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Abstract 
Multimodal human-computer interaction needs intelligent architectures in order to 
enhance the flexibility and naturelness of the user interface. These architectures have 
the ability to manage several multithreaded input signals from different input media in 
order to perform their fusion into intelligent commands. In this paper, a generic 
comprehensive agent-based architecture for multimodal engine fusion is proposed. The 
architecture is sketched in term of its relevant components. Each element is modeled 
using timed colored Petri networks. The generic components of the engine fusion are 
then included in a pipelined based-agent global architecture for which the architectural 
quality attributes are outlined. 

1 INTRODUCTION  

Information and communication technologies should have a main role for helping a 
broader spectrum of everyday people (especially with physical disabilities) to use 
computing applications. To respond to this need, multimodal systems that process two or 
more combined user inputs modes- like speech, pen, touch manual gesture, gaze, and 
head and body movements- lead, trough their software architectures, to more transparent, 
efficient, and powerfully expressive means of human-machine communication. The 
multimodality conveys two striking features that are relevant to the software design of 
multimodal systems: 

the fusion of different types of data from different Input devices, and the temporal 
constraints imposed on information processing from/to Input/Output devices. 

Since the first rudimentary but pertinent system, "Put That There" [Bolt 1980], 
which processes speech in parallel with manual pointing, different multimodal 
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applications have been developed [Crowley 1997, Bellik 1994, McGee 2000]. Each 
application is based on a dialog architecture combining modalities to match and elaborate 
on the relevant multimodal information. Today, there is no agreement on generic 
architectures that reflects a dialog implementation, independently of the application type. 
The main objective of this paper is to propose generic comprehensive architectures for 
multimodal engine fusion. These paradigms use the agent architectural concept to achieve 
their functionalities and unify them into generic structures. For this purpose, this paper 
gives a synthesis that sketches the collective and recurrent properties, implicitly used in 
such dialogs. 

Section 2 gives an overview and the requirements necessary in Multimedia 
Multimodal Dialog Architecture (MMDA) and presents a generic multi-agent 
architectures in term of components. Section 3 illustrates The engine fusion modeling 
with a stochastic timed Colored Petri Net (CPN) [Jensen 1997a, 1997b, Jensen et al.1995] 
and outlines the quality attributes of its architecture. An example of the classical "Copy 
and Paste" operations is given in more details to demonstrate the proposed generic 
architecture in Section 4. 

2 GENERIC MULTIMEDIA MULTIMODAL DIALOG 
ARCHITECTURE 

In this section a synthesis first gathers an overview and the requirements of MMDA. 
Then the proposed generic multi-agent architectures are described.  

Overview and Requirements  

With the increasing complexity of multimedia applications, a single modality becomes 
insufficient to allow the user to interact effectively across environments. A basic MMDA 
as shown in Figure 1, gives the user the possibility to decide which modality or 
combination of modalities are better-suited, depending on the task and environment 
contexts (see examples in [Oviatt 2000a, 2000b]). The user can combine speech, pen, 
gaze, manual gestures, and body postures and movements via input devices (key pad, 
tactile screen, stylus, etc.) to dialog in a coordinate way with multimedia system output. 
The environmental conditions could lead to more constrained architectures that have to 
be adaptable during the continuous change of either external perturbations or user’s 
actions. In this context a first framework is introduced in [Hutchins 1986] to classify 
interactions. It considers two dimensions (‘engagement' and ‘distance’) and decomposes 
the user/system dialog into four types. 

The ‘engagement’ is a type characterizing the depth implication of the user in the 
system. The user feels that an intermediary subsystem performs the task, in 
‘conversation’ case, and that he can act directly on the system components in ‘model 
world’ case. The 'distance' represents the user cognitive effort taken.  
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Fig. 1: Example of basic multimedia multimodal model  
(↔: interaction, →: action, IMj: Input Modality j and Omi: Output Modality i.) 

 
This framework reaches the idea that two kinds of multimodal architectures are possible 
[Oviatt 2000]. The first one makes fusions based on feature signal recognition. The 
recognition steps of one modality guide and influence the other modalities in their own 
recognition steps [Bregler 1993, Project CNRS 1994]. The second architecture uses 
individual recognition systems for each modality. Such systems are associated with an 
extra process that performs semantic fusion of the individual recognized signal elements 
[Bolt 1980, Bellik 1994, Oviatt 1999]. A third hybrid architecture is possible by mixing 
the two previous types: signal feature level and semantic information level.  

At the core of multimodal system design, the information fusion of the input modes 
is the main challenge. The input modes can be equivalent, complementary, specialized or 
redundant as described in [Coutaz 1994]. In this context, the multimodal system designed 
with one of the previous architectures (features or/and semantic levels) needs the 
integration of the temporal information. The possible types of multimodality depend on 
the time proximity of the input signals. Time granularity is an important decision 
criterion when we generate a multimodal semantic sequence. as shown in Figure 2. In this 
example, it shows that the chosen multimodality type, for mouse clicks and speech, is the 
synergistic one. This is obvious in the example, because the click occurs only during the 
time when a sentence is said. The synergistic mouse/speech actions correspond to one 
statement and the tactile screen actions to another one. Both statements are performed in 
parallel and could be independent, equivalent, complementary, specialized and/or 
redundant. In other words, the temporal aspect in MMDA does not handle signals 
overlapping only. 
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Fig. 2: Example of parallel synergistic multimodality. Because of the time information,  

tactile screen is in parallel with the synergistic mouse/speech actions. 
 
 
It helps to decide whether two signal parts should belong to a multimodal fusion set or 
whether they should be considered as separate modal actions. Therefore, multimodal 
architectures are better able to avoid and recover errors that mono-modal recognition 
systems can’t recover [Oviatt 1999, Oviatt 2000]. This property results in a more robust 
natural human-machine language.  

Another property is that, the more timed combinations of signal information or 
semantic multiple inputs grow the more equivalent formulations of the same command 
are possible. For example, [“Copy that there”], [“copy” (click) “there”] and [“copy that” 
(click)] are various ways to represent three statements of a same command (copying an 
object in a place), if speech and mouse clicking are used. This redundancy also increases 
the robustness in terms of error interpretations. 

Figure 3 summarizes the main requirements and characteristics needed in 
multimodal dialog architectures. As shown in this figure, five characteristics can be used 
in the two different levels of the fusion operations: the ‘early fusion’ at the feature 
fragments level and the ‘late fusion’ at the semantic one [Oviatt 2000]. 
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Fig. 3: The main requirements for multimodal dialog architecture (⇐: used by.) 

 
The Asynchronous property gives the architecture the flexibility to handle multiple 
external events while parallel fusions are still processing. The specialized fusion 
operation deals with an attribution of a same modality to a same statement type. (For 
example, in drawing applications, speech is specialized for color statements and pointing 
for basic shape statements.) 

The granularity of the semantic and statistic knowledge depends on the media nature 
of each input modality. This knowledge leads to important functionalities. It lets the 
system accept or refuse the multi input information for several possible fusions (selection 
process); and it helps the architecture choose, between several fusions, the most suitable 
command to execute or message to send to an output media (decision process). 

The property of parallelism is, obviously, inherent to such applications involving 
multiple inputs. The whole requirements suggest strongly intelligent multi-agent 
architectures, which are the purpose of the next section. 

Generic Multi-Agent Architecture 

The Agents are entities that can interact and collaborate with dynamic and synergy for 
modality combination issues. The interactions should occur between agents and agents 
should also get information from users. An intelligent agent has three properties. It reacts 
in its environment at certain times (reactivity), takes initiatives (pro-activity) and interacts 
with other intelligent agents or users (sociability) to reach goals [Jennings 1998, Weiss 
1999, Bird 1993]. Therefore each agent could have several input ports to receive 
messages and/or several output ports to send ones. 

The level of intelligence of each agent varies according to two major options 
coexisting today in the field of Distributed Artificial Intelligence [Bond 1988, Ishida 
1997, Muller 1996]. The first one, corresponding to the cognitive school, attributes the 
level to the cooperation of very complex agents. This approach deals with agents with 
strong granularity assimilated to expert systems.  
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In the second school, the agents are simpler and less intelligent but more active. This 
reactive school presupposes that it is not necessary to each agent to be individually 
intelligent to reach an intelligent total behavior [Cohen 1997]. This approach deals with a 
cooperative team of working agents with low granularity, which can be matched to finite 
automate.  

Both approaches can be matched to the late and early fusions of multimedia 
multimodal architectures. 

Obviously, there are all the possible intermediaries between these options of multi-
agent systems (as shown in the proposed approaches developed in the next sections). One 
can easily imagine systems based on a modular approach, putting sub-modules in 
competition, each sub-module being itself a universe of overlapping components. This 
word is usually employed for ‘sub-agents’. 

Identifying the generic parts of multimodal multimedia applications and binding 
them into an intelligent agent architecture requires the determination of common and 
recurrent communication protocols and their hierarchical and modular properties in such 
applications. 

In most multimodal applications, speech, as input modality, offers speed, a large 
information spectrum and relative facility of use. It lets both the user’s hands and eyes 
free to work in other necessary tasks present, for example, in driving or moving cases. 
Moreover, speech involves a generic communication language pattern between the user 
and the system. This pattern is described by a grammar with production rules, able to 
serialize possible sequences of the vocabulary symbols produced by users. The 
vocabulary could be word set, phoneme set or another signal fragment set depending on 
the feature level of the recognition system. The goal of the recognition system is to 
identify signal fragments. Then, an agent organizes the fragments in a serial sequence 
according to his grammar knowledge and asks other agents for possible fusion at each 
step of the serial regrouping. The whole interaction can be synthesized in a first generic 
agent architecture called Language Agent (LA) and depicted by Figure 4.  
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Fig. 4: Generic langage agent corresponding to an input modality. 

 
Each input modality should be associated with an LA. For basic modalities like manual 
pointing or mouse clicking, the complexity of the LA is strongly reduced. The 
‘Vocabulary Agent’ that checks whether or not the fragment is known, is, obviously, no 
longer necessary. The ‘Sentence Generation Agent’ is also reduced into a simple event 
thread whereon another external control agent could possibly make parallel fusions. In 
such a case, the external agent could handle ‘Redundancy’ and ‘Time’ information, with 
two corresponding components. These two components are agents that, respectively, 
check redundancies and time neighborhood of the fragments during their sequential 
regrouping. The ‘Serialization Component’ processes this regrouping. Thus, depending 
on the input modality type, the LA could be assimilated to an expert system or to a simple 
thread component. 

Two or more LAs can communicate directly for early parallel fusions or, through 
another central Agent, for late ones (Figure 6). This central agent is called Parallel 
Control Agent (Figure 5). 
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Fig. 5: Generic Parallel control agent for central parallel multimodal fusions. 
 
 

In the first case, the ‘Grammar Component’ of one of the LAs must carry an extra 
semantic knowledge for the parallel fusion purpose. This knowledge could also be 
distributed between the LA’s ‘Grammar Components’, as shown in Figure 6 (left). 
Several Serializing Components share their common information until one of them gives 
the sequential parallel fusion output. In the other case (Figure 6 right), a ‘Parallel Control 
Agent’ (PCA) handles and centralizes the parallel fusions of different LA information. 
For this purpose, the PCA has two intelligent components for, respectively, Redundancy 
and Time managements. These components exchange information with other components 
to elaborate the decision. Then, generated authorizations are sent to the Semantic Fusion 
Component (SFCo). Based on these agreements, the SFCo carries the steps of the 
semantic fusion process. 

Redundancy and Time Management components receive the redundancy and time 
information via the Semantic Fusion Component or directly from the LA, depending on 
the complexity of the architecture and the designer choices. 
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Fig. 6: Principles of early and late fusion architectures (Fr: fragments of signal, L: language, P: parallel, C: control, A: 
agent, G: grammar, S: semantic, Sn: sentence, Gn: generation, F: fusion, Se: serialization, Co: component, T: time, R: 
redundancy, and M: management). More connections (arrows that indicate the data flow) could be activated or 
inhibited by the agents to gather fusion information (an ellipse represents a thread or a locality, a box represents an 
activity.)  

 
Redundancy and Time Management components receive the redundancy and time 
information via the Semantic Fusion Component or directly from the LA, depending on 
the complexity of the architecture and the designer choices. 

The paradigms proposed in this section constitute a general but important step in the 
software development of multimodal user interface: a high level abstraction of informal 
architectural views. Never less another important phase of the software development, for 
such applications, concerns the modeling aspect. Different methods like UML, B_method 
[Abrial 1996], Augmented Transition Networks [Bellik 1995], or Timed CPN [Jensen 
1997a, 1997b], can be used to model the multi-agent dialog architectures. Section 4 
discusses the choice of Colored Petri Networks to model an example of engine fusion in 
multimedia multimodal applications. 
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3 ENGINE FUSION MODELING 

This section presents the Petri net modeling of an engine fusion used in multimedia 
multimodal applications. Small augmented finite-state machines like augmented 
transitions networks (ATN) have been used in the multimodal presentations system [Chen 
1990]. 
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Table 1. Comparison of MMDA specification methods (ATN: augmented transition network, CSP: Communicating 
Sequential Processes, CCS: Calculus Communicating Systems, LOTOS: Language of Temporal Ordering 
Specifications, UML: Unified Modeling Language.) 
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These networks easily conceptualize the communication syntax between input and/or 
output media streams. However, they have limitations when important constraints such as 
temporal information and stochastic behaviors need to be modeled in protocols of fusion. 
Timed Stochastic Colored Petri Networks (CPN) offer a more suitable pattern [Jensen 
1997a, 1997b, Jensen 1995] to design such constraints in multimodal dialog. The most 
important issues of Petri net modeling, in comparison with other formal and informal 
specification methods used in MMDAs are summarized in Table 1. This table doesn’t 
sketch the timed process algebra because they can not easily and intuitively capture the 
properties of time granularity presented here. 

Multi-Threaded Multimodal Architecture Modeling 

For modeling purpose, each input modality is assimilated to a thread where signal 
fragments flow. Multimodal inputs are parallel threads corresponding to a changing 
environment that describes different internal states of the system. Multi-agent systems are 
also multi-threaded: each agent has a control on one or several threads. Intelligent agents 
observe the states of one or several threads for which they are designed. Then, the agents 
execute actions that modify the environment. In a more formal way [Weiss 1999],  

 
if    A = {a1; a2; … }      (1), 
 
and    O = { o1; o2; … }     (2), 
 

are the sets of actions and observations of an agent, respectively  
and if,   S= { s1; s2; …  }     (3), 
 

is the set of states with which the environment is described (including intermediary 
states), then the Petri network models two kind of activities described by the functions 

 
Observation_function : S →O       (4), 
 
Environment_function : SxA →2S      (5). 
 

The first function describes what an agent observes, in a certain state si. The second one 
describes how the environment develop the state si when an action ai is executed. 

The Petri network models also the actions of the agents described by the function  
 
Action_function : O →A       (6). 
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The characteristic behavior of an agent action in an environment is the set ‘History’: 
 
History = { h1, h2, …hi, … }       (7) 
 

of all sequences of the observations defined by 
 
hi: (s 0)  —a0→  (s1) —a1→   … (si) —ai→  …     (8) 
 
with  ai = Action_function (<s0, …, si >), ∀ i   (9) 
 
and si = Environment_function (si – 1, ai -1), ∀ i, i ≠ 0   (10) 
(s0  is the initial state of the system). 
 

To summarize the precedent transaction, the Petri network has to model the functions (4), 
(5), (6) and also the input media threads with the design CPN toolkit [Jensen et al.1995].  

In the following, it is assumed that this toolkit and semantics are known. However 
we give a description of the CPN modeling. 

Modeling a Multimedia Multimodal Engine Fusion with CPN  

The Petri network is a diagram flow of interconnected places (or locations represented by 
ellipses) and transitions (represented by boxes). A place represents a state and a transition 
represents an action. Labeled arcs connect places to transitions. The CPN is managed by 
a set of rules (conditions and coded expressions). The rules determine when an activity 
can occur and specify how its occurrence changes the state of the places by changing 
their colored marks (while the marks move from place to place). A dynamic paradigm 
like CPN includes the representation of actual data, with clearly defined types and values. 
The presence of dataflow is the fundamental difference between dynamic and static 
modeling paradigms. In CPN each mark is a symbol that can be of all the data types 
generally available in a computer language: integer, real, string, Boolean, list, tuples, 
record and so on. These types are called colorsets. Thus, a CPN is a graphical structure 
linked to computer language statements. Design CPN toolkit [Jensen 1997b] provide this 
graphical software environment within a programming language (CPN Meta Language 
(ML)) to design and run CPN. 

In such system each piece of existing information (symbolized by a mark) is 
assigned to a location. These locations contain information about the system state at a 
given time and this information can change anytime. This MAS is called distributed in 
terms of [Tabeling 2002]: 
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• Functional distribution: it means a separation of responsibilities in which 
different tasks in the system are assigned to certain agents. 

• Spatial distribution: it means that the system contains multiple locations (that can 
be real or virtual). 

A virtual location is an imaginary location where it already contains observable 
information or when information can be placed on it, but no assumption of physical 
information is linked to it. The set of colored marks in all places (locations) before an 
occurrence of the CPN is equivalent to an observation sequence of a MAS. For the 
MMDA case, each mark is a symbol that could represent signal fragments (pronounced 
words, mouse clicks, hand gesture, face attitude, lips move etc.), serialized or associated 
fragments (comprehensive sentences or commands) or simply a variable.  

A transition can model an agent that generates observable values. A location can be 
observed by multiple agents. The observation function of an agent is simply modeled by 
input arcs inscriptions and also by the conditions in each transition guard (symbolized by 
[conditions] under a transition box). These functions represent the facet A of agents. 
Input arc inscriptions specify data that must exist for an activity to occur. In Figure 7, the 
variables, like ‘p11’, ‘p12’, etc (beginning with the character ‘p’), are used to represent 
the properties of time, grammatical and semantic informations of the signal fragments. 
When a transition is fired (an activity occurs), a mark is removed from input places and 
the transition activity can modify the data associated to the marks (or its colors) and 
thereby changes the state of the system (by adding a mark in at least one output place). If 
there are colorset modifications to perform, they are executed by a program associated to 
the transition (and also specified by the output arc label). The program is written in CPN 
ML inside a dashed box (not connected to an arc and close to the concerned transition- 
see example in Figure 7.-) Therefore each agent generates data for at least one output 
location and observes at least one input location. When no code is associated to the 
transition, output arc inscriptions specify data that will be produced if an activity occurs. 
The action functions of the agent are modeled by the transition activities and constitute 
the facet E of the agent.  

Hierarchy is another important property of the CPN modeling. The symbol HS in a 
transition means that such transition is a Hierarchical Substitution one (Figure 7). It is 
replaced by another subordinate CPN. Therefore, Input and output ports of the 
subordinate CPN correspond as well to the subordinate architecture ones in the hierarchy. 

Each transition and each place is identified by its name (written on it). The symbol 
FG in identical places indicates that the places are ‘Global Fusion’ places [Jensen 
1997b]. These identical places are simply a unique resource (or location) shared over the 
net by a simple graphical artifact: the representation of the place and its elements is 
replicated with the symbol FG (Figure 7.) 

To summarize, modeling MAS can be based on four dimensions which are: Agent 
(A), Environment (E), Interaction (I), and Organization (O). 

• Facet A indicates the whole functionalities of internal reasoning of the agent.  
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• The facet E gathers the functionalities related to the capacities of perception and 
action of the agent in the environment. 

• Facet I gathers the functionalities of interaction of the agent with the other agents 
(interpretation of the primitives of the communication language, management of 
the interaction and the conversation protocols). The structure itself of the CPN, 
where each transition can model a global agent decomposed in components 
distributed in a subordinate CPN (within its initial values of variables, and 
procedures), models this facet. 

• The facet O can be most difficult to obtain with CPN. It concerns the functions 
and the representations related to the capacities of structuring and managing the 
relations between the agents to make dynamic architectural changes. 

 
Sequential operation is not typical of real systems. Systems that perform many operations 
and/or deal with many entities usually do more than one thing at a time. Activities that 
happen at the same time are called concurrent activities. A system that contains such 
activities is called a concurrent system. CPN models easily this concept of parallel 
process. 
 

 
Fig. 7: Principles of parallel, serial and serial→parallel fusions modeled by Petri Nets. 

 

In order to take time into account CPN is timed and provides a way to represent and 
manipulate time by a simple methodology based on four characteristics : 

1. A mark in a place could have an associated number, called a time stamp. Such a 
timed mark had its timed colorset. 
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2. The simulator contains a counter called the clock. The clock is just a number 
(integer or real) whose current value is the current time. 

3. A timed mark is not available for any purpose whatever unless the clock time is 
greater than or equal to the mark's time stamp. 

4. When there are no enabled transitions, but there would be if the clock had a 
greater value, the simulator increments the clock by the minimum amount 
necessary to enable at least one transition. 

These four characteristics give the dimension of simulated time that has exactly the 
properties needed to model delayed activities. The transition activity can generate an 
output delayed mark. This mark can reach the output place only after a time equal to a 
value ‘nextTime’(Figure 7.) The value of ‘nextTime’ is calculated by the code associated 
to the transition or set by the user.  

With all these possibilities CPN provide an extremely effective dynamic modeling 
paradigm to model MAS like multimedia multimodal fusion engine.  

Quality Attributes of the Chosen Architecture 

The generic multi-agents architecture chosen for the multimedia multimodal fusion 
engine within CPN modeling is an intermediary one between the late and early fusion 
architectures. Section 4 shows an example of this architerture. 

The main features appearing in the proposed generic CPN modeled architecture are 
summarized in four points. 

• Distributed architecture: CPN modeling offers the possibility to distribute PCA 
over the architecture. Each instance of the PCA has its facets of action perception 
and interaction depending on its contextual position in the network and error-
avoidance management. Also, the possibility to decompose each LA into 
sublevels leads to a model that can assist the code generation in a computer 
language used in the final implementation of the system (hierarchy, heritage, …). 
Finally, distribution allows to reduce the perceptions mechanisms of the agents 
and to spread them out over all the architecture. 

• Scalable architecture: The architecture has the ability to sustain a growing load 
when new modalities are added.  

• Parallel architecture: The parallelism gives the possibility to run the application 
with each LA processed in a separate parallel hardware. It is also possible to 
easily activate or inhibit a LA (in the case of dynamic architectural 
reconfiguration) without perturbing the global running application. 

• Pipelined architecture: with several input and internal data streams and one output 
data stream it becomes easy to test and follow the evolution of this multimedia 
multimodal architecture, under the aspects of error avoidance. 
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4 EXAMPLE OF AN ENGINE FUSION MODELED BY CPN 

Description of the ‘Copy and paste’ fusion engine  

This section presents a typical example of a distributed architecture for fusion, using the 
paradigm Figure 7. The ‘Copy and Paste’ fusion engine architecture chosen involves a 
high level LA, for speech modality, linked, by a distributed PCA, to a rudimentary mouse 
clicking LA (thread of clicks). The PCA performs the semantic fusion between speech 
and mouse clicking trough two levels. Tables 2 and 3 give the vocabulary, used by the 
speech LA, and the basic sentences allowed by the corresponding grammar. Each word 
has a label used in the CPN design.  
 

Word Word label Word Word label 
open 1 paste  5 
close 2 cancel 6 
delete 3 that 7 
copy 4    

 

Table 2. Vocabulary. 
 

In the following, a few symbolic regular expressions are used to represent semantic 
elements. These expressions use the arrow operator for sequential concatenation in time 
domain. For the chosen example, in the semantic expression:  

(word 1→word 2) 
word 1 is simply followed by (or contiguous to) word 2. The word ‘cancel’ is a command 
that automatically cancels the last action among the authorized sentences. Therefore, if 
the user says one of the words labeled in the set {1, 2, 3, 4, 5} just after “cancel”, the time 
proximity between the two words is one of the decision criteria for suppressing the 
second word or taking it as a next command. For the proposed architecture both scenarios 
are processed. 

The multimodal dialog gives for each sentence a set of possible redundant fusions. 
The symbol // models these concurrent associations in regular expressions. 

For example, depending upon temporal information, the first command given in 
Table 2 is an element of the following semantic fusion set: 

{(click→open→that); (open→click); (click→open);  
(click // open); ((click // open)→that); (click // (open→that))}. 
 

 
Set of Sentences 

 
Command meaning 

{ (open→that); (open) } Open object 
{ (close→that); (close) } Close object 
{ (delete→that); (delete).} Delete object 
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{ (paste) } Past last copied object 
{ (copy→that); (copy) } Copy object 

{ (cancel)} Cancel last command 
 

Table 3. Sentences allowed by the grammar.  
 

This semantic set includes the grammatical sentences corresponding to the command 
‘Open object’. Words, temporally isolated and labeled in the set {1, 2, 3, 4, 7}, are not 
considered by the PCA. The remaining fusion entities like ((close→open) // click), (click 
// (delete→open)), etc. or isolated clicks are also ignored by the system. (Thus, some 
errors made by user are avoided by the model.) The whole sets constitute the semantic 
knowledge. The associated CPN uses two random generators to design the arrival time of 
the input media events. The inter-arrival time between two pronounced words as well as 
the time between two consecutive ‘clicks’, are exponentially distributed. Events (like 
words and clicks) are generated or arrived in two different threads (the places named 
‘ThreadofClick’ and ‘ThreadofWords’). The time between two click (respectively word) 
arrivals has a mean = ClickArrival (respectively = WordArrival). The inter-arrival time 
between 2 click (respectively word) events has an exponential distribution with parameter 
r =1/ClickArrival (respectively 1/WordArrival). (Mean: 1/r and Variance: 1/(r2) ). The 
density function of the inter-arrival time between 2 events is f (x) =r * exp (- r * x), if x is 
greater than 0 and f (x) = 0 elsewhere. The inter-arrival time follows an exponential law, 
for the words and also for the clicks. If the time proximity between a word event and a 
click event is below the variable ‘ProxyTime’ and if these two events verify the 
grammatical and semantic conditions (given between brackets under the transition which 
models the‘SFCo’- see Figure 6-) then these two events are fused into one command. 
Transitions model the PCA components distributed over the network. The mouse click 
LA is reduced to a simple thread. The transition ‘RecognitionSystem’ assigns a random 
label to each word present in the place ‘WaitRecognition’. This random assignation does 
not model a real flowing speech because automatic modeling of user speech is outside the 
scope of this paper. However, it is sufficient to model times of recognition.  

Simulation results:  

The Figures 8 (a), (b) and (c) show the simulation results for 
WorArrival=ClickArrival=5000ms and ProxyTime=10000ms 
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Fig. 8 (a): Canceled command. 
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Figure 8 (c) presents the number of achieved fusions in the time (or the number of marks 
in the place ‘FusionedMedia’ of the CPN). In the same way, a command can be cancelled 
if the user says the word 'cancel' just after an achieved command (the proximity time 
between the two events: the command and the word 'cancel' is chosen below 
(ProxyTime/25)). Figure 8 (b) shows the accumulation of words in the corresponding 
thread (or the number of marks in the place ‘ThreadofWords’). Figure 8 (a) shows the 
resulting cancelled commands in the time (or the number of marks arrived in the place 
‘CanceledCommand’). Figures 8 are obtained after the simulation of the network. 

The results in Figures 8 (a), (b) and (c) quantify perceivable behavior of the 
architecture for random arrival time of inputs. This behavior depends on temporal 
proximity criterion. These results could vary according to the value of a proxymity time 
criterion used to achieve the fusion. The adjustment of this value should take into account 
the mean temporal behavior of users. This is done by a pertinent fine-tuning of the 
random generators with the function ExpLaw( ) [Jensen et al.1995]. It should also 
consider processing time, which is modeled by the values returned by the program of 
transition ‘RecognitionSystem’. 

The example of this section shows that the fusion engine works and performs 
semantic fusion (by combining results of commands to derive new results) as well as 
syntactic ones (by combining data to obtain a complete command). 

The CPN example proposed in this section does not consider the problem of mark’s 
accumulation in the multithreaded network. This important aspect could be easely 
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resolved by adding new tasks to the distributed PCA or to an another network for error 
management.

5 CONCLUSION 

In this paper an agent-based conversational model for multimodal fusion is proposed. The 
pipelined architecture of this model lead to new generic structures that unify applications 
based on multimedia multimodal dialog. They also offer to developers a framework 
specifying different functionalities used in multimodal software implementation. In a first 
phase, the main common requirements and constraints that multimodal dialogs need are 
gathered. Then the interaction types related to the early and late fusions are identified. 
The proposed fusion engine are modeled with a multithreaded timed Colored Petri 
Networks and supports both parallel and serial fusions. The quality attributes of the 
architecture are outlined to show the the genericity of our approach. An simulation 
example of a engine fusion is also presented. 
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