
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 8, September-October 2004

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification, Part 14:
Modification and Objects like Myself”, in Journal of Object Technology, vol. 3, no. 8, September-
October 2004, pp. 15-26. http://www.jot.fm/issues/issue_2004_09/column2

The Theory of Classification
Part 14: Modification and Objects like
Myself

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the fourteenth article in a regular series on object-oriented theory for non-
specialists. Previous articles have built up models of objects [1], types [2] and classes [3]
in the λ-calculus. Inheritance has been shown to extend both types [4] and
implementations [5, 6], in the contrasting styles found in the two main families of object-
oriented languages. One group is based on (first-order) types and subtyping, and includes
Java and C++, whereas the other is based on (second-order) classes and subclassing, and
includes Smalltalk and Eiffel. The most recent article demonstrated how generic types
(templates) and generic classes can be added to the Theory of Classification [7], using
various Stack and List container-types as examples.

The last article concentrated just on the typeful aspects of generic classes, avoiding
the tricky issue of their implementations, even though previous articles have
demonstrated how to model both types and implementations separately [4, 5] and in
combination [6]. This is because many of the operations of a Stack or a List return
modified objects “like themselves”; and it turns out that this is one of the more difficult
things to model in the Theory of Classification. The attentive reader will have noticed
that we have so far avoided the whole issue of object modification. This is, after all, quite
an important area to consider, since one of the main benefits of object-oriented
programming is to encapsulate state and handle state updates in a clean fashion. In the
current article, we consider the whole area of environment modelling and the creation of
modified objects. Eventually, this leads to an extension to the theory to handle
constructor-methods, through the use of which an object can create another object “like
itself”.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_09/column2

THE THEORY OF CLASSIFICATION, PART 14: MODIFICATION AND OBJECTS LIKE MYSELF

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

2 THE GLOBAL ENVIRONMENT

The whole idea of object modification, modelled as updates to the values stored in
attribute variables, is problematic in a functional calculus like the λ-calculus. This is
because pure functional languages do not support the notion of reassignment to variables.
This would be a side-effect, and pure functional languages are intentionally free of side-
effects, a property known as referential transparency. However, the effect of assignment
may be approximated using a global set of variable bindings, called the environment,
which is passed from function to function as the program is executed. The environment is
an associative map from variable names to their bound values. For example, the
following map is an environment which contains two variables p1, p2 which map to
records representing simple coordinates:

globalEnv = {p1 a {x a 2, y a 3}, p2 a {x a 4, y a 7}, … }
During program execution, we may want certain statements to update the global
environment. Modifications cannot literally change the state of the environment, since we
are working in a pure functional language without side-effects; instead, they construct
new environments in which appropriate changes have been made. The environment must
therefore be passed in and out of each function, since assignments may occur at any point
and their effect must be recorded. Every function accepts the environment as an extra first
argument. Likewise, every function returns a packaged result, which is a pair of the
environment and the function’s usual return value. The caller of a function must unpack
the returned result to determine the state of the environment, as well as accessing the
ordinary return value.

Initially, the environment is empty. As variables are declared and initialised, these
are added to the environment using a function like env-add:

env-add : Map → Label → Value → Map
= λ(env : Map).λ(var : Label).λ(val : Value).env ⊕ {var a val}

which takes an environment, a variable name and a value to bind to this variable in the
environment. The function returns the new environment, in which the old environment
env is combined with a maplet from the variable var to the value val. Since the function
override operator ⊕ is used [5], this will ensure that {var a val} is added to the bindings
in the environment, replacing any existing binding for var. This is useful to model both
variable declaration with initialisation, when a variable is first added to the environment,
and variable reassignment, when the value associated with a variable is replaced.

At any moment, the environment contains the most recently-bound version of each
of the variables. In the body of a function, access to any global variable is modelled by
looking up the value stored in the environment. Since the environment is basically a map
(which is the same thing as a finite function [1]) this can be done by applying the

THE GLOBAL ENVIRONMENT

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 17

environment, like a function, to the labels used as variable names. For example, the
following expression looks up the value of p1 in globalEnv:

globalEnv (p1) ⇒ {x a 2, y a 3}
To change the coordinate associated with variable p1, we may execute the expression:

env-add (globalEnv) (p1) ({x a 5, y a 1}) -- supply 3 arguments
 ⇒ globalEnv ⊕ {p1 a {x a 5, y a 1}} -- the body of env-add
 ⇒ {p1 a {x a 5, y a 1}, p2 a {x a 4, y a 7}, … } -- new globalEnv

and this rebinds the value of the variable p1, returning a new environment in which p1
maps to a different coordinate instance. This models the notion of reassignment.

3 LOCAL AND GLOBAL UPDATES

Things are made slightly more complicated if we want both global and local variable
bindings. If all functions merely had local variables, upon function exit the environment
could revert to the environment that was originally passed to the function. This would
ensure that the bindings set up on entry to the function were forgotten and any older
bindings for the same variables were restored. However, we want the global bindings to
persist between each function call. The environment passed to a function may possibly be
modified and should therefore be handed back as part of the result.

One possible approach is to try to distinguish between the global environment, and
local variables, which are bound on entry to functions in the usual way. The problem with
this approach is that a local variable may shadow the name of a global variable in the
environment. When such a variable is updated, we would expect the local copy to be
modified, since the global variable would be hidden. Upon exit from this scope, the
global binding would be restored. However, it is hard to imagine how we could integrate
primitive λ-calculus binding with looking up variables in a constructed environment. In
any case, most state variables are introduced as local variables within the scope of some
object or function, so it is hard to distinguish between the two kinds of variables in
practice.

Another approach is to use a multimap for the environment, that is, a kind of map
with duplicated keys, rather like the association list provided in Common Lisp.
Whenever a scope is entered and a new variable binding is added, it is inserted ahead of
any existing bindings for the same variable. Whenever a value is looked up, the lookup
function returns the first bound value it finds, which hides any other older bindings found
later in the list. Whenever a scope is exited, all local variables are descoped by explicitly
removing the first binding found for each variable, so restoring any older bindings.
Whenever a variable is reassigned, the first occurrence of the variable is rebound to the
new value; and this works whether the variable is global or local. To do this, we need a
family of functions to manipulate the environment:

THE THEORY OF CLASSIFICATION, PART 14: MODIFICATION AND OBJECTS LIKE MYSELF

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

env-insert : Multimap → Label → Value → Multimap
env-remove : Multimap → Label → Multimap
env-replace : Multimap → Label → Value → Multimap
env-lookup : Multimap → Label → Value

which behave as described above. The implementations of these functions would use
primitive list operations, such as cons, head and tail to search through the lists
representing the multimaps. We defer a fuller treatment of this until a later article.

4 MODELLING UPDATES AS NEW OBJECTS

For the moment, the simplest approach is to assume that objects in the theoretical model
are “pure functional objects”, that is, all modifications to object state do not literally
modify the state of the object, rather they create and return a new object in which the
changes are manifest. There is no fundamental reason why an imperative language cannot
be approximated by a functional calculus in this way. The only difference is that all state-
modifying methods, which are typically void-methods in a concrete language, now have
to return a new instance of their owning type. Sequences of modifications have to be
modelled as nested method invocations. As an example, consider the following Point
type:

Point = µσ.{x : Integer, y : Integer, equal : σ → Boolean,
 move : Integer × Integer → σ}

which, in addition to the usual x, y and equal methods, has a move method to update its
position. This method is typed to return another Point object, reflecting the fact that the
modified position is in fact a newly-created instance of Point. Issuing a sequence of move
instructions to a Point object p could be represented by the following nested method
invocations:

p.move(2, 3).move(4, 5).move(6, 7)
since each move returns a new Point, which becomes the receiver of the subsequent move
message. Although, in the model, the final Point instance at (6, 7) is a distinct object from
the original p : Point, we can still reason about such sequences of update operations. But
there is a catch: while the idea sounds straightforward in principle, it turns out that
implementing the move method in practice is quite difficult to accomplish in the
theoretical model. So far, none of our object types has had the ability to create new
instances “like itself”. As we shall see below, this requires yet another level of recursion,
in which objects contain their own object constructors.

CONSTRUCTORS FOR OBJECTS

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 19

5 CONSTRUCTORS FOR OBJECTS

In an earlier article [6], we established the basic strategy for constructing new objects. It
involved first constructing the object type, then the object implementation, from
generators. The basic Point record type (without the move method) must be constructed
from a generator, because it refers to itself recursively:

GenPoint = λσ.{x : Integer, y : Integer, equal : σ → Boolean}
and the recursion variable σ is later bound to the record type by taking the fixpoint using
Y.

Point = Y [GenPoint]
 ⇒ {x : Integer, y : Integer, equal : Point → Boolean} -- after unrolling

The basic point record instance must also be constructed from a generator, because it
refers to itself recursively. A typed object generator is used, so that we can attach types to
the bound variables. This is the generator for a specific point instance, at the location (2,
3):

genPoint : ∀(τ <: GenPoint[τ]). τ → GenPoint[τ]
= λ(τ <: GenPoint[τ]).λ(self : τ).
 {x a 2, y a 3, equal a λ(p : τ).(self.x = p.x ∧ self.y = p.y)}

The recursive point instance is then constructed by supplying a type Point as the first
type-argument, and then taking the fixpoint using Y, to bind the recursion variable self
over the rest of the record:

point = Y (genPoint [Point])
 ⇒ {x a 2, y a 3, equal a λ(p : τ).(point.x = p.x ∧ point.y = p.y)}

While this works well for examples of specific points, we wanted to allow the creation of
points that were initialised to different coordinates. To do this, we extended the generator
to accept an extra initialisation argument, a pair of Integers [6]:

initPoint : ∀(τ <: GenPoint[τ]). (Integer × Integer) → τ → GenPoint[τ]
= λ(τ <: GenPoint[τ]).λ(a, b : Integer × Integer).λ(self : τ).
 {x a a, y a b, equal a λ(p : τ).(self.x = p.x ∧ self.y = p.y)}

And from this, we could define a simple object constructor, makePoint, which uses the
type generator GenPoint and the extended object generator initPoint internally to
establish the recursive Point type, and the recursive point instance, respectively:

makePoint : Integer × Integer → Point
= λ(a, b : Integer × Integer). Y (initPoint [Y GenPoint] (a, b))

THE THEORY OF CLASSIFICATION, PART 14: MODIFICATION AND OBJECTS LIKE MYSELF

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

An example of creating a point instance at a different location is given by:

makePoint(4, 5)
 ⇒ Y (initPoint [Y GenPoint] (4, 5))
 ⇒ Y (λ(a, b : Integer × Integer).λ(self : Point).
 {x a a, y a b, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y)} (4, 5))
 ⇒ Y (λ(self : Point).
 {x a 4, y a 5, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y)})
 ⇒ µself.{x a 4, y a 5, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y)}

The main thing to notice about all this is that object generators like initPoint contain
within them the structure of the instance that they create. The initPoint function accepts
some arguments (a type argument, then a pair of Integers, then the value for self) and
returns, as the body, the structure of the point instance. The generator must logically exist
prior to the creation of any object instance. It is therefore hard to imagine how we might
create an object instance that contains its own generator! This is rather like trying to pull
yourself up by your own shoelaces.

6 CREATING OBJECTS LIKE MYSELF

However, as we anticipated in section 4 above, every time the move method is invoked,
we require a Point object to create a new instance like itself, except that the x and y
coordinates will take on different values. This is exactly like requiring an object to have
its own constructor as one of its methods. To see this, we shall change the definition of
the Point-type, so that it now also has a move method. Defining the type is
straightforward:

GenPoint = λσ.{x : Integer, y : Integer, equal : σ → Boolean,
 move : Integer × Integer → σ}

Point = Y [GenPoint]
 ⇒ {x : Integer, y : Integer, equal : Point → Boolean,
 move : Integer × Integer → Point} -- after unrolling

However, the implementation is less straightforward. If we could assume that an object
constructor makePoint already existed, we could provide the extended generator for
moveable points with extra initialisation arguments as the following:

initPoint : ∀(τ <: GenPoint[τ]). (Integer × Integer) → τ → GenPoint[τ]
= λ(τ <: GenPoint[τ]).λ(a, b : Integer × Integer).λ(self : τ).
 {x a a, y a b, equal a λ(p : τ).(self.x = p.x ∧ self.y = p.y),
 move a λ(u, v : Integer × Integer).makePoint(u, v) }

CREATING OBJECTS LIKE MYSELF

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 21

Here, the implementation of the move method has been added, in which the body simply
calls makePoint with the same pair of Integer arguments that were given to the move
method. This should in principle create and return a new Point instance at the desired
location.

However, the above is not yet a legal definition. The reason for this is that
makePoint must use initPoint internally to construct the new object instance. As a result,
the above implies a recursive definition of initPoint. To see the recursion more clearly,
we can replace the occurrence of makePoint by its expansion into generators (this comes
from the body of the definition of makePoint in section 5 above):

initPoint : ∀(τ <: GenPoint[τ]). (Integer × Integer) → τ → GenPoint[τ]
= λ(τ <: GenPoint[τ]).λ(a, b : Integer × Integer).λ(self : τ).
 {x a a, y a b, equal a λ(p : τ).(self.x = p.x ∧ self.y = p.y),
 move a λ(u, v : Integer × Integer). Y (initPoint [Y GenPoint] (u, v)) }

From the bold highlight, it is clear that initPoint occurs both on the left and right-hand
sides of this “definition”. As readers of this series will appreciate, a recursive definition is
not a proper definition in the λ-calculus [1], but merely an equation that must be solved
for some value of initPoint.

7 CONSTRUCTOR-LEVEL RECURSION

It is interesting to note that the model now requires recursion on three different levels:
• object-level recursion, because objects frequently need to refer internally to self,

so that methods can call other methods of the same object;
• type-level recursion, because object types frequently define methods that accept

and return objects of the same type as themselves;
• constructor-level recursion, because objects frequently have methods that

construct and return other objects like themselves.
Constructor-level recursion was first identified by Cook and others [8]. In the cited paper,
they referred to this initially as “class-level” recursion. Later, this was changed to
“constructor-level” recursion, to better reflect the facts [9].

The technique for solving constructor-level recursion is the same one we have used
for solving recursive definitions before [1], in which we abstract at the point of recursion
and introduce a new variable standing for the recursively-defined thing, here the object
constructor for Points. At first, it is tempting to think that we need to introduce a
recursion variable standing for the whole of initPoint. However, the type-argument of this
function doesn’t enter into the constructor-recursion: we know in advance that we are
always going to create things of type τ, where τ is eventually bound to Point. The object
constructor function is something that takes a pair of Integers and returns genPoint : τ →
τ, a simple object generator for building recursive Point instances after their fields have

THE THEORY OF CLASSIFICATION, PART 14: MODIFICATION AND OBJECTS LIKE MYSELF

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

been initialised. We shall therefore introduce a constructor recursion variable ctor, with
the type:

ctor : (Integer × Integer) → (τ → τ)
standing for the Point constructor. We will introduce this recursion variable after the type
argument τ (so that τ will be bound) but before the other arguments from initPoint,
because we need to fix the constructor-level recursion before we accept Integer
arguments and fix the object-level recursion. The result is a typed generator for an object
constructor, which we shall call genInitPoint and which has the type signature:

genInitPoint : ∀(τ <: GenPoint[τ]).((Integer × Integer) → (τ → τ)) →
 (Integer × Integer) → τ → GenPoint[τ]

This looks a little daunting, but essentially it is similar to the type signature for initPoint,
with an extra type argument in the signature, giving the type of the recursion variable
ctor, standing for the constructor. The full definition of genInitPoint is given by:

genInitPoint = λ(τ <: GenPoint[τ]).λ(ctor : (Integer × Integer) → (τ → τ)).
 λ(a, b : Integer × Integer).λ(self : τ).
 {x a a, y a b, equal a λ(p : τ).(self.x = p.x ∧ self.y = p.y),
 move a λ(u, v : Integer × Integer). Y (ctor (u, v)) }

In this, ctor is introduced as the extra recursion variable standing for the Point
constructor. This allows the use of ctor in the body of the move method. The application
of the fixpoint finder Y is essentially to bind the object-level recursion inside instances
created by ctor. We shall return to this below. Note that genInitPoint is now properly
defined, without having to refer recursively to itself.

8 OBJECTS WITH CONSTRUCTOR METHODS

Point instances, which now have their own constructor method move, are created from
this generator in several stages. First, we supply the desired type argument Point:

genInitPoint[Point] -- step 1, supply the type argument

= λ(ctor : (Integer × Integer) → (Point → Point)).
 λ(a, b : Integer × Integer).λ(self : Point).
 {x a a, y a b, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y),
 move a λ(u, v : Integer × Integer). Y (ctor (u, v)) }

This yields a typed function in which {Point/τ} has been substituted throughout. The first
argument to this function is the recursion variable ctor. We want to bind ctor recursively
over the rest of the body, using the fixpoint finder Y. But first, let us consider the type

OBJECTS WITH CONSTRUCTOR METHODS

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 23

signature of the above function (after step 1), to see whether taking the fixpoint is a
legitimate operation. It has the signature:

((Integer × Integer) → (Point → Point)) → (Integer × Integer) → Point → Point
in other words, it takes a first argument of the ctor constructor-type and then returns
something with exactly the same type signature (if we ignore the bracketing of the
remaining types). This is useful, because it satisfies the conditions for a generator.
Generators must always have the form: gen : τ → τ, since, when they are applied to some
argument, they must return that argument unchanged [1]. So, the step-1 result is indeed a
generator-for-a-constructor, which we can now fix in step 2:

Y (genInitPoint[Point]) -- step 2, fix the constructor recursion

= µctor. λ(a, b : Integer × Integer).λ(self : Point).
 {x a a, y a b, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y),
 move a λ(u, v : Integer × Integer). Y (ctor (u, v)) }

This yields a Point-constructor function beginning λ(a, b : Integer × Integer) ... and in
whose body ctor is recursively fixed to refer to this, the same Point-constructor function.
We denote this fact by prefixing the function with µctor, according to convention [1].
Below, we must remember that ctor now refers to this function, the step-2 result. In the
next step, we supply the desired coordinate position for a particular point instance:

Y (genInitPoint[Point]) (2, 3) -- step 3, supply instance coordinates

= λ(self : Point).
 {x a 2, y a 3, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y),
 move a λ(u, v : Integer × Integer). Y (ctor (u, v)) }

This yields a function in which {2/a, 3/b} have been substituted, thereby supplying the
coordinate position (2, 3) for the first point instance. The step-3 result is a function
beginning λ(self : Point)…, in other words, a simple object generator, whose object-level
recursion we can fix in the usual way using Y:

Y (Y (genInitPoint[Point]) (2, 3)) -- step 4, fix the object recursion

= µself. {x a 2, y a 3, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y),
 move a λ(u, v : Integer × Integer). Y (ctor (u, v)) }

This is now a point instance, in which self refers recursively to this instance, and ctor
refers back to the constructor which built this instance! Note how the formula for creating
an object that contains its own constructor requires an additional fixpoint operation. The
above formula could be rewritten to show all three fixpoints, including the type-level
fixpoint:

Y (Y (genInitPoint[Y GenPoint]) (2, 3))

THE THEORY OF CLASSIFICATION, PART 14: MODIFICATION AND OBJECTS LIKE MYSELF

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

In this, the innermost fixpoint: [Y GenPoint] fixes the type-level recursion, yielding the
recursive Point type. The next outermost fixpoint: Y (genInitPoint[Y GenPoint]) fixes
the constructor-level recursion, yielding the recursive ctor constructor. The outermost
fixpoint: Y (Y (genInitPoint[Y GenPoint]) (2, 3)) fixes the object-level recursion, after
the constructor ctor has been applied to some initialisation arguments (2, 3), yielding the
recursive point instance.

9 UPDATING A POINT

Let us call this initial Point instance p1, and construct it using the formula:

p1 : Point = Y (Y (genInitPoint[Point]) (2, 3))

 ⇒ {x a 2, y a 3, equal a λ(p : Point).(p1.x = p.x ∧ p1.y = p.y),
 move a λ(u, v : Integer × Integer). Y (ctor (u, v)) }

This object has a move method, which contains a recursive reference to the object
constructor ctor that was used in the building of p1. We would like to see the effect of
invoking the move method on p1, to see what kind of object this returns. We should like it
to return a new Point instance at a different location, so we shall call this instance p2:

p2 : Point = p1.move(4, 5)
 ⇒ λ(u, v : Integer × Integer). Y (ctor (u, v)) (4, 5) -- select move
 ⇒ Y (ctor (4, 5)) -- bind {4/u, 5/v}

At this stage, we have to refer back to the definition of ctor to understand how to simplify
this any further. We obtain this definition formally by unrolling the value of the variable
ctor, which was recursively bound at the end of step 2, above. The following sidebar
shows this:

ctor ⇒ -- unroll ctor
 λ(a, b : Integer × Integer).λ(self : Point).
 {x a a, y a b, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y),
 move a λ(u, v : Integer × Integer). Y (ctor (u, v)) }

So we can now continue the main simplification of p1.move(4,5) with the substitution:

Y (ctor (4, 5))
 ⇒ Y (λ(a, b : Integer × Integer).λ(self : Point). -- unroll ctor
 {x a a, y a b, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y),
 move a λ(u, v : Integer × Integer). Y (ctor (u, v)) } (4, 5))

UPDATING A POINT

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 25

 ⇒ Y λ(self : Point). -- bind {4/a, 5/b}
 {x a 4, y a 5, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y),
 move a λ(u, v : Integer × Integer). Y (ctor (u, v)) }

 ⇒ µself. -- take the fixpoint
 {x a 4, y a 5, equal a λ(p : Point).(self.x = p.x ∧ self.y = p.y),
 move a λ(u, v : Integer × Integer). Y (ctor (u, v)) }

This is the final result, showing that p2 is another Point instance at the coordinates (4, 5)
and with its own copy of the constructor ctor embedded inside its move method. So, we
have shown that it is possible to create objects with their own constructor-methods
embedded inside them. However, it was theoretically dense and required three different
levels of fixpoints.

10 CONCLUSION

We started this article with a discussion of how to model object state updates in the
Theory of Classification. In λ-calculus, variable reassignment is prohibited, but the same
effect may be approximated by extending all functions to accept and return an
environment argument, which is some kind of map storing the current variable bindings.
The machinery for binding and unbinding variables is quite complex: eventually, we must
use a multimap and handle all binding, unbinding and lookup explicitly. Furthermore, we
need implementations of List-methods like cons, head and tail to manipulate the
multimaps, which are essentially association lists with duplicated keys.

An alternative approach is to model state updates as the creation of new objects. A
sequence of updates is modelled as a nested series of method invocations. However this
requires a new level of sophistication in the model, in which objects contain their own
constructors. The major part of this article was devoted to explaining constructor-level
recursion. This is the third kind of recursion, after object-level and type-level recursion.
With this facility, we were able to provide Point objects with a method: move : Integer ×
Integer → Point, which returns a new Point instance. This same facility would be
required to define the List-methods cons and tail, which both return new List instances.
So, constructor-level recursion is a generally useful feature, essential for the definition of
more complex kinds of datatype. With this facility, we may now provide implementations
for the container-classes like List and Stack, which had been deferred in the previous
article [7].

THE THEORY OF CLASSIFICATION, PART 14: MODIFICATION AND OBJECTS LIKE MYSELF

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

REFERENCES

[1] A J H Simons: “The Theory of Classification, Part 3: Object Encodings and
Recursion”, in Journal of Object Technology, vol. 1, no. 4, September-October
2002, pp. 49-57. http://www.jot.fm/issues/issue_2002_09/column4

[2] A J H Simons: “The Theory of Classification, Part 4: Object Types and Subtyping”,
in Journal of Object Technology, vol. 1, no. 5, November-December 2002, pp. 27-
35. http://www.jot.fm/issues/issue_2002_11/column2

[3] A J H Simons: “The Theory of Classification, Part 7: A Class is a Type Family”, in
Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 13-22.
http://www.jot.fm/issues/issue_2003_05/column2

[4] A J H Simons: “The Theory of Classification, Part 8: Classification and
Inheritance”, in Journal of Object Technology, vol. 2, no. 4, July-August 2003, pp.
55-64. http://www.jot.fm/issues/issue_2003_07/column4

[5] A J H Simons: “The Theory of Classification, Part 9: Inheritance and Self-
Reference”, in Journal of Object Technology, vol. 2, no. 6, November-December
2003, pp. 25-34. http://www.jot.fm/issues/issue_2003_11/column2

[6] A J H Simons: “The Theory of Classification, Part 12: Building the Class
Hierarchy”, in Journal of Object Technology, vol. 3, no. 5, May-June 2004, pp. 13-
24. http://www.jot.fm/issues/issue_2004_05/column2

[7] A J H Simons: “The Theory of Classification, Part 13: Template Classes and
Genericity”, in Journal of Object Technology, vol. 3, no. 7, July-August 2004, pp.
15-25. http://www.jot.fm/issues/issue_2004_07/column2

[8] W Cook, W Hill and P Canning: “Inheritance is not Subtyping”, Proc. 17th ACM
Symp. Principles of Prog. Lang., (ACM Sigplan, 1990), pp. 125-135.

[9] W Harris, Typed Object-Oriented Programming: ABEL Project Posthumous
Report, Hewlett-Packard Laboratories (1991).

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Science, University of Sheffield, where he
leads object-oriented research in verification and testing, type theory
and language design, development methods and precise notations. He
can be reached at a.simons@dcs.shef.ac.uk.

http://www.jot.fm/issues/issue_2002_09/column4
http://www.jot.fm/issues/issue_2002_11/column2
http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2003_07/column4
http://www.jot.fm/issues/issue_2003_11/column2
http://www.jot.fm/issues/issue_2004_05/column2
http://www.jot.fm/issues/issue_2004_07/column2
mailto:a.simons@dcs.shef.ac.uk

