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1 INTRODUCTION 

This is the fourteenth article in a regular series on object-oriented theory for non-
specialists. Previous articles have built up models of objects [1], types [2] and classes [3] 
in the λ-calculus. Inheritance has been shown to extend both types [4] and 
implementations [5, 6], in the contrasting styles found in the two main families of object-
oriented languages. One group is based on (first-order) types and subtyping, and includes 
Java and C++, whereas the other is based on (second-order) classes and subclassing, and 
includes Smalltalk and Eiffel. The most recent article demonstrated how generic types 
(templates) and generic classes can be added to the Theory of Classification [7], using 
various Stack and List container-types as examples. 

The last article concentrated just on the typeful aspects of generic classes, avoiding 
the tricky issue of their implementations, even though previous articles have 
demonstrated how to model both types and implementations separately [4, 5] and in 
combination [6]. This is because many of the operations of a Stack or a List return 
modified objects “like themselves”; and it turns out that this is one of the more difficult 
things to model in the Theory of Classification. The attentive reader will have noticed 
that we have so far avoided the whole issue of object modification. This is, after all, quite 
an important area to consider, since one of the main benefits of object-oriented 
programming is to encapsulate state and handle state updates in a clean fashion. In the 
current article, we consider the whole area of environment modelling and the creation of 
modified objects. Eventually, this leads to an extension to the theory to handle 
constructor-methods, through the use of which an object can create another object “like 
itself”.
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2 THE GLOBAL ENVIRONMENT 

The whole idea of object modification, modelled as updates to the values stored in 
attribute variables, is problematic in a functional calculus like the λ-calculus. This is 
because pure functional languages do not support the notion of reassignment to variables. 
This would be a side-effect, and pure functional languages are intentionally free of side-
effects, a property known as referential transparency. However, the effect of assignment 
may be approximated using a global set of variable bindings, called the environment, 
which is passed from function to function as the program is executed. The environment is 
an associative map from variable names to their bound values. For example, the 
following map is an environment which contains two variables p1, p2 which map to 
records representing simple coordinates: 

globalEnv = {p1 a {x a 2, y a 3}, p2 a {x a 4, y a 7}, … } 
During program execution, we may want certain statements to update the global 
environment. Modifications cannot literally change the state of the environment, since we 
are working in a pure functional language without side-effects; instead, they construct 
new environments in which appropriate changes have been made. The environment must 
therefore be passed in and out of each function, since assignments may occur at any point 
and their effect must be recorded. Every function accepts the environment as an extra first 
argument. Likewise, every function returns a packaged result, which is a pair of the 
environment and the function’s usual return value. The caller of a function must unpack 
the returned result to determine the state of the environment, as well as accessing the 
ordinary return value. 

Initially, the environment is empty. As variables are declared and initialised, these 
are added to the environment using a function like env-add: 

env-add : Map → Label → Value → Map 
= λ(env : Map).λ(var : Label).λ(val : Value).env ⊕ {var a val} 

which takes an environment, a variable name and a value to bind to this variable in the 
environment. The function returns the new environment, in which the old environment 
env is combined with a maplet from the variable var to the value val. Since the function 
override operator ⊕ is used [5], this will ensure that {var a val} is added to the bindings 
in the environment, replacing any existing binding for var. This is useful to model both 
variable declaration with initialisation, when a variable is first added to the environment, 
and variable reassignment, when the value associated with a variable is replaced. 

At any moment, the environment contains the most recently-bound version of each 
of the variables. In the body of a function, access to any global variable is modelled by 
looking up the value stored in the environment. Since the environment is basically a map 
(which is the same thing as a finite function [1]) this can be done by applying the 
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environment, like a function, to the labels used as variable names. For example, the 
following expression looks up the value of p1 in globalEnv: 

globalEnv (p1)  ⇒  {x a 2, y a 3} 
To change the coordinate associated with variable p1, we may execute the expression: 

env-add (globalEnv) (p1) ({x a 5, y a 1})  -- supply 3 arguments 
  ⇒ globalEnv ⊕ {p1 a {x a 5, y a 1}}  -- the body of env-add 
  ⇒ {p1 a {x a 5, y a 1}, p2 a {x a 4, y a 7}, … } -- new globalEnv 

and this rebinds the value of the variable p1, returning a new environment in which p1 
maps to a different coordinate instance. This models the notion of reassignment. 

3 LOCAL AND GLOBAL UPDATES 

Things are made slightly more complicated if we want both global and local variable 
bindings. If all functions merely had local variables, upon function exit the environment 
could revert to the environment that was originally passed to the function. This would 
ensure that the bindings set up on entry to the function were forgotten and any older 
bindings for the same variables were restored. However, we want the global bindings to 
persist between each function call. The environment passed to a function may possibly be 
modified and should therefore be handed back as part of the result. 

One possible approach is to try to distinguish between the global environment, and 
local variables, which are bound on entry to functions in the usual way. The problem with 
this approach is that a local variable may shadow the name of a global variable in the 
environment. When such a variable is updated, we would expect the local copy to be 
modified, since the global variable would be hidden. Upon exit from this scope, the 
global binding would be restored. However, it is hard to imagine how we could integrate 
primitive λ-calculus binding with looking up variables in a constructed environment. In 
any case, most state variables are introduced as local variables within the scope of some 
object or function, so it is hard to distinguish between the two kinds of variables in 
practice. 

Another approach is to use a multimap for the environment, that is, a kind of map 
with duplicated keys, rather like the association list provided in Common Lisp. 
Whenever a scope is entered and a new variable binding is added, it is inserted ahead of 
any existing bindings for the same variable. Whenever a value is looked up, the lookup 
function returns the first bound value it finds, which hides any other older bindings found 
later in the list. Whenever a scope is exited, all local variables are descoped by explicitly 
removing the first binding found for each variable, so restoring any older bindings. 
Whenever a variable is reassigned, the first occurrence of the variable is rebound to the 
new value; and this works whether the variable is global or local. To do this, we need a 
family of functions to manipulate the environment: 
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env-insert : Multimap → Label → Value → Multimap 
env-remove : Multimap → Label → Multimap  
env-replace : Multimap → Label → Value → Multimap  
env-lookup : Multimap → Label → Value 

which behave as described above. The implementations of these functions would use 
primitive list operations, such as cons, head and tail to search through the lists 
representing the multimaps. We defer a fuller treatment of this until a later article. 

4 MODELLING UPDATES AS NEW OBJECTS 

For the moment, the simplest approach is to assume that objects in the theoretical model 
are “pure functional objects”, that is, all modifications to object state do not literally 
modify the state of the object, rather they create and return a new object in which the 
changes are manifest. There is no fundamental reason why an imperative language cannot 
be approximated by a functional calculus in this way. The only difference is that all state-
modifying methods, which are typically void-methods in a concrete language, now have 
to return a new instance of their owning type. Sequences of modifications have to be 
modelled as nested method invocations. As an example, consider the following Point 
type: 

Point = µσ.{x : Integer, y : Integer, equal : σ → Boolean,  
   move : Integer × Integer → σ} 

which, in addition to the usual x, y and equal methods, has a move method to update its 
position. This method is typed to return another Point object, reflecting the fact that the 
modified position is in fact a newly-created instance of Point. Issuing a sequence of move 
instructions to a Point object p could be represented by the following nested method 
invocations: 

p.move(2, 3).move(4, 5).move(6, 7) 
since each move returns a new Point, which becomes the receiver of the subsequent move 
message. Although, in the model, the final Point instance at (6, 7) is a distinct object from 
the original p : Point, we can still reason about such sequences of update operations. But 
there is a catch: while the idea sounds straightforward in principle, it turns out that 
implementing the move method in practice is quite difficult to accomplish in the 
theoretical model. So far, none of our object types has had the ability to create new 
instances “like itself”. As we shall see below, this requires yet another level of recursion, 
in which objects contain their own object constructors. 
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5 CONSTRUCTORS FOR OBJECTS 

In an earlier article [6], we established the basic strategy for constructing new objects. It 
involved first constructing the object type, then the object implementation, from 
generators. The basic Point record type (without the move method) must be constructed 
from a generator, because it refers to itself recursively: 

GenPoint = λσ.{x : Integer, y : Integer, equal : σ → Boolean} 
and the recursion variable σ is later bound to the record type by taking the fixpoint using 
Y. 

Point = Y [GenPoint] 
  ⇒ {x : Integer, y : Integer, equal : Point → Boolean} -- after unrolling 

The basic point record instance must also be constructed from a generator, because it 
refers to itself recursively. A typed object generator is used, so that we can attach types to 
the bound variables. This is the generator for a specific point instance, at the location (2, 
3): 

genPoint : ∀(τ <: GenPoint[τ]). τ → GenPoint[τ] 
= λ(τ <: GenPoint[τ]).λ(self : τ). 
  {x a 2, y a 3, equal a λ(p : τ).(self.x = p.x ∧ self.y = p.y)} 

The recursive point instance is then constructed by supplying a type Point as the first 
type-argument, and then taking the fixpoint using Y, to bind the recursion variable self 
over the rest of the record: 

point = Y (genPoint [Point]) 
  ⇒ {x a 2, y a 3, equal a λ(p : τ).(point.x = p.x ∧ point.y = p.y)} 

While this works well for examples of specific points, we wanted to allow the creation of 
points that were initialised to different coordinates. To do this, we extended the generator 
to accept an extra initialisation argument, a pair of Integers [6]: 

initPoint : ∀(τ <: GenPoint[τ]). (Integer × Integer) → τ → GenPoint[τ] 
= λ(τ <: GenPoint[τ]).λ(a, b : Integer × Integer).λ(self : τ). 
  {x a a, y a b, equal a λ(p : τ).(self.x = p.x ∧ self.y = p.y)} 

And from this, we could define a simple object constructor, makePoint, which uses the 
type generator GenPoint and the extended object generator initPoint internally to 
establish the recursive Point type, and the recursive point instance, respectively: 

makePoint : Integer × Integer → Point 
= λ(a, b : Integer × Integer). Y (initPoint [Y GenPoint] (a, b)) 
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An example of creating a point instance at a different location is given by: 

makePoint(4, 5) 
  ⇒ Y (initPoint [Y GenPoint] (4, 5)) 
  ⇒ Y ( λ(a, b : Integer × Integer).λ(self : Point). 
  {x a a, y a b, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y)} (4, 5)) 
  ⇒ Y ( λ(self : Point). 
  {x a 4, y a 5, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y)} ) 
  ⇒ µself.{x a 4, y a 5, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y)} 

The main thing to notice about all this is that object generators like initPoint contain 
within them the structure of the instance that they create. The initPoint function accepts 
some arguments (a type argument, then a pair of Integers, then the value for self) and 
returns, as the body, the structure of the point instance. The generator must logically exist 
prior to the creation of any object instance. It is therefore hard to imagine how we might 
create an object instance that contains its own generator! This is rather like trying to pull 
yourself up by your own shoelaces. 

6 CREATING OBJECTS LIKE MYSELF 

However, as we anticipated in section 4 above, every time the move method is invoked, 
we require a Point object to create a new instance like itself, except that the x and y 
coordinates will take on different values. This is exactly like requiring an object to have 
its own constructor as one of its methods. To see this, we shall change the definition of 
the Point-type, so that it now also has a move method. Defining the type is 
straightforward: 

GenPoint = λσ.{x : Integer, y : Integer, equal : σ → Boolean,  
    move : Integer × Integer → σ} 

Point = Y [GenPoint] 
  ⇒ {x : Integer, y : Integer, equal : Point → Boolean,  
   move : Integer × Integer → Point}  -- after unrolling 

However, the implementation is less straightforward. If we could assume that an object 
constructor makePoint already existed, we could provide the extended generator for 
moveable points with extra initialisation arguments as the following: 

initPoint : ∀(τ <: GenPoint[τ]). (Integer × Integer) → τ → GenPoint[τ] 
= λ(τ <: GenPoint[τ]).λ(a, b : Integer × Integer).λ(self : τ). 
  {x a a, y a b, equal a λ(p : τ).(self.x = p.x ∧ self.y = p.y), 
   move a λ(u, v : Integer × Integer).makePoint(u, v) } 
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Here, the implementation of the move method has been added, in which the body simply 
calls makePoint with the same pair of Integer arguments that were given to the move 
method. This should in principle create and return a new Point instance at the desired 
location. 

However, the above is not yet a legal definition. The reason for this is that 
makePoint must use initPoint internally to construct the new object instance. As a result, 
the above implies a recursive definition of initPoint. To see the recursion more clearly, 
we can replace the occurrence of makePoint by its expansion into generators (this comes 
from the body of the definition of makePoint in section 5 above): 

initPoint : ∀(τ <: GenPoint[τ]). (Integer × Integer) → τ → GenPoint[τ] 
= λ(τ <: GenPoint[τ]).λ(a, b : Integer × Integer).λ(self : τ). 
  {x a a, y a b, equal a λ(p : τ).(self.x = p.x ∧ self.y = p.y), 
      move a λ(u, v : Integer × Integer). Y (initPoint [Y GenPoint] (u, v)) } 

From the bold highlight, it is clear that initPoint occurs both on the left and right-hand 
sides of this “definition”. As readers of this series will appreciate, a recursive definition is 
not a proper definition in the λ-calculus [1], but merely an equation that must be solved 
for some value of initPoint. 

7 CONSTRUCTOR-LEVEL RECURSION 

It is interesting to note that the model now requires recursion on three different levels: 
• object-level recursion, because objects frequently need to refer internally to self, 

so that methods can call other methods of the same object; 
• type-level recursion, because object types frequently define methods that accept 

and return objects of the same type as themselves; 
• constructor-level recursion, because objects frequently have methods that 

construct and return other objects like themselves. 
Constructor-level recursion was first identified by Cook and others [8]. In the cited paper, 
they referred to this initially as “class-level” recursion. Later, this was changed to 
“constructor-level” recursion, to better reflect the facts [9]. 

The technique for solving constructor-level recursion is the same one we have used 
for solving recursive definitions before [1], in which we abstract at the point of recursion 
and introduce a new variable standing for the recursively-defined thing, here the object 
constructor for Points. At first, it is tempting to think that we need to introduce a 
recursion variable standing for the whole of initPoint. However, the type-argument of this 
function doesn’t enter into the constructor-recursion: we know in advance that we are 
always going to create things of type τ, where τ is eventually bound to Point. The object 
constructor function is something that takes a pair of Integers and returns genPoint : τ → 
τ, a simple object generator for building recursive Point instances after their fields have 
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been initialised. We shall therefore introduce a constructor recursion variable ctor, with 
the type: 

ctor : (Integer × Integer) → (τ → τ) 
standing for the Point constructor. We will introduce this recursion variable after the type 
argument τ (so that τ will be bound) but before the other arguments from initPoint, 
because we need to fix the constructor-level recursion before we accept Integer 
arguments and fix the object-level recursion. The result is a typed generator for an object 
constructor, which we shall call genInitPoint and which has the type signature: 

genInitPoint : ∀(τ <: GenPoint[τ]).((Integer × Integer) → (τ → τ)) → 
   (Integer × Integer) → τ → GenPoint[τ] 

This looks a little daunting, but essentially it is similar to the type signature for initPoint, 
with an extra type argument in the signature, giving the type of the recursion variable 
ctor, standing for the constructor. The full definition of genInitPoint is given by: 

genInitPoint = λ(τ <: GenPoint[τ]).λ(ctor : (Integer × Integer) → (τ → τ)). 
     λ(a, b : Integer × Integer).λ(self : τ). 
  {x a a, y a b, equal a λ(p : τ).(self.x = p.x ∧ self.y = p.y), 
      move a λ(u, v : Integer × Integer). Y ( ctor (u, v)) } 

In this, ctor is introduced as the extra recursion variable standing for the Point 
constructor. This allows the use of ctor in the body of the move method. The application 
of the fixpoint finder Y is essentially to bind the object-level recursion inside instances 
created by ctor. We shall return to this below. Note that genInitPoint is now properly 
defined, without having to refer recursively to itself. 

8 OBJECTS WITH CONSTRUCTOR METHODS 

Point instances, which now have their own constructor method move, are created from 
this generator in several stages. First, we supply the desired type argument Point: 

genInitPoint[Point]   -- step 1, supply the type argument 

= λ(ctor : (Integer × Integer) → (Point → Point)). 
        λ(a, b : Integer × Integer).λ(self : Point). 
  {x a a, y a b, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y), 
      move a λ(u, v : Integer × Integer). Y ( ctor (u, v)) } 

This yields a typed function in which {Point/τ} has been substituted throughout. The first 
argument to this function is the recursion variable ctor. We want to bind ctor recursively 
over the rest of the body, using the fixpoint finder Y. But first, let us consider the type 



 
OBJECTS WITH CONSTRUCTOR METHODS 
 
 
 
 

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 23 

signature of the above function (after step 1), to see whether taking the fixpoint is a 
legitimate operation. It has the signature: 

((Integer × Integer) → (Point → Point)) → (Integer × Integer) → Point → Point 
in other words, it takes a first argument of the ctor constructor-type and then returns 
something with exactly the same type signature (if we ignore the bracketing of the 
remaining types). This is useful, because it satisfies the conditions for a generator. 
Generators must always have the form: gen : τ → τ, since, when they are applied to some 
argument, they must return that argument unchanged [1]. So, the step-1 result is indeed a 
generator-for-a-constructor, which we can now fix in step 2: 

Y (genInitPoint[Point])  -- step 2, fix the constructor recursion 

= µctor. λ(a, b : Integer × Integer).λ(self : Point). 
  {x a a, y a b, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y), 
      move a λ(u, v : Integer × Integer). Y ( ctor (u, v)) } 

This yields a Point-constructor function beginning λ(a, b : Integer × Integer) ... and in 
whose body ctor is recursively fixed to refer to this, the same Point-constructor function. 
We denote this fact by prefixing the function with µctor, according to convention [1]. 
Below, we must remember that ctor now refers to this function, the step-2 result. In the 
next step, we supply the desired coordinate position for a particular point instance: 

Y (genInitPoint[Point]) (2, 3)  -- step 3, supply instance coordinates 

= λ(self : Point). 
  {x a 2, y a 3, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y), 
      move a λ(u, v : Integer × Integer). Y ( ctor (u, v)) } 

This yields a function in which {2/a, 3/b} have been substituted, thereby supplying the 
coordinate position (2, 3) for the first point instance. The step-3 result is a function 
beginning λ(self : Point)…, in other words, a simple object generator, whose object-level 
recursion we can fix in the usual way using Y: 

Y (Y (genInitPoint[Point]) (2, 3)) -- step 4, fix the object recursion 

= µself. {x a 2, y a 3, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y), 
      move a λ(u, v : Integer × Integer). Y ( ctor (u, v)) } 

This is now a point instance, in which self refers recursively to this instance, and ctor 
refers back to the constructor which built this instance! Note how the formula for creating 
an object that contains its own constructor requires an additional fixpoint operation. The 
above formula could be rewritten to show all three fixpoints, including the type-level 
fixpoint: 

Y (Y (genInitPoint[Y GenPoint]) (2, 3)) 
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In this, the innermost fixpoint: [Y GenPoint] fixes the type-level recursion, yielding the 
recursive Point type. The next outermost fixpoint: Y (genInitPoint[Y GenPoint]) fixes 
the constructor-level recursion, yielding the recursive ctor constructor. The outermost 
fixpoint: Y (Y (genInitPoint[Y GenPoint]) (2, 3)) fixes the object-level recursion, after 
the constructor ctor has been applied to some initialisation arguments (2, 3), yielding the 
recursive point instance. 

9 UPDATING A POINT 

Let us call this initial Point instance p1, and construct it using the formula: 

p1 : Point = Y (Y (genInitPoint[Point]) (2, 3)) 

  ⇒ {x a 2, y a 3, equal a λ(p : Point).(p1.x = p.x ∧ p1.y = p.y), 
      move a λ(u, v : Integer × Integer). Y ( ctor (u, v)) } 

This object has a move method, which contains a recursive reference to the object 
constructor ctor that was used in the building of p1. We would like to see the effect of 
invoking the move method on p1, to see what kind of object this returns. We should like it 
to return a new Point instance at a different location, so we shall call this instance p2: 

p2 : Point = p1.move(4, 5) 
  ⇒ λ(u, v : Integer × Integer). Y ( ctor (u, v)) (4, 5)  -- select move 
  ⇒ Y ( ctor (4, 5))      -- bind {4/u, 5/v} 

At this stage, we have to refer back to the definition of ctor to understand how to simplify 
this any further. We obtain this definition formally by unrolling the value of the variable 
ctor, which was recursively bound at the end of step 2, above. The following sidebar 
shows this: 

ctor  ⇒       -- unroll ctor 
  λ(a, b : Integer × Integer).λ(self : Point). 
  {x a a, y a b, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y), 
      move a λ(u, v : Integer × Integer). Y ( ctor (u, v)) } 

So we can now continue the main simplification of p1.move(4,5) with the substitution: 

Y ( ctor (4, 5))   
  ⇒  Y (λ(a, b : Integer × Integer).λ(self : Point).   -- unroll ctor 
  {x a a, y a b, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y), 
      move a λ(u, v : Integer × Integer). Y ( ctor (u, v)) } (4, 5)) 
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  ⇒ Y λ(self : Point).       -- bind {4/a, 5/b} 
  {x a 4, y a 5, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y), 
      move a λ(u, v : Integer × Integer). Y ( ctor (u, v)) } 

  ⇒  µself.       -- take the fixpoint 
  {x a 4, y a 5, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y), 
      move a λ(u, v : Integer × Integer). Y ( ctor (u, v)) } 

This is the final result, showing that p2 is another Point instance at the coordinates (4, 5) 
and with its own copy of the constructor ctor embedded inside its move method. So, we 
have shown that it is possible to create objects with their own constructor-methods 
embedded inside them. However, it was theoretically dense and required three different 
levels of fixpoints. 

10 CONCLUSION 

We started this article with a discussion of how to model object state updates in the 
Theory of Classification. In λ-calculus, variable reassignment is prohibited, but the same 
effect may be approximated by extending all functions to accept and return an 
environment argument, which is some kind of map storing the current variable bindings. 
The machinery for binding and unbinding variables is quite complex: eventually, we must 
use a multimap and handle all binding, unbinding and lookup explicitly. Furthermore, we 
need implementations of List-methods like cons, head and tail to manipulate the 
multimaps, which are essentially association lists with duplicated keys. 

An alternative approach is to model state updates as the creation of new objects. A 
sequence of updates is modelled as a nested series of method invocations. However this 
requires a new level of sophistication in the model, in which objects contain their own 
constructors. The major part of this article was devoted to explaining constructor-level 
recursion. This is the third kind of recursion, after object-level and type-level recursion. 
With this facility, we were able to provide Point objects with a method: move : Integer × 
Integer → Point, which returns a new Point instance. This same facility would be 
required to define the List-methods cons and tail, which both return new List instances. 
So, constructor-level recursion is a generally useful feature, essential for the definition of 
more complex kinds of datatype. With this facility, we may now provide implementations 
for the container-classes like List and Stack, which had been deferred in the previous 
article [7]. 
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