements are relatively stable whereas others
are very much subject to change during development. To minimize unnecessary
rework, it may well make sense to implement stable requirements first and hold
off on the implementation of the most volatile requirements until late in the
development cycle.

PRIORITIZING REQUIREMENTS

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

• Dependencies among requirements. Certain requirements depend on other
requirements [Davis 2003]. For example, requirements at a lower tier in the
overall system structure “implement” requirements on a higher tier. Thus,
software requirements implement subsystem requirements which implement
system requirements. Dependency relationships between use cases and usage
scenarios imply dependencies between their priorities. Similarly, the interaction
and postcondition requirements of a use case implement the overall requirement
of the use case. Derived requirements are engineered to support more fundamental
requirements, which depend on the implementation of the derived requirements.
Similarly, certain secondary requirements support core requirements that are
essential to the success of the system and should be prioritized in terms of how
they support these key requirements. In all of these cases, the implementation of
certain requirements depends on the implementation of other requirements and
this implies dependencies on their priorities. Thus, if requirement A depends on
requirement B, then the priorities of these requirements should be consistent and
requirement B should have a priority that is at least as high as A (e.g., B should be
implemented either before A or during the same build as A).

• Implementation dependencies. When developing large systems, certain
components of the system depend on other components (often foundational and
infrastructure components) of the system. Requirements pertaining to these
foundational components often need to be implemented before other
requirements. Similarly, certain capabilities (e.g., safety and security) need to be
architected and built into the system rather than added on later during
development. Therefore, architects (who are important stakeholders of
requirements) often prioritize requirements in terms of the optimum
implementation order of the requirements.

• Different kinds of requirements. Different kinds of requirements (e.g.,
functional, data, interface, quality, and constraints) may need different approaches
to prioritization. Non-functional requirements may be prioritized directly whereas
functional requirements may be prioritized indirectly via their use cases and
scenarios.

• Legal mandate. Requirements may be given higher priority if mandated by law,
by regulation, or by governmental, international, national, or industry standard
[Wiegers 2000]

• Frequency of use. Functional requirements may be given higher priority based on
the expected frequency or volume of usage [Wiegers 2000].

• Reuse. If a requirement is highly reusable within a product line, then it might be
wise to give it a higher priority so that no system within the product line has to
wait for its implementation.

TECHNIQUES

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 43

As the preceding list illustrates, there are many factors that can (and probably should)
influence the priority of a requirement. One of the common mistakes that some
approaches make is to consider and use only a single dimension when prioritizing
requirements. For example, eXtreme Programming tends to only consider business value
as defined by the customer [Beck 2001]. Although more difficult, it makes far more sense
to consider all relevant factors when prioritizing requirements, even though some
dimensions will prove far more important than others, at least for certain requirements.

Prioritization Approach

Once the actual requirements have been identified, prioritization can then be used to
categorize them for the sake of scheduling into:

• Requirements that have already been implemented
• Requirements that are being implemented during the current build, increment, or

release
• Requirements that are to be implemented during the next build, increment, or

release
• Requirements that are to be implemented during some future build

To avoid requirements churn and meet schedule, the set of requirements being
implemented as part of the current increment must be well known and frozen reasonably
early during the build process and prior to release. But the farther into future increments
one goes, the more fluid the assignment of priorities to requirements and requirements to
increments becomes. In fact, some mandatory requirements may never be implemented
because they never bubble up to the top of the stack before eventually being dropped
because they are no longer needed.

Prioritization Techniques

Various techniques can be used to determine, negotiate, and develop a consensus
regarding the priorities of the requirements:

• Business Case Analysis / Return On Investment (ROI) estimation
• Pair-wise comparisons
• Prioritization working groups
• Scale of 1-to-10 rankings
• Voting schemes (e.g., give each stakeholder a specific number of votes to

distribute amongst the requirements or classes of requirements being prioritized)
• Weightings (e.g., weight the votes of different stakeholders)
• Value-Based Software Engineering [Boehm 2003]
• WIN-WIN [Boehm 2001]
• Quality Function Deployment (QFD)

PRIORITIZING REQUIREMENTS

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

The best approaches to use also depend on many factors such as the number of
requirements to be prioritized and the formality of the requirements engineering process.

6 REQUIREMENTS PRIORITIZATION PROCESS

Given the need to properly prioritize requirements, I recommend the following basic
subprocess (related to the process in [Fellows 1998]) to incorporate requirements
prioritization into the requirements engineering process:

1. Convince stakeholders. During requirements planning, the requirements team
needs to convince the stakeholders in the requirements engineering process of the
importance of prioritizing requirements.

2. Train stakeholders. Prior to eliciting requirements, the requirements team should
train the requirements stakeholders in the requirements prioritization process.

3. Categorize raw potential requirements. During requirements identification (a.
k. a., elicitation, discovery, invention, gathering), the requirements team should
work with the stakeholders to categorize the raw potential requirements into
actual requirements, useful capabilities and desirable (nice-to-have) capabilities so
that the actual requirements can be prioritized.

4. Prioritize the actual requirements. During requirements analysis, the
requirements team should work closely with representative stakeholders to
prioritize the actual (i.e., mandatory) requirements. This includes negotiation with
the stakeholders to develop a consensus and validation of the resultant priorities
with them. Requirements prioritization should be done on an iterative and
incremental basis, concentrating on those requirements that are most likely to
need to be implemented in the current or next release and those requirements that
are of intermediate priority and thus most likely to need significant negotiation.
To develop proper priorities, representatives from all major stakeholder groups
need to be represented. For the requirements team led by a professional
requirements engineer, this should include one or more dedicated customer
representatives, user representatives, architects, system testers, and subject matter
experts. Other stakeholders that also need to be involved in requirements
prioritization include operators, maintainers, safety engineers, security analysts,
and any others that have a significant stake in the scheduling of requirements
implementation.

5. Publish the priorities. During requirements specification, the requirements team
should publish the priorities so that all effected stakeholders know and can use the
priorities.

6. Estimate effort. Led by the technical leader and architecture team, the
development team that must actually implement the requirements creates and
records realistic estimates of the effort required to implement each requirement.
These estimates should be based on current staffing, with the understanding that
stakeholder inputs may require management to increase staffing size (but only if

REQUIREMENTS PRIORITIZATION PROCESS

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 45

the technical leader agrees that increasing staff will actually decrease schedule or
increase deliverable functionality).

7. Schedule development. The requirements team should work with the
management team and the development team to allocate requirements to
increments and to schedule the incremental implementation of these increments
based on priorities of the requirements, the required effort to implement the
requirements, and the available resources. This allocation of requirements to
releases and scheduling of releases should be updated with each increment to deal
with changes in requirements and resources. Allocation and scheduling should
also include both development-internal increments as well as releases to the
customer organization and deployment to the users.

8. Maintain priorities. During requirements management, the requirements team
should work with the requirements stakeholders to maintain the requirements
parameters as they change. This will typically include storing the priority as
metadata (i.e., an attribute) in the requirements repository, and then updating the
value of the priority as it changes.

7 CONCLUSION

As the preceding information has hopefully demonstrated, prioritizing requirements is
both a critical and yet difficult task for the requirements engineering team. Many risks,
challenges, and issues must be properly taken into account if a useful set of priorities is to
be developed, negotiated, maintained, and used. Still, requirements prioritization is
critical because it:

• Forces stakeholders to openly address the relative importance of their
requirements,

• Leads to increased communication and consensus among stakeholders,
• Provides a logical basis for requirements negotiation, and most importantly
• Enables management and engineering to rationally schedule of the development

and release of large complex software-intensive systems when using an
incremental, iterative, time-boxed development cycle.

PRIORITIZING REQUIREMENTS

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

REFERENCES

[Beck 2001] Kent Beck and Martin Fowler, Planning Extreme Programming,
Addison-Wesley, 2001, pp. 48-49 and 63-69.

[Boehm 2003] Barry Boehm, “Value-Based Software Engineering,” Software
Engineering Notes, Vol. 28, No. 2, ACM, March 2003.

[Boehm 2001] Barry Boehm, Paul Grünbacher, and Robert O. Briggs “Developing
Groupware for Requirements Negotiation: Lessons Learned,” IEEE
Software, Vol. 18, No. 2, IEEE, May/June 2001.

[Davis 2003] Alan M Davis, “The Art of Requirements Triage,” Computer, Vol. 36,
No. 3, March 2003, pp. 42-49.

[Fellows 1998] Larry Fellows and Ivy Hooks, “A Case for Priority Classifying
Requirements,” Eighth Annual International Symposium on Systems
Engineering, Seattle, Washington: International Council on Systems
Engineering, 1998.

[Lauesen 2002] Soren Lauesen, Software Requirements: Styles and Techniques,
Addison-Wesley, 2002, pp. 2226-227,304, 378-379.

[Schneider 1998] Geri Schneider and Jason P. Winters, Applying Use Cases: A Practical
Guide, Addison-Wesley, 1998, pp. 84.

[Sommerville 1997] Ian Sommerville and Pete Sawyer, Requirements Engineering: A
Good Practice Guide, John Wiley & Sons, 1997.

[Wiegers 1999] Karl E. Wiegers, “First Thing First: Prioritizing Requirements,”
Software Development, September 1999.

[Wiegers 2000] Karl E. Wiegers, “Karl Wiegers Describes 10 Requirements Traps to
Avoid,” Software Testing & Quality Engineering, January/February
2000.

ACKNOWLEDGEMENTS

Many thanks to Ian Alexander, Keith Collyer, Andrew Gabb, David Gelperin, Rolf
Goetz, Simon Hutton, Naveen Kumar, Frank Moisiadis, Scott Overmyer, Abd-El-Kader
Sahraoui, Emmie Lou Tucker, and Ricardo Valerdi from the requirements engineering
mailing list at re-online@it.uts.edu.au; their observations and recommendations provided
many useful insights regarding the proper prioritization of requirements. I would also like
to thank my coworkers Peter Capell and Tim Morrow at the SEI who reviewed this
column prior to publication for their helpful comments and suggestions.

mailto:re-online@it.uts.edu.au

CONCLUSION

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 47

Disclaimers
The Software Engineering Institute is a federally funded research and development center
sponsored by the U.S. Department of Defense.

The views and conclusions contained in this column are solely those of the author
and should not be interpreted as representing official policies, either expressed or
implied, of the Software Engineering Institute, Carnegie Mellon University, the U.S. Air
Force, the U.S. Department of Defense, or the U.S. Government.

About the author

Donald Firesmith is a senior member of the technical staff at the
Software Engineering Institute. He has worked exclusively with object
technology since 1984 and has written 5 books on the subject. He is
currently writing a book on the engineering of safety requirements. Most
recently, he has developed an 1100+ page informational website on the
OPEN Process Framework at http://www.donald-firesmith.com. He can

be reached at dgf@sei.cmu.edu.

http://www.donald-firesmith.com
mailto:dgf@sei.cmu.edu

