
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 8, September-October 2004

Cite this article as follows: H. Djenidi, A. Ramdane-Cherif, C. Tadj and N.Levy: “Generic Pipelined
Multi-Agents Architectures for Multimedia Multimodal Software Environment”, in Journal of Object
Technology, vol. 3, no. 8, September-October 2004, pp. 147-169.
http://www.jot.fm/issues/issue_2004_09/article3

Generic Pipelined Multi-Agents
Architecture for Multimedia Multimodal
Software Environment

H. Djenidi (1, 2), A. Ramdane-Cherif (1), C. Tadj (2) and N. Levy (1).
(1) PRISM, University of Versailles St.-Quentin, France.
(2) École de Technologie Supérieure, Quebec, Canada.

Abstract
Multimodal human-computer interaction needs intelligent architectures in order to
enhance the flexibility and naturelness of the user interface. These architectures have
the ability to manage several multithreaded input signals from different input media in
order to perform their fusion into intelligent commands. In this paper, a generic
comprehensive agent-based architecture for multimodal engine fusion is proposed. The
architecture is sketched in term of its relevant components. Each element is modeled
using timed colored Petri networks. The generic components of the engine fusion are
then included in a pipelined based-agent global architecture for which the architectural
quality attributes are outlined.

1 INTRODUCTION

Information and communication technologies should have a main role for helping a
broader spectrum of everyday people (especially with physical disabilities) to use
computing applications. To respond to this need, multimodal systems that process two or
more combined user inputs modes- like speech, pen, touch manual gesture, gaze, and
head and body movements- lead, trough their software architectures, to more transparent,
efficient, and powerfully expressive means of human-machine communication. The
multimodality conveys two striking features that are relevant to the software design of
multimodal systems:

the fusion of different types of data from different Input devices, and the temporal
constraints imposed on information processing from/to Input/Output devices.

Since the first rudimentary but pertinent system, "Put That There" [Bolt 1980],
which processes speech in parallel with manual pointing, different multimodal

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_09/article3

GENERIC PIPELINED MULTI-AGENTS ARCHITECTURES FOR MULTIMEDIA MULTIMODAL

SOFTWARE ENVIRONMENT

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

applications have been developed [Crowley 1997, Bellik 1994, McGee 2000]. Each
application is based on a dialog architecture combining modalities to match and elaborate
on the relevant multimodal information. Today, there is no agreement on generic
architectures that reflects a dialog implementation, independently of the application type.
The main objective of this paper is to propose generic comprehensive architectures for
multimodal engine fusion. These paradigms use the agent architectural concept to achieve
their functionalities and unify them into generic structures. For this purpose, this paper
gives a synthesis that sketches the collective and recurrent properties, implicitly used in
such dialogs.

Section 2 gives an overview and the requirements necessary in Multimedia
Multimodal Dialog Architecture (MMDA) and presents a generic multi-agent
architectures in term of components. Section 3 illustrates The engine fusion modeling
with a stochastic timed Colored Petri Net (CPN) [Jensen 1997a, 1997b, Jensen et al.1995]
and outlines the quality attributes of its architecture. An example of the classical "Copy
and Paste" operations is given in more details to demonstrate the proposed generic
architecture in Section 4.

2 GENERIC MULTIMEDIA MULTIMODAL DIALOG
ARCHITECTURE

In this section a synthesis first gathers an overview and the requirements of MMDA.
Then the proposed generic multi-agent architectures are described.

Overview and Requirements

With the increasing complexity of multimedia applications, a single modality becomes
insufficient to allow the user to interact effectively across environments. A basic MMDA
as shown in Figure 1, gives the user the possibility to decide which modality or
combination of modalities are better-suited, depending on the task and environment
contexts (see examples in [Oviatt 2000a, 2000b]). The user can combine speech, pen,
gaze, manual gestures, and body postures and movements via input devices (key pad,
tactile screen, stylus, etc.) to dialog in a coordinate way with multimedia system output.
The environmental conditions could lead to more constrained architectures that have to
be adaptable during the continuous change of either external perturbations or user’s
actions. In this context a first framework is introduced in [Hutchins 1986] to classify
interactions. It considers two dimensions (‘engagement' and ‘distance’) and decomposes
the user/system dialog into four types.

The ‘engagement’ is a type characterizing the depth implication of the user in the
system. The user feels that an intermediary subsystem performs the task, in
‘conversation’ case, and that he can act directly on the system components in ‘model
world’ case. The 'distance' represents the user cognitive effort taken.

GENERIC MULTIMEDIA MULTIMODAL DIALOG ARCHITECTURE

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 149

Fig. 1: Example of basic multimedia multimodal model
(↔: interaction, →: action, IMj: Input Modality j and Omi: Output Modality i.)

This framework reaches the idea that two kinds of multimodal architectures are possible
[Oviatt 2000]. The first one makes fusions based on feature signal recognition. The
recognition steps of one modality guide and influence the other modalities in their own
recognition steps [Bregler 1993, Project CNRS 1994]. The second architecture uses
individual recognition systems for each modality. Such systems are associated with an
extra process that performs semantic fusion of the individual recognized signal elements
[Bolt 1980, Bellik 1994, Oviatt 1999]. A third hybrid architecture is possible by mixing
the two previous types: signal feature level and semantic information level.

At the core of multimodal system design, the information fusion of the input modes
is the main challenge. The input modes can be equivalent, complementary, specialized or
redundant as described in [Coutaz 1994]. In this context, the multimodal system designed
with one of the previous architectures (features or/and semantic levels) needs the
integration of the temporal information. The possible types of multimodality depend on
the time proximity of the input signals. Time granularity is an important decision
criterion when we generate a multimodal semantic sequence. as shown in Figure 2. In this
example, it shows that the chosen multimodality type, for mouse clicks and speech, is the
synergistic one. This is obvious in the example, because the click occurs only during the
time when a sentence is said. The synergistic mouse/speech actions correspond to one
statement and the tactile screen actions to another one. Both statements are performed in
parallel and could be independent, equivalent, complementary, specialized and/or
redundant. In other words, the temporal aspect in MMDA does not handle signals
overlapping only.

Eye gaze System

 screen+ camera

Keyboard+ Mouse

+Microphone

Speaker

+ screen

IM1

IMj

USER

TASK ENVIRONMENT

…

OM1

OMi

…

FUSION

DIALOG

CONTROL

GENERIC PIPELINED MULTI-AGENTS ARCHITECTURES FOR MULTIMEDIA MULTIMODAL

SOFTWARE ENVIRONMENT

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

Fig. 2: Example of parallel synergistic multimodality. Because of the time information,

tactile screen is in parallel with the synergistic mouse/speech actions.

It helps to decide whether two signal parts should belong to a multimodal fusion set or
whether they should be considered as separate modal actions. Therefore, multimodal
architectures are better able to avoid and recover errors that mono-modal recognition
systems can’t recover [Oviatt 1999, Oviatt 2000]. This property results in a more robust
natural human-machine language.

Another property is that, the more timed combinations of signal information or
semantic multiple inputs grow the more equivalent formulations of the same command
are possible. For example, [“Copy that there”], [“copy” (click) “there”] and [“copy that”
(click)] are various ways to represent three statements of a same command (copying an
object in a place), if speech and mouse clicking are used. This redundancy also increases
the robustness in terms of error interpretations.

Figure 3 summarizes the main requirements and characteristics needed in
multimodal dialog architectures. As shown in this figure, five characteristics can be used
in the two different levels of the fusion operations: the ‘early fusion’ at the feature
fragments level and the ‘late fusion’ at the semantic one [Oviatt 2000].

 “put that” “there”

(click) (click)

Pointing Menu
(copy command)

Pointing
(object)

time

 speech

 mouse

 tactile
 screen

Media

GENERIC MULTIMEDIA MULTIMODAL DIALOG ARCHITECTURE

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 151

Fig. 3: The main requirements for multimodal dialog architecture (⇐: used by.)

The Asynchronous property gives the architecture the flexibility to handle multiple
external events while parallel fusions are still processing. The specialized fusion
operation deals with an attribution of a same modality to a same statement type. (For
example, in drawing applications, speech is specialized for color statements and pointing
for basic shape statements.)

The granularity of the semantic and statistic knowledge depends on the media nature
of each input modality. This knowledge leads to important functionalities. It lets the
system accept or refuse the multi input information for several possible fusions (selection
process); and it helps the architecture choose, between several fusions, the most suitable
command to execute or message to send to an output media (decision process).

The property of parallelism is, obviously, inherent to such applications involving
multiple inputs. The whole requirements suggest strongly intelligent multi-agent
architectures, which are the purpose of the next section.

Generic Multi-Agent Architecture

The Agents are entities that can interact and collaborate with dynamic and synergy for
modality combination issues. The interactions should occur between agents and agents
should also get information from users. An intelligent agent has three properties. It reacts
in its environment at certain times (reactivity), takes initiatives (pro-activity) and interacts
with other intelligent agents or users (sociability) to reach goals [Jennings 1998, Weiss
1999, Bird 1993]. Therefore each agent could have several input ports to receive
messages and/or several output ports to send ones.

The level of intelligence of each agent varies according to two major options
coexisting today in the field of Distributed Artificial Intelligence [Bond 1988, Ishida
1997, Muller 1996]. The first one, corresponding to the cognitive school, attributes the
level to the cooperation of very complex agents. This approach deals with agents with
strong granularity assimilated to expert systems.

Pattern of Operation Sets for:

* equivalent,

* complementary,

* specialized,

* or/and redundant Fusion.

Parallelism

Asynchronous

Time-sensitivity

Semantic-
knowledgeSemantic

information
 level

Feature
fragment

level Stochastic-
knowledge

GENERIC PIPELINED MULTI-AGENTS ARCHITECTURES FOR MULTIMEDIA MULTIMODAL

SOFTWARE ENVIRONMENT

152 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

In the second school, the agents are simpler and less intelligent but more active. This
reactive school presupposes that it is not necessary to each agent to be individually
intelligent to reach an intelligent total behavior [Cohen 1997]. This approach deals with a
cooperative team of working agents with low granularity, which can be matched to finite
automate.

Both approaches can be matched to the late and early fusions of multimedia
multimodal architectures.

Obviously, there are all the possible intermediaries between these options of multi-
agent systems (as shown in the proposed approaches developed in the next sections). One
can easily imagine systems based on a modular approach, putting sub-modules in
competition, each sub-module being itself a universe of overlapping components. This
word is usually employed for ‘sub-agents’.

Identifying the generic parts of multimodal multimedia applications and binding
them into an intelligent agent architecture requires the determination of common and
recurrent communication protocols and their hierarchical and modular properties in such
applications.

In most multimodal applications, speech, as input modality, offers speed, a large
information spectrum and relative facility of use. It lets both the user’s hands and eyes
free to work in other necessary tasks present, for example, in driving or moving cases.
Moreover, speech involves a generic communication language pattern between the user
and the system. This pattern is described by a grammar with production rules, able to
serialize possible sequences of the vocabulary symbols produced by users. The
vocabulary could be word set, phoneme set or another signal fragment set depending on
the feature level of the recognition system. The goal of the recognition system is to
identify signal fragments. Then, an agent organizes the fragments in a serial sequence
according to his grammar knowledge and asks other agents for possible fusion at each
step of the serial regrouping. The whole interaction can be synthesized in a first generic
agent architecture called Language Agent (LA) and depicted by Figure 4.

GENERIC MULTIMEDIA MULTIMODAL DIALOG ARCHITECTURE

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 153

Fig. 4: Generic langage agent corresponding to an input modality.

Each input modality should be associated with an LA. For basic modalities like manual
pointing or mouse clicking, the complexity of the LA is strongly reduced. The
‘Vocabulary Agent’ that checks whether or not the fragment is known, is, obviously, no
longer necessary. The ‘Sentence Generation Agent’ is also reduced into a simple event
thread whereon another external control agent could possibly make parallel fusions. In
such a case, the external agent could handle ‘Redundancy’ and ‘Time’ information, with
two corresponding components. These two components are agents that, respectively,
check redundancies and time neighborhood of the fragments during their sequential
regrouping. The ‘Serialization Component’ processes this regrouping. Thus, depending
on the input modality type, the LA could be assimilated to an expert system or to a simple
thread component.

Two or more LAs can communicate directly for early parallel fusions or, through
another central Agent, for late ones (Figure 6). This central agent is called Parallel
Control Agent (Figure 5).

GENERIC PIPELINED MULTI-AGENTS ARCHITECTURES FOR MULTIMEDIA MULTIMODAL

SOFTWARE ENVIRONMENT

154 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

Fig. 5: Generic Parallel control agent for central parallel multimodal fusions.

In the first case, the ‘Grammar Component’ of one of the LAs must carry an extra
semantic knowledge for the parallel fusion purpose. This knowledge could also be
distributed between the LA’s ‘Grammar Components’, as shown in Figure 6 (left).
Several Serializing Components share their common information until one of them gives
the sequential parallel fusion output. In the other case (Figure 6 right), a ‘Parallel Control
Agent’ (PCA) handles and centralizes the parallel fusions of different LA information.
For this purpose, the PCA has two intelligent components for, respectively, Redundancy
and Time managements. These components exchange information with other components
to elaborate the decision. Then, generated authorizations are sent to the Semantic Fusion
Component (SFCo). Based on these agreements, the SFCo carries the steps of the
semantic fusion process.

Redundancy and Time Management components receive the redundancy and time
information via the Semantic Fusion Component or directly from the LA, depending on
the complexity of the architecture and the designer choices.

: Binding
: Message flow

PARALLEL CONTROL AGENT Output
Media

Time
 Management
 Component

Redundancy
 Management
 Component

Semantic Fusion
Component Output

Message
Agent

…

 (Media#1-Fragment#3)//
 (Media#3-Fragment#4).

…

…. end

end

(Media.#1-Fragment#1)//
(Media#2-Fragment#1).

Media#3-Fragment#3

: Input port

: Output port
: I/O port

Parallel flows

 binding several

LANGUAGE

1

: Serial fusion

//: Parallel
fusion

GENERIC MULTIMEDIA MULTIMODAL DIALOG ARCHITECTURE

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 155

Fig. 6: Principles of early and late fusion architectures (Fr: fragments of signal, L: language, P: parallel, C: control, A:
agent, G: grammar, S: semantic, Sn: sentence, Gn: generation, F: fusion, Se: serialization, Co: component, T: time, R:
redundancy, and M: management). More connections (arrows that indicate the data flow) could be activated or
inhibited by the agents to gather fusion information (an ellipse represents a thread or a locality, a box represents an
activity.)

Redundancy and Time Management components receive the redundancy and time
information via the Semantic Fusion Component or directly from the LA, depending on
the complexity of the architecture and the designer choices.

The paradigms proposed in this section constitute a general but important step in the
software development of multimodal user interface: a high level abstraction of informal
architectural views. Never less another important phase of the software development, for
such applications, concerns the modeling aspect. Different methods like UML, B_method
[Abrial 1996], Augmented Transition Networks [Bellik 1995], or Timed CPN [Jensen
1997a, 1997b], can be used to model the multi-agent dialog architectures. Section 4
discusses the choice of Colored Petri Networks to model an example of engine fusion in
multimedia multimodal applications.

 EARLY FUSION ARCHITECTURE

 LA1 LA2 LA3

 SnGnA

 RCo

 GCo

 TCo
 SeCo

 SeCo

 SnGnA

 RCo

 GCo

 TCo
 SeCo

 SeCo

 SnGnA

 RCo
 GCo

 TCo
 SeCo

 SeCo

 LATE FUSION ARCHITECTURE

 LA1 PCA1

 TMCo

 RMCo

 LA2

 SnGnA

 SeCo

 GCo

 RCo

 SFCo

SnGnA

 SeCo

 GCo

 RCo

…
…

Output thread of
fused messages

Output thread of
fused messages

Fr Fr Fr Fr Fr

… …

… …

GENERIC PIPELINED MULTI-AGENTS ARCHITECTURES FOR MULTIMEDIA MULTIMODAL

SOFTWARE ENVIRONMENT

156 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

3 ENGINE FUSION MODELING

This section presents the Petri net modeling of an engine fusion used in multimedia
multimodal applications. Small augmented finite-state machines like augmented
transitions networks (ATN) have been used in the multimodal presentations system [Chen
1990].

Time granularity in

MMDAs

Formal

language

Representation of :

Dynamicity

with capability
of :

Distri-

-bution:

Com-
muni-
cation

Paral-
lelism

Properties allowed by the

specification method

Specification method of
the events in theMMDA.

Assign
an

arrival
time

stamp
to each
event

Sort the
incom
-ming
 events

Take into
account
the time
of each

processed
event

(time of
reco-

gnition,
…)

Y
E
S

N
O

F
O
R
M
A
L

L
O
G
I
C

Exchan
-ged

data in
the

dialog
(objects

sym-
bols,
mes-
sages,

…)

Recipients
and data

structures
(threads,

ressources
channels,
localities,

…) &
their inter

con-
nections.

A
S
Y
N
C
H
R
O
N
O
U
S

S
Y
N
C
H
R
O
N
O
U
S

I
N
T
E
R
L
E
A
V
E
D

C
O
N
C
U
R
R
E
N
C
Y

F
U
N
C
T
I
O
N
A
L

S
P
A
T
I
A
L

G
R
A
P
H
I
C
A
L

&

I
N
T
U
I
T
I
V
E

H
I
E
R
A
R
C
H
I
C
A
L

T
o
o
l
s

f
r
e
e

o
f

c
h
a
r
g
e
s

CSP

X

X

X

X

X

X

CCS

X

X

x

X

X

X

Algebra
process

LOTOS

X

X

X

X

X

X X

X

collaboration
diagrams

X

X

X

X

X

sequence
diagrams

X

X

X

X

X

X

X

X

states-transitions
diagrams

X

X

X

X

X

X

X X

UML

activity diagrams

X

X

X

X

X

Z
X

X

X

X

X

X

ATN
X

X

X

X

X

CPN
X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

Table 1. Comparison of MMDA specification methods (ATN: augmented transition network, CSP: Communicating
Sequential Processes, CCS: Calculus Communicating Systems, LOTOS: Language of Temporal Ordering
Specifications, UML: Unified Modeling Language.)

ENGINE FUSION MODELING

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 157

These networks easily conceptualize the communication syntax between input and/or
output media streams. However, they have limitations when important constraints such as
temporal information and stochastic behaviors need to be modeled in protocols of fusion.
Timed Stochastic Colored Petri Networks (CPN) offer a more suitable pattern [Jensen
1997a, 1997b, Jensen 1995] to design such constraints in multimodal dialog. The most
important issues of Petri net modeling, in comparison with other formal and informal
specification methods used in MMDAs are summarized in Table 1. This table doesn’t
sketch the timed process algebra because they can not easily and intuitively capture the
properties of time granularity presented here.

Multi-Threaded Multimodal Architecture Modeling

For modeling purpose, each input modality is assimilated to a thread where signal
fragments flow. Multimodal inputs are parallel threads corresponding to a changing
environment that describes different internal states of the system. Multi-agent systems are
also multi-threaded: each agent has a control on one or several threads. Intelligent agents
observe the states of one or several threads for which they are designed. Then, the agents
execute actions that modify the environment. In a more formal way [Weiss 1999],

if A = {a1; a2; … } (1),

and O = { o1; o2; … } (2),

are the sets of actions and observations of an agent, respectively
and if, S= { s1; s2; … } (3),

is the set of states with which the environment is described (including intermediary
states), then the Petri network models two kind of activities described by the functions

Observation_function : S →O (4),

Environment_function : SxA →2S (5).

The first function describes what an agent observes, in a certain state si. The second one
describes how the environment develop the state si when an action ai is executed.

The Petri network models also the actions of the agents described by the function

Action_function : O →A (6).

GENERIC PIPELINED MULTI-AGENTS ARCHITECTURES FOR MULTIMEDIA MULTIMODAL

SOFTWARE ENVIRONMENT

158 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

The characteristic behavior of an agent action in an environment is the set ‘History’:

History = { h1, h2, …hi, … } (7)

of all sequences of the observations defined by

hi: (s 0) —a0→ (s1) —a1→ … (si) —ai→ … (8)

with ai = Action_function (<s0, …, si >), ∀ i (9)

and si = Environment_function (si – 1, ai -1), ∀ i, i ≠ 0 (10)
(s0 is the initial state of the system).

To summarize the precedent transaction, the Petri network has to model the functions (4),
(5), (6) and also the input media threads with the design CPN toolkit [Jensen et al.1995].

In the following, it is assumed that this toolkit and semantics are known. However
we give a description of the CPN modeling.

Modeling a Multimedia Multimodal Engine Fusion with CPN

The Petri network is a diagram flow of interconnected places (or locations represented by
ellipses) and transitions (represented by boxes). A place represents a state and a transition
represents an action. Labeled arcs connect places to transitions. The CPN is managed by
a set of rules (conditions and coded expressions). The rules determine when an activity
can occur and specify how its occurrence changes the state of the places by changing
their colored marks (while the marks move from place to place). A dynamic paradigm
like CPN includes the representation of actual data, with clearly defined types and values.
The presence of dataflow is the fundamental difference between dynamic and static
modeling paradigms. In CPN each mark is a symbol that can be of all the data types
generally available in a computer language: integer, real, string, Boolean, list, tuples,
record and so on. These types are called colorsets. Thus, a CPN is a graphical structure
linked to computer language statements. Design CPN toolkit [Jensen 1997b] provide this
graphical software environment within a programming language (CPN Meta Language
(ML)) to design and run CPN.

In such system each piece of existing information (symbolized by a mark) is
assigned to a location. These locations contain information about the system state at a
given time and this information can change anytime. This MAS is called distributed in
terms of [Tabeling 2002]:

ENGINE FUSION MODELING

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 159

• Functional distribution: it means a separation of responsibilities in which
different tasks in the system are assigned to certain agents.

• Spatial distribution: it means that the system contains multiple locations (that can
be real or virtual).

A virtual location is an imaginary location where it already contains observable
information or when information can be placed on it, but no assumption of physical
information is linked to it. The set of colored marks in all places (locations) before an
occurrence of the CPN is equivalent to an observation sequence of a MAS. For the
MMDA case, each mark is a symbol that could represent signal fragments (pronounced
words, mouse clicks, hand gesture, face attitude, lips move etc.), serialized or associated
fragments (comprehensive sentences or commands) or simply a variable.

A transition can model an agent that generates observable values. A location can be
observed by multiple agents. The observation function of an agent is simply modeled by
input arcs inscriptions and also by the conditions in each transition guard (symbolized by
[conditions] under a transition box). These functions represent the facet A of agents.
Input arc inscriptions specify data that must exist for an activity to occur. In Figure 7, the
variables, like ‘p11’, ‘p12’, etc (beginning with the character ‘p’), are used to represent
the properties of time, grammatical and semantic informations of the signal fragments.
When a transition is fired (an activity occurs), a mark is removed from input places and
the transition activity can modify the data associated to the marks (or its colors) and
thereby changes the state of the system (by adding a mark in at least one output place). If
there are colorset modifications to perform, they are executed by a program associated to
the transition (and also specified by the output arc label). The program is written in CPN
ML inside a dashed box (not connected to an arc and close to the concerned transition-
see example in Figure 7.-) Therefore each agent generates data for at least one output
location and observes at least one input location. When no code is associated to the
transition, output arc inscriptions specify data that will be produced if an activity occurs.
The action functions of the agent are modeled by the transition activities and constitute
the facet E of the agent.

Hierarchy is another important property of the CPN modeling. The symbol HS in a
transition means that such transition is a Hierarchical Substitution one (Figure 7). It is
replaced by another subordinate CPN. Therefore, Input and output ports of the
subordinate CPN correspond as well to the subordinate architecture ones in the hierarchy.

Each transition and each place is identified by its name (written on it). The symbol
FG in identical places indicates that the places are ‘Global Fusion’ places [Jensen
1997b]. These identical places are simply a unique resource (or location) shared over the
net by a simple graphical artifact: the representation of the place and its elements is
replicated with the symbol FG (Figure 7.)

To summarize, modeling MAS can be based on four dimensions which are: Agent
(A), Environment (E), Interaction (I), and Organization (O).

• Facet A indicates the whole functionalities of internal reasoning of the agent.

GENERIC PIPELINED MULTI-AGENTS ARCHITECTURES FOR MULTIMEDIA MULTIMODAL

SOFTWARE ENVIRONMENT

160 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

• The facet E gathers the functionalities related to the capacities of perception and
action of the agent in the environment.

• Facet I gathers the functionalities of interaction of the agent with the other agents
(interpretation of the primitives of the communication language, management of
the interaction and the conversation protocols). The structure itself of the CPN,
where each transition can model a global agent decomposed in components
distributed in a subordinate CPN (within its initial values of variables, and
procedures), models this facet.

• The facet O can be most difficult to obtain with CPN. It concerns the functions
and the representations related to the capacities of structuring and managing the
relations between the agents to make dynamic architectural changes.

Sequential operation is not typical of real systems. Systems that perform many operations
and/or deal with many entities usually do more than one thing at a time. Activities that
happen at the same time are called concurrent activities. A system that contains such
activities is called a concurrent system. CPN models easily this concept of parallel
process.

Fig. 7: Principles of parallel, serial and serial→parallel fusions modeled by Petri Nets.

In order to take time into account CPN is timed and provides a way to represent and
manipulate time by a simple methodology based on four characteristics :

1. A mark in a place could have an associated number, called a time stamp. Such a
timed mark had its timed colorset.

ENGINE FUSION MODELING

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 161

2. The simulator contains a counter called the clock. The clock is just a number
(integer or real) whose current value is the current time.

3. A timed mark is not available for any purpose whatever unless the clock time is
greater than or equal to the mark's time stamp.

4. When there are no enabled transitions, but there would be if the clock had a
greater value, the simulator increments the clock by the minimum amount
necessary to enable at least one transition.

These four characteristics give the dimension of simulated time that has exactly the
properties needed to model delayed activities. The transition activity can generate an
output delayed mark. This mark can reach the output place only after a time equal to a
value ‘nextTime’(Figure 7.) The value of ‘nextTime’ is calculated by the code associated
to the transition or set by the user.

With all these possibilities CPN provide an extremely effective dynamic modeling
paradigm to model MAS like multimedia multimodal fusion engine.

Quality Attributes of the Chosen Architecture

The generic multi-agents architecture chosen for the multimedia multimodal fusion
engine within CPN modeling is an intermediary one between the late and early fusion
architectures. Section 4 shows an example of this architerture.

The main features appearing in the proposed generic CPN modeled architecture are
summarized in four points.

• Distributed architecture: CPN modeling offers the possibility to distribute PCA
over the architecture. Each instance of the PCA has its facets of action perception
and interaction depending on its contextual position in the network and error-
avoidance management. Also, the possibility to decompose each LA into
sublevels leads to a model that can assist the code generation in a computer
language used in the final implementation of the system (hierarchy, heritage, …).
Finally, distribution allows to reduce the perceptions mechanisms of the agents
and to spread them out over all the architecture.

• Scalable architecture: The architecture has the ability to sustain a growing load
when new modalities are added.

• Parallel architecture: The parallelism gives the possibility to run the application
with each LA processed in a separate parallel hardware. It is also possible to
easily activate or inhibit a LA (in the case of dynamic architectural
reconfiguration) without perturbing the global running application.

• Pipelined architecture: with several input and internal data streams and one output
data stream it becomes easy to test and follow the evolution of this multimedia
multimodal architecture, under the aspects of error avoidance.

GENERIC PIPELINED MULTI-AGENTS ARCHITECTURES FOR MULTIMEDIA MULTIMODAL

SOFTWARE ENVIRONMENT

162 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

4 EXAMPLE OF AN ENGINE FUSION MODELED BY CPN

Description of the ‘Copy and paste’ fusion engine

This section presents a typical example of a distributed architecture for fusion, using the
paradigm Figure 7. The ‘Copy and Paste’ fusion engine architecture chosen involves a
high level LA, for speech modality, linked, by a distributed PCA, to a rudimentary mouse
clicking LA (thread of clicks). The PCA performs the semantic fusion between speech
and mouse clicking trough two levels. Tables 2 and 3 give the vocabulary, used by the
speech LA, and the basic sentences allowed by the corresponding grammar. Each word
has a label used in the CPN design.

Word Word label Word Word label
open 1 paste 5
close 2 cancel 6
delete 3 that 7
copy 4

Table 2. Vocabulary.

In the following, a few symbolic regular expressions are used to represent semantic
elements. These expressions use the arrow operator for sequential concatenation in time
domain. For the chosen example, in the semantic expression:

(word 1→word 2)
word 1 is simply followed by (or contiguous to) word 2. The word ‘cancel’ is a command
that automatically cancels the last action among the authorized sentences. Therefore, if
the user says one of the words labeled in the set {1, 2, 3, 4, 5} just after “cancel”, the time
proximity between the two words is one of the decision criteria for suppressing the
second word or taking it as a next command. For the proposed architecture both scenarios
are processed.

The multimodal dialog gives for each sentence a set of possible redundant fusions.
The symbol // models these concurrent associations in regular expressions.

For example, depending upon temporal information, the first command given in
Table 2 is an element of the following semantic fusion set:

{(click→open→that); (open→click); (click→open);
(click // open); ((click // open)→that); (click // (open→that))}.

Set of Sentences

Command meaning

{ (open→that); (open) } Open object
{ (close→that); (close) } Close object
{ (delete→that); (delete).} Delete object

EXAMPLE OF AN ENGINE FUSION MODELED BY CPN

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 163

{ (paste) } Past last copied object
{ (copy→that); (copy) } Copy object

{ (cancel)} Cancel last command

Table 3. Sentences allowed by the grammar.

This semantic set includes the grammatical sentences corresponding to the command
‘Open object’. Words, temporally isolated and labeled in the set {1, 2, 3, 4, 7}, are not
considered by the PCA. The remaining fusion entities like ((close→open) // click), (click
// (delete→open)), etc. or isolated clicks are also ignored by the system. (Thus, some
errors made by user are avoided by the model.) The whole sets constitute the semantic
knowledge. The associated CPN uses two random generators to design the arrival time of
the input media events. The inter-arrival time between two pronounced words as well as
the time between two consecutive ‘clicks’, are exponentially distributed. Events (like
words and clicks) are generated or arrived in two different threads (the places named
‘ThreadofClick’ and ‘ThreadofWords’). The time between two click (respectively word)
arrivals has a mean = ClickArrival (respectively = WordArrival). The inter-arrival time
between 2 click (respectively word) events has an exponential distribution with parameter
r =1/ClickArrival (respectively 1/WordArrival). (Mean: 1/r and Variance: 1/(r2)). The
density function of the inter-arrival time between 2 events is f (x) =r * exp (- r * x), if x is
greater than 0 and f (x) = 0 elsewhere. The inter-arrival time follows an exponential law,
for the words and also for the clicks. If the time proximity between a word event and a
click event is below the variable ‘ProxyTime’ and if these two events verify the
grammatical and semantic conditions (given between brackets under the transition which
models the‘SFCo’- see Figure 6-) then these two events are fused into one command.
Transitions model the PCA components distributed over the network. The mouse click
LA is reduced to a simple thread. The transition ‘RecognitionSystem’ assigns a random
label to each word present in the place ‘WaitRecognition’. This random assignation does
not model a real flowing speech because automatic modeling of user speech is outside the
scope of this paper. However, it is sufficient to model times of recognition.

Simulation results:

The Figures 8 (a), (b) and (c) show the simulation results for
WorArrival=ClickArrival=5000ms and ProxyTime=10000ms

Canceled commands

0
1

2

3

4

5

6

0 500 1000 1500 2000 2500

t ime (x10ms)

N
um

be
r o

f C
an

ce
ls

Fig. 8 (a): Canceled command.

GENERIC PIPELINED MULTI-AGENTS ARCHITECTURES FOR MULTIMEDIA MULTIMODAL

SOFTWARE ENVIRONMENT

164 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

Figure 8 (c) presents the number of achieved fusions in the time (or the number of marks
in the place ‘FusionedMedia’ of the CPN). In the same way, a command can be cancelled
if the user says the word 'cancel' just after an achieved command (the proximity time
between the two events: the command and the word 'cancel' is chosen below
(ProxyTime/25)). Figure 8 (b) shows the accumulation of words in the corresponding
thread (or the number of marks in the place ‘ThreadofWords’). Figure 8 (a) shows the
resulting cancelled commands in the time (or the number of marks arrived in the place
‘CanceledCommand’). Figures 8 are obtained after the simulation of the network.

The results in Figures 8 (a), (b) and (c) quantify perceivable behavior of the
architecture for random arrival time of inputs. This behavior depends on temporal
proximity criterion. These results could vary according to the value of a proxymity time
criterion used to achieve the fusion. The adjustment of this value should take into account
the mean temporal behavior of users. This is done by a pertinent fine-tuning of the
random generators with the function ExpLaw() [Jensen et al.1995]. It should also
consider processing time, which is modeled by the values returned by the program of
transition ‘RecognitionSystem’.

The example of this section shows that the fusion engine works and performs
semantic fusion (by combining results of commands to derive new results) as well as
syntactic ones (by combining data to obtain a complete command).

The CPN example proposed in this section does not consider the problem of mark’s
accumulation in the multithreaded network. This important aspect could be easely

Thread of Words

0

5

10

15

20

0 500 1000 1500 2000 2500

t i me (x 10 ms)

N
um

be
r o

f w
or

ds

Fig. 8 (b): Thread of words.

 Achieved semantic fusions

0
2
4
6
8

10
12
14

0 500 1000 1500 2000 2500

time (x10 ms)

N
um

be
r o

f f
us

io
ns

Fig. 8 (c): Achieved semantic fusions.

EXAMPLE OF AN ENGINE FUSION MODELED BY CPN

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 165

resolved by adding new tasks to the distributed PCA or to an another network for error
management.

5 CONCLUSION

In this paper an agent-based conversational model for multimodal fusion is proposed. The
pipelined architecture of this model lead to new generic structures that unify applications
based on multimedia multimodal dialog. They also offer to developers a framework
specifying different functionalities used in multimodal software implementation. In a first
phase, the main common requirements and constraints that multimodal dialogs need are
gathered. Then the interaction types related to the early and late fusions are identified.
The proposed fusion engine are modeled with a multithreaded timed Colored Petri
Networks and supports both parallel and serial fusions. The quality attributes of the
architecture are outlined to show the the genericity of our approach. An simulation
example of a engine fusion is also presented.

ACKNOWLEDGMENTS

We wish to acknowledge the Commission Permanente de Coopération Franco-
Québécoise 2003-2004, with the support of the ministry for the International Relations of
Quebec and the Foreign Office of France (General Consulate of France in Quebec.) This
project was also supported by the financial support of the Natural Sciences and
Engineering Research Council (NSERC) of Canada.

REFERENCES

[Bolt 1980] Bolt, R.A., Put that there: “Voice and gesture at the graphics interface”,
ACM Computer Graphics 14,3, 262-270, 1980.

[Crowley 1997] Crowley, J.L. and Bérard, F. “Multimodal tracking of faces for video
communications”, in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’97), San Juan, IEEE Press, NY,
June, 1997.

[Bellik 1994] Bellik Y., Burger D., “Multimodal Interfaces: New Solutions to the
Problem of the Computer Accessibility for the Blind”. Proc. CHI’94,
Boston, 24-28 April 1994.

[McGee 2000] McGee, D.R., Cohen, P.R., and Wu, L., “Something from nothing:
Augmenting a paper-based work practice with multimodal interaction”,
in Proceedings of the Conference on Designing Augmented Reality

GENERIC PIPELINED MULTI-AGENTS ARCHITECTURES FOR MULTIMEDIA MULTIMODAL

SOFTWARE ENVIRONMENT

166 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

Environments, ACM Press, Helsingor, Denmark, 71-80, April 12-14,
2000.

[Jensen 1997a] Jensen K., “Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use, Volume 1, Basic Concepts”. Monographs in Theoretical
Computer Science, Springer-Verlag, 2nd corrected printing, ISBN: 3-
540-60943-1, 1997.

[Jensen 1997b] Jensen, K., “Coloured Petri Nets. Basic Concepts, Analysis Methods
and Practical Use, Volume 2, Analysis Methods”. Monographs in
Theoretical Computer Science, Springer-Verlag, 2nd corrected printing,
ISBN: 3-540-58276-2, 1997.

[Jensen 1995] Jensen, K., Christensen, S., Huber, P and Holla, M., “Design/CPN
Reference Manual”, Department of Computer Science, University of
Aarhus, Denmark, http://www.daimi.au.dk/designCPN/, 1995.

[Oviatt 2000a] Oviatt, S.L., “Multimodal Signal Processing in Naturalistic Noisy
Environments”, in B. Yuan, T. Huang and X. Tang Eds., Proceedings of
the International Conference on Spoken Language Processing
(ICSLP’2000), Vol. 2, pp. 696-699, Beijing, China: Chinese Friendship
Publishers, 2000.

[Oviatt 2000b] Oviatt, S.L., “Multimodal System Processing in Mobile environments”,
Proceedings of the Thirteenth Annual ACM Symposium on User
Interface Software Technology UIST'2000, pp. 21-30, New York: ACM
Press, 2000.

[Hutchins 1986] Hutchins, E. L., Holland, J. D. and Norman, D. A., “Direct manipulation
interfaces”, in Norman, D. A. and Draper, S. W. Eds., User centred
system design: new perspectives on human computer design, Hillsdale,
NJ, Lawrence Erlbaum, 1986.

[Oviatt 2000] Oviatt, S.L., Cohen, P.R., Wu, L., Vergo, J., Duncan, L., Suhm, B.,
Bers, J., Holzman, T., Winograd, T., Landay, J., Larson, J. and Ferro,
D., “Designing the user interface for multimodal speech and gesture
applications: State-of-the-art systems and research directions”, Human
Computer Interaction, vol. 15, no. 4, pp. 263-322, 2000.

[Bregler 1993] Bregler, C., Manke, S., Hild, H., and Waibel, A. “Improving connected
letter recognition by lip reading”, Proceedings of the International
Conference on Acoustics, Speech and Signal Processing, 1, pp. 557-560.
IEEE Press, 1993.

[Project CNRS 1994] Projet AMIBE, Rapport d’activité, GDR |n° 9, GDR-PRC
Communication Homme-Machine, CNRS, MESR, 1994, pp. 59-70
(Technical Report in french), 1994.

http://www.daimi.au.dk/designCPN/

CONCLUSION

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 167

[Oviatt 1999] Oviatt, S. L., “Mutual disambiguation of recognition errors in a
multimodal architecture”, Proceedings of Conference on Human
Factors in Computing Systems: CHI '99, New York, N.Y., ACM Press,
576-583, 1999.

[Coutaz 1994] Coutaz, J., Nigay, L., “Les propriétés CARE dans les interfaces
multimodales”, IHM’94. Sixièmes journées sur l’ingénierie des
Interfaces Homme-Machine, Lilles, 8-9 Déc, (French paper), 1994.

[Jennings 1998] Jennings, N. R. and Wooldridge, M. J., “Applications of Intelligent
Agents” in Agent Technologies: Foundations, Applications and
Markets, Eds. N. R. Jennings and M. Wooldridge, 3-28, 1998.

[Weiss 1999] Weiss, G., Multiagent Systems, MIT-Press Ed., 1999.

[Bird 1993] Bird, S.D., “Toward taxonomy of multi-agents systems”, International
Journal of Man-Machine Studies, 39, 689-704. 1993.

[Bond 1988] Bond, A.H. and Gasser, L., Readings in Distributed Artificial
Intelligence, San Mateo, Calif.: Morgan Kaufmann, 1988.

[Ishida 1997] Ishida, T., Real-Time Search for Learning Autonomous Agents, Kluwer
Academic Publishers, 1997.

[Muller 1996] Muller, H. J., “Negotiation principles”, in G. M. P. O’Hare and N. R.
Jennings, eds, Foundations of Distributed Artificial Intelligence, pp.
211-229, Wiley, 1996.

[Cohen 1997] Cohen, P. R., Levesque, H. R., and Smith, I., “On team formation”,
Hintikka, J. and Tuomela, R. (Eds.) Contemporary Action Theory.
Synthesis, 1997.

[Ramdane] Ramdane-Cherif A. and Levy, N. “An Approach for Dynamic
Reconfigurable Software Architectures”. in IDPT’02: The Sixth World
conference on Integrated Design and Process Technology, Pasadena,
California, USA, June 23-28, 2002.

[Abrial 1996] Abrial J.-R, The B-Book: Assigning Programs to Meanings, Cambridge
University Press, 1996.

[Bellik 1995] Bellik Y.,: PHD Thesis of university of Paris XI (France). Thèse de
Doctorat de l’Université de Paris XI, spécialité informatique. “Interfaces
multimodales : concepts modèles architectures”, soutenue le 30 Mai
1995.

[Chen 1990] Chen, S.-C. and Kashyap, R. L., “Temporal and spatial semantic for
multimedia presentations”, International Symposium on Multimedia
Information Processing, pp. 441-446, Dec.11-13, 1997

GENERIC PIPELINED MULTI-AGENTS ARCHITECTURES FOR MULTIMEDIA MULTIMODAL

SOFTWARE ENVIRONMENT

168 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

[Kramer 1990] J. Kramer, J. Magee, “The Evolving Philosophers Problem: Dynamic
Change Management”, IEEE Trans. On Software Eng., 16(11), pp.
1293-1306, Nov. 1990.

[Tabeling 2002] P. Tabeling, “Multilevel Modeling of Concurrent and Distributed
Systems”, in SERP’02 International Conference. P 94-100, 2002.

About the authors

Hicham Djenidi has been studying for his Ph.D. at PRISM laboratory,
University of Versailles, France and Ecole de Technologie Supérieure
(ETS) Canada, since 2003. His investigations and field interests
concern, multimodal interactions, multi-agents architectures and
software specifications. Hicham Djenidi is a student member of IEEE.
E-Mail: djenidi@yahoo.com.

Amar Ramdane-Cherif received his Ph.D. degree from Pierre and
Marie university of Paris in 1998 in neural networks and AI
optimization for robotic applications. Since 2000, he has been associate
Professor in the laboratory PRISM, University of Versailles Saint-
Quentin en Yvelines, France. His main current research interests
include: Software architecture and formal specification, dynamic
architecture, architectural quality attributes, architectural styles and

design patterns. E-Mail: rca@prism.uvsq.fr.

Chakib Tadj is a professor at ETS, University of Quebec at Montreal
(Canada). He received his Ph.D. degree from ENST Paris in 1995. He is
a member of Laboratory of Integration of Technologies of Information
(LITI) at ETS. His main research interests are automatic recognition of
speech and voice mark, word spotting, HMI, multimodal and neuronal
systems. E-Mail: ctadj@ele.etsmtl.ca.

Nicole Levy is professor at the university of Versailles, Saint-Quentin
en Yvelines, France. She has a doctorate of the university of Nancy. She
directs an engineering school, the ISTY, and is responsible for the
SFAL team (Formal Specification and software architecture) of PRISM,
the laboratory of the University associated with the CNRS. Her main
research interests are formal and semi-formal development methods,

style and architectural models formalization, quality attributes of software architectures
and distributed systems. E-Mail: nicole.levy@prism.uvsq.fr.

mailto:djenidi@yahoo.com
mailto:rca@prism.uvsq.fr
mailto:ctadj@ele.etsmtl.ca
mailto:nicole.levy@prism.uvsq.fr

