
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 8, September-October 2004

Cite this article as follows: Amar Ramdane-Cherif, Nicole Levy, Francisca Losavio: “Agent Paradigm
for Adaptable Architecture”, in Journal of Object Technology, vol. 3, no. 8, September-October 2004,
pp. 169-182. http://www.jot.fm/issues/issue_2004_09/article4

Agent Paradigm for Adaptable
Architecture

Amar Ramdane-Cherif, Nicole Levy, PRiSM, Université de Versailles, France
Francisca Losavio, Centro ISYS, LaTecS, Universidad Central de Venezuela,
Caracas, Venezuela

Abstract
Dynamic changes to an architecture is an active area of research within the software
architecture community. Architectures must have the ability to react to events and perform
architectural changes autonomously. In this paper, we focus on dynamic architectures
reconfiguration. Our principle is to use the agent architectural concept to achieve this
functionality with respect to some quality attributes. Hence the questions that we are
currently facing: what are the architectural principles involved in building adaptable
architecture? How should these architectures be evaluated? In addition, we adopt the B
formal method to support design specifications for agent software architecture. Formal
modeling of a specification of our agent software architecture enables us to analyze and
reason about it with mathematical precision and allows obtaining the abstract specification
of the initial architecture formally. Besides, the design decisions are stored with the goal of
making the reconfiguration tasks easier by the agent. This paper describes work in progress
and presents some interesting ideas connected to architectural agents.

1 INTRODUCTION

A critical aspect of any complex software system is its architecture. The “architecture” term
conveys several meanings, sometimes contradictory. In our research we consider that
architecture deals with the structure of the components of a system, their interrelationships
and guidelines governing their design and evolution over time [1][2]. The architectural model
of a system provides a high level description that enables compositional design and analysis
of components-based systems. The architecture then becomes the basis of systematic
development and evolution of software systems. Furthermore, the development of complex
software systems is demanding well-established approaches that guarantee the robustness and
other qualities of products. This need is becoming more and more relevant as the
requirements of customers and the potential of computer telecommunication networks grow.
A software architecture-driven development process based on architectural styles consists of
a requirement analysis phase, a software architecture phase, a design phase and maintenance
and modifications phase. During the software architecture phase which we present in figure

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_09/article4

AGENT PARADIGM FOR ADAPTABLE ARCHITECTURE

170 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

1, one models the system architecture. To do so, a modeling technique must be chosen, then a
software architectural style must be selected and instantiated for the concrete problem to be
solved. The architecture obtained is then refined either by adding some details or by
decomposing components or connectors (recursively going through modeling, choice of a
style, instantiation and refinement). This process should result in an architecture that is
defined, abstract and reusable. The refinement produces a concrete architecture meeting the
environments, the functional and non-functional requirements and all the constraints on
dynamics aspect besides the static ones.

Fortunately, it is possible to make quality predictions about a system. These will be
based solely on an evaluation of its architecture. However, it is important to provide a
method operating at the architectural level that will provide a substantial help in detecting
and preventing errors early in development. We are interested in applying the previous
software architecture phase to provide a new approach based on an architectural agent. Such
an agent is used to supervise the architecture, gather information from it and its environment,
capture dynamic changes, and manage them. it monitors the components dynamically and
adapts them to structural changes in the architecture. The correctness and robustness of the
architecture is ensured by the agents as the changes take place so that the system conforms to
its architecture and remains in conformance throughout its lifetime. The B formal method
will be used to specify precisely the structure and the behavior of our architecture and to
prove rigorously that this architecture satisfies the desired structural and behavioral
properties.

Chose modeling technique

Model

Modeling technique

Apply to problem

Style

System model Architectural style

Architecture Refine

Instantiate style for problem

Chose architectural style

activity

product

Requirements

AgentData base

Figure 1. Software architecture phase

This paper is organized as follows. In the next section, we will introduce the related work and
then our approach and some ideas about its methodology and framework will be presented.
Then, we will briefly describe the B formal method used to specify our architecture. In the

INTRODUCTION

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 171

next section, we describe an application which is highly simplified for presentation purpose.
Finally, the paper concludes with a discussion of future directions for this work.

2 RELATED WORK

In earlier works on description and analysis of architectural structures the focus has been on
static architectures. Recently, the need of the specification of the dynamic aspects besides the
static ones has increased [3][4]. Several authors have developed some approaches on
dynamism in architectures which fulfill the important separation of the dynamic
reconfiguration behavior from the non-reconfiguration. These approaches increase the
reusability of some systems components and ease the understanding. In [5], the authors use
an extended specification to introduce dynamism in Wright-language. The work in [6]
focuses on the addition of a complementary language for expressing modifications and
constraints in the message-based C2-architectural-style. A similar approach is used in Darwin
[7] where a reconfiguration manager controls the required reconfiguration using a scripting
language. Many other investigations have addressed the issue of dynamic reconfiguration
with respect to the application requirements. For instance, Polylith [8] is a distributed
programming environment based on a software bus which allows structural changes on
heterogeneous distributed application systems. In Polylith, the reconfiguration can only occur
at special moments called reconfigurations points explicitly identified in the application
source code. Thus, this mechanism presents some disadvantages making Polylith unsuitable
for the purpose of dynamic reconfiguration. The Durra programming environment [9]
supports an event-triggered reconfiguration mechanism. Its disadvantage is that the
reconfiguration treatment is introduced in the source code of the application and the
programmer has to consider all possible execution events which may trigger a
reconfiguration. Argus [10] is another approach based on transactional operating system then
the application must comply to a specific programming model. This approach is not suitable
to deal with heterogeneity and interoperability. Conic [11] approach proposes an application
independent mechanism where reconfiguration changes affect component interactions. Each
reconfiguration action can be fired if and only if components are in a determined state. The
implementation tends to lock a large part of the application, hence, causing important
disruption. New formal languages are proposed for the specification of mobility features; a
short list includes [12] and [13]. Particularly in [14] a new experimental infrastructure is used
to study two major issues in mobile component systems. The first issue is how to develop
and to provide a robust mobile component architecture and the second issue is how to write
code in these kinds of systems. This analysis makes it clear that a new architecture that
permits the dynamism reconfiguration, adaptation and evolution while ensuring the integrity
of the application is needed. In the next section, we propose such an architecture based on
agent components.

AGENT PARADIGM FOR ADAPTABLE ARCHITECTURE

172 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

3 AGENT SOFTWARE ARCHITECTURE

Our idea is to include additional special intelligent components in the architecture called
“Agents”. The agents act autonomously to adapt dynamically the application without
requiring outside intervention. Thus, the agents monitor the architecture, perform
reconfiguration, evolution and adaptation, to structural changes at the architectural level and
achieve effective reactive architectural concept as shown in figure 2(a).

Agent interface

The interface of each agent is defined as the set of provided actions but also required events.
To each agent we attach Event/Condition/Action-rules mechanism in order to react with the
architecture and the architectural environment and perform activities. Performing an activity
means invoking one or more dynamic method modification with suitable parameters. Figure
2(b) provides a schematic overview of an agent.

BN : Base knowledge; R_B_S : Rule-based-system; A:
actions; Env: environnement
E: events; Arc : architecture

Environment 1

Fragment A

Environment 2

Fragment B

 : connector : agent
 : component : network

 : events, sensors : communication

C5 C6

C7

C2 C4

C1 C3

(a)

R_B_S

EA

BN

ArcEnv

(b)

Figure 2. (a) The based architecture; (b) Schema overview of an agent

Agent knowledge

The agent has a complete knowledge of the architecture or simply of the configuration part of
the architecture that implements one relevant aspect. However, the agent can obtain
information about other parts of the architecture by communicating with others agents. The
agent provides the architectural operations needed to build up, add, delete, modify (faulty
data), update, adapt, assembly, check (for new version), immigrate, transfer, restart and
…(etc) a specific component, connector or a configuration. The agent implements several
different protocols of dynamic switching of architectures. All the structuring architectural
information and the full definitions of all the protocols are its part of knowledge base.
Therefore, the agent is the locus of dynamic topological transformations, it constructs an
initial topology at system’s start-up and provides a set of topological operations to modify it.

AGENT SOFTWARE ARCHITECTURE

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 173

Agent rule

The behavior of an agent is expressed in terms of Rules which are grouped in the behavior
units. The concept of behavior units is used to partition the behavior of an agent. Each
behavior unit belongs to one class of the architecture modification and is associated with
specific triggering event type. At reception of some event of this type, the behavior described
in this behavior unit is activated. The event is defined by name and the number of
parameters. For instance, check (object) is a notification event whose name is check and has
one parameter object. In this protocol, the agent receives the events which are expressions
over names and the parameters of a notification. So, for example check∗ (_,_) would match
all the notifications whose name starts with check and that have two parameters. The body of
a behavior unit is a set of dynamic rules having the form:

IF “Preconditions” THEN “Actions”
The preconditions of a rule are expressed as a Boolean formula that have to be satisfied

before the actions described in the THEN part can be executed. The receipt of a triggering
event by a behavior unit activates all the dynamic rules of that behavior unit. The
preconditions of rules of the same behavior unit are mutually exclusive, so that exactly one of
the rules will always be fired. Actions in the THEN part of a rule may modify/create/delete
….components/connectors instances and/or produce some events sent to other behavior units
or to the external architecture and its environment. The dynamic behavior of each object
class modification is modeled as a collection of rules grouped in behavior units specified for
that class and triggered by specific events.

In the following we give a brief description of the B formal method that we used to
specify our architecture dynamic services needed for reconfiguration, adaptation and
evolution actions.

4 THE B FORMAL METHOD

B is a formal method developed by Abrial [15]. It is a complete method that supports a large
segment of the development life cycle: specification, refinement and implementation. It has
already been used in significant industrial projects and commercial case tools are available in
order to help the specifier during all development process. In the B method, the are three
syntactic kinds of components: abstract machine, refinements and implementation. In our
work we have used the B method for specifying, designing and coding our Agent component
as shown in Figure 3.

a) First, a high level of abstraction is used for the initial specification which abstracts
from the details and describes the observable behaviour of our agent architecture and
the global view of the functionality that it provides. Then, explicit proof obligations
are provided. Proof of these obligations ensures that the relevant properties of the
system hold.

AGENT PARADIGM FOR ADAPTABLE ARCHITECTURE

174 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

b) Second, a refinement allows us to gradually add more detail to our previous abstract
specification. Explicit proof obligations for refinement are provided. Proving these
obligations ensures that the relevant properties of the system still hold.

c) Third, an implementation is the last level of a development, it cannot be refined, so it
can be translated into code.

Primitive_Agent

Global_Agent

Strategy_Agent Strategy_Agent_R Strategy_Agent_I

Machine
 Refinement
 Implementation
 Includes
 Uses

Figure 3. The agent abstract machine, refinement and implementation

In the following, we give through a simple application, just a part of our definition of the
specification due to space limitations.

5 APPLICATION

In this section, we describe our application. It is a simple distributed shared to-do list
application in which client and manager share a list of queries. This application, which is
highly simplified for presentation purposes (figure 4), consists of:
COMPONENTS :

1. The visualizer component displays for user the current contents of a shared list. It has
three ports: the first port (V_provide_port) connects to a shared list component, the
second port (V_required_port1) receives events which indicate changes in a shared
list, and the third port (V_required_port2) shares the currently marked entry in the list
with any interested component.

2. The editor component has two ports (E_required_port1; E_required_port2) which
connect it to a shared list and to marked entry of the visualizer component. The user
can add new entries to the list or edit other selected entries in the list.

3. The delete button component is connected to a shared list and to a marked entry and if
pressed, it deletes the marked entry in the list. So it has two ports
(Delete_required_Port1; Delete_required_Port2)

4. The done button component is connected like the delete button. When pressed, it sets
the flag of the marked entry to “completed”. It also has two ports
(Done_required_Port1; Done_required_Port2)

5. The shared list component resides on a server and maintains a list of queries. This list
is shared via the ToDoList_provide_port port and other components are notified of
changes via the ListChanged_provide_port event port.

APPLICATION

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 175

Manager instance

Visualizer component

Editor
component

Delete Button
component

 required role required port
 provide role provide port
 shared connector
 event connector

 Server instance

Shared List component

Editor
component

done Button
component

Visualizer component

Client instance

Figure 4. A simple distributed shared to-do list application

CONNECTORS:
1. A shared connector has two roles: the S_provide_role and the S_required_role. Such

a connector is in charge of connections between the components (editor, visualizer,
delete button and done button) and the shared list component and between the
visualizer and the editor. For example one shared connector associates his role
“S_required_role” with the port “ToDoList_provide_port” of the shared list
component and his role “S_provide_role” with the port “V_required_port1” of the
visualizer component.

2. An event connector has two roles: the E_provide_role and the E_required_role. Such
a connector is in charge of connections between the visualizer and the shared list
component. It associates his role “E_provide_role” with the event port
“ListChanged_provide_port” of the shared list component and his second role
“S_provide_role” with the port “V_required_port2” of the visualizer component.

These components and connectors are used to compose a distributed shared to-do list
application. This application is distributed over three locations. The shared list component
instance resides on a server and is connected to an instance of the manager on one machine
and to an instance of the client on another machine. The client instance contains a visualizer

AGENT PARADIGM FOR ADAPTABLE ARCHITECTURE

176 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

component, an editor component and a done button component. The client may only see the
contents of the list and mark entries as “done “ by pressing the “done” button. The manager
instance contains a visualizer component, an editor component and a delete button
component. The manager can actually add new entries to the list and delete them.

According to the requirements of the application, security quality attribute is more
important than other quality attributes. Hence, we assume now that this application has to be
extended with a security component (figure 5). This component will encrypt the data
exchange between the client and the server.

Security: it is a measure of the system’s ability to resist to unauthorized attempts of
usage and denial of service while still providing its services to legitimate users. At the
architectural level:
– It means to have a mechanism or device (software or hardware). It may be a component or

integrated into a component.
– It is measured by an attribute with Boolean value, depending on the presence or not of a

mechanism or a device.
In order to provide the security quality attribute of the architecture mentioned above, a

modification to this architecture must be performed stepwise by the agent.

 Manager instance

• visualizer component

• editor component

• delete button component

Client instance

• visualizer component

• editor component

• done button component

Shared list

Server instance

Security
component

Manager instance

• visualizer component

• editor component

• delete button component

Client instance

• visualizer component

• editor component

• done button component

Server instance

Shared list

Event: add a new security component to the
application.

Agent

Figure 5. The client component is extended with a security component

In the following we give just a part of our definition of the specification due to space
limitations. The specification concerns only the agent machine. The analysis of our
agent_architecture consists in studying its statics and dynamics. The statics corresponds to
the definition of the state whereas the dynamics corresponds to that of the operations.

APPLICATION

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 177

The agent static part

The static part of the agent based architecture (Primitive_Agent machine) contains the
formalization of the architectural representation which is based on generic components,
connectors, configurations, ports, roles and bindings.

The definitions of types are formalized in a B machine Global_Agent. In this machine
the clause SETS give the sets used to formalize the agent architecture. These sets are
considered as basic independent types. Such sets can be enumerated or deferred (a finite and
non-empty unspecified set). The VARIABLES clause of the Primitive_Agent machine
introduces the variables of the state of the agent architecture and the INVARIANTS clause
its invariant. The invariant is defined in terms of the variables by means of the formal
languages of predicate calculus and set theory. It consists of a number of predicates separated
by the conjunction. The variable of the machine consists of some sets. The invariant of the
machine contains both the typing of each of the variable and several relations or functions
representing the relationship between them. The invariant clause contains also several
predicates expressing architectural constraints and assumptions containing in the knowledge
base of the agent.

The agent dynamic part

The dynamics of the agent based architecture (machine Strategy_Agent Primitive_Agent)
is expressed through its operations. The role of an operation, as later executed by the
computer, is to modify the state of the abstract machine, and this, of course, within the limits
of the invariant. The clause OPERATIONS of the Primitive_Agent machine is made up of
the primitive operations and that of the Strategy_Agent machine of the composite operations
which call upon the operations of the Primitive_Agent machine. The Strategy_Agent
machine includes the Primitive_Agent machine. Each operation (Rule) has the following
syntax.

Name-operation(parameters) =
PRE
pre-conditions
THEN
Actions (instructions)
END ;

The operations of the machine consists of:
a) For Primitive_Agent machine: create component, connector, role and port, add port to

components, add role to connectors, create connection, get a value of quality attribute
of a component, get a value of quality attribute of a connector, set quality attribute
value for a component, set quality attribute value for a connector …….

b) For Strategy_Agent machine: add component to an architecture, add connector to an
architecture, delete component from an architecture, delete connector from an
architecture, delete connection from an architecture, get quality attribute value of the
global architecture, transfer state component, migrate component, ……

AGENT PARADIGM FOR ADAPTABLE ARCHITECTURE

178 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

All theses operations are used by the agent for changing the architecture dynamically. The
machine Strategy_Agent_r will refine the Strategy_Agent by adding some details about
some operations. Finally the final machine is an implementation machine Strategy_Agent_i.
This machine will transform the abstract model of our architecture into another model that is
all concrete. Using the Atelier B we will provide explicit proof obligations of the abstract
machine and we will prove these obligations to ensure that the relevant properties of the
system hold. Explicit proof obligations for refinements machines will also be provided and
proved to ensure that the relevant properties of the architecture hold in the refinements. The
last refinement which is an implementation machine will be translated into code source
(figure 6).

Automatic translation using
the translator under the
AtelierB

Requirem ents

Operation of refinem ent, test checking, proving…

Manual translation

Refin ing, adding, … .code

Source code
C++, ADA

JAVA

Form al specification of the
global architecture and the
new components agents :
using the B form al m ethod

Figure 6. Generation of source code

Configuration mechanism and evaluation of quality attributes

In order to be able to evaluate the quality attributes of an architecture, a set of variables
representing them have been introduced within the Global_Agent B machine. These
variables are defined by functional expressions. In the INVARIANTS clause of the
Primitive_Agent machine, the attributes are constrained by predicate expressions. Therefore,
it becomes possible to measure the impact in terms of a quality attribute on an architecture by
applying some operation presented in the clause OPERATIONS. It remains to describe the
modifications strategies allowing the enhancement of one specific quality attribute. These
strategies are not formalized for the moment. But they could be included in the agent
knowledge base. The reconfiguration must done in safe way to ensure at the execution time
the integrity of the global architecture.

Event: a new security component has to be added to the application (between the client
and the server). The event received by the agent can be:

a) The user's event that manages the system and asks for an evolution of the architecture
toward a more elevated security level.

b) An event of the system and the environment that the agent controls. The agent can
test the measure of the security attribute. The agent is able to test the presence of the
security component in the application and to take the correct decisions.

APPLICATION

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 179

The agent will use the following strategy which consist to apply some rule operations (figure
7):

1. Create a new security component, and add ports to it (2 provide and 2 required).
2. Create connectors (4 shared connectors and 2 event connectors), add a special

required and provided roles to each connector, and create connections between the
ports of the security component and respectively the client component and the server
component via the appropriate connectors.

3. For each old connection between the server component and the client component, test
if the corresponding connector is passive then delete this connection and transfer the
state of the corresponding connector to the new connector already created via security
component.

6 CONCLUSION

The main contributions of this paper can be resumed as follows. We have suggested to use
the B formal method to model the possible adoption of adaptive based agent paradigms in
software architecture. Formal modeling of a specification of a software architecture provides
an unambiguous representation. This representation allows for rigorous analysis and
reasoning of both functional properties and quality attributes. However, we are providing a
methodology that, starting from a set of B specifications, derives a performance model that
allows the designer early in the design phase, to evaluate the software architecture. The
agents have the ability to react to events and perform architectural changes autonomously.
We are currently experimenting on application examples of how agents can be introduced
and how they improve the security quality attribute of a distributed system. We have given
ideas about the reconfiguration, adaptation and evolution of the proposed architecture.
However, there are some issues that we have not dealt with in this paper. We have developed
our abstract specification using the B method. This specification contains the formalization
of the architectural representation, the architectural constraints, the agent knowledge
semantics and all operations used by the agent for changing the architecture dynamically.
The passage from this specification to implementation throw refinements are undertaken.
These refinements will be carried out entirely under the control of the Atelier B tool and will
be concluded by some proofs to ensure that the relevant properties of our architecture hold.

AGENT PARADIGM FOR ADAPTABLE ARCHITECTURE

180 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

0

Shared List
component

Server instance

Delete button
component

Editor
 component
Visualizer

 component

Manager instance

3

Shared List
component

Server instance

Delete button
component

Editor
 component
Visualizer

 component

Manager instance

Security
component

1

Shared List
component

Server instance

Delete button
component

Editor
 component
Visualizer

 component

Manager instance

 Security
component

2

Shared List
component

Server instance

Delete button
component

Editor
 component
Visualizer

 component

Manager instance

Security
component

Figure 7. The different steps of architecture reconfiguration executed by the agent component

CONCLUSION

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 181

REFERENCES

[Shaw et al., 1996] M. Shaw, D. Garlan, Software Architecture, Perspectives on Emerging
Discipline, Prentice-Hall, Inc. , Upper Saddle River, New Jersey, 1996.

[Perry et al., 1992] D. E. Perry, A. L. Wolf, “Foundations for the Study of Software
Architecture”, Software Engineering Notes, 17(4):40, Oct. 1992.

[Oreizy et al., 1998] P. Oreizy, N. Medvidovic, R. N. Taylor, “Architecture-Based Runtime
Software Evolution”, Proc. 20 th Int’l Conf. On Soft. Eng. (ICSE’98), pp. 177-
186, Kyoto, Japan, Apr. 1998.

[Ciancarini et al., 1998] P. Ciancarini, C. Mascolo, “Software Architecture and Mobility”, in
the Third International Software Architecture Workshop(ISAW-3). Page 1-4,
ACM-Press, Orlando Florida, Nov. 1998.

[Allen et al., 1997] R. J. Allen, R. Douence, D. Garlan, “Specifying Dynamism in Software
Architectures”, in Proceedings of Foundations of Component-Based Systems
Workshop, Sep. 1997.

[Taylor et al., 1996] R. N. Taylor, N. Medvidovic, K. N. Anderson, E. J. Whitehead Jr., J. E.
Robbins, K. A. Nies, P. Oreizy, D. L. Dubrow, “A Component and Message-
Based Architectural Style for GUI Software”, IEEE Transactions on Software
Engineering, Jun. 1996.

[Kramer et al., 1996] J. Kramer, J. Magee, “Self Organizing Software Architectures”, In
Joint Proceedings of the second International Software Architecture Workshop
(ISAW-2) and International Workshop on Multiple Perspectives in Software
Development (Viewpoints’96). Pages 35-38, ACM-Press, 1996.

[Purtilo, 1994] J. M. Purtilo, “The Polylith Software Bus”. ACM TOPLAS, 16(1):151-174,
1994.

[Barbacci et al., 1993] M. Barbacci, C. Weinstock, D. Doubleday, M. Gardner, R. Lichota,
Durra: “A Structure Description Language for Developing Distributed
Applications”, IEEE Software Engineering Journal, pages 38-94, mar. 1993.

[Bloom et al., 1993] T. Bloom, M. Day, “Reconfiguration and Module Replacement in
Argus: Theory and Practice”, IEEE Software Engineering Journal, pages 102-
108, mar. 1993.

[Kramer et al., 1996] J. Kramer, J. Magee, “Dynamic Structure in Software Architectures”,
In Proceedings of the fourth ACM SIGSOFT Symposium on Foundations of
Software Engineering (FSE’96), pages 3-14, ACM-Press, Oct. 1996.

[DeNicola et al., 1998] R. DeNicola, G. Ferrari, R. Pugliese. ”KLAIM: A kernel Language
for Agents Interaction and Mobility”, IEEE Transactions on Software
Engineering, 24(5):315-330, 1998.

AGENT PARADIGM FOR ADAPTABLE ARCHITECTURE

182 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

[Ciancarini et al., 1998] P. Ciancarini, C. Mascolo, “Software Architecture and Mobility”, In
the Third International Software Architecture Workshop(ISAW-3). Page 21-24,
ACM-Press, Orlando Florida, Nov. 1998

[Van Belle et al., 2001] W. Van Belle and J. Fabry, “Experience in Mobile computing/ The
Cborg Mobile Multi-Agent System”, Technology of Objet-Oriented Languages
and Systems, Tools 38, pages 7-18, march 2001, Zurich, Switzerland.

[Abrial, 1996] J. R. Abrial, The B Book: Assigning Programs to Meanings, Cambridge
University Press, 1996.

About the authors

Amar Ramdane-Cherif received his Ph.D. degree from Pierre and Marie
university of Paris in 1998 in neural networks and IA optimization for
robotic applications. Since 2000, he has been associate Professor in the
laboratory PRISM, University of Versailles, Saint-Quentin en Yvelines,
France. His main current research interests include: Software architecture
and formal specification, dynamic architecture, architectural quality
attributes, architectural styles and design patterns, E-mail:

mailto:rca@prism.uvsq.fr

Nicole Lévy is a professor at the University of Versailles, Saint-Quentin en
Yvelines, France. She holds a doctoral degree from the Nancy University.
She is Director of the ISTY and a research staff of the PRISM Laboratory,
Versailles, where she coordinates the SFAL (Spécification Formelle et
Architecture Logicielle) research group. Her main research interests are
formal and semiformal development methods, formalization of styles and

architectural patterns.

Francisca Losavio received doctoral degrees in France, University of
Paris-Sud, Orsay. She is head of the research Laboratory of Software
Technology (LaTecS) of the Software Engineering and Systems (ISYS)
research center, Faculty of Science, Central University of Venezuela,
Caracas, where she works for the Software Engineering post graduated
studies. Her main research topics are software architecture and software
quality.

mailto:rca@prism.uvsq.fr

