

JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 8, September-October 2004

Cite this article as follows: H. Ben-Abdallah , N. Bouassida, F. Gargouri, A. Ben-Hamadou: “A
UML based Framework Design Method”, in Journal of Object Technology, vol. 3, no. 8,
September-October 2004, pp. 97-119. http://www.jot.fm/issues/issue_2004_09/article1

A UML based Framework Design
Method

H. Ben-Abdallah, Faculté des Sciences Economiques et de Gestion de Sfax
N. Bouassida, F. Gargouri, A. Ben-Hamadou, Institut Supérieur
d’Informatique et de Multimédia de Sfax, Tunisie

Abstract
Object-oriented frameworks offer reuse at a high design level promising several benefits
to the development of complex systems. However, framework design remains a difficult
task due to the generality and variability frameworks must encompass. In addition,
traditional object-oriented design methods only deal with the design of specific
applications and do not facilitate the design of frameworks.
In this paper, we present a UML-based framework design method called FBDM. The
method offers a design language, called F-UML, and a semi-automatic design process
both of which supported by a CASE environment. The design language F-UML visually
distinguishes among the fixed components and the adaptable components of a
framework. The design process for F-UML is based on stepwise, bottom-up unification
rules that apply a set of comparison criteria on various applications in the framework
domain. The design method is illustrated and evaluated through the design of a
framework for electronic commerce brokers.

1 INTRODUCTION

Frameworks promise increased productivity, shorter development times and a higher
quality of applications since they allow developers to reuse their previous experience in
problem solving both at the design and code levels [Johnson 1988]. In fact, they are an
extension to object-oriented designs, that helps reuse at a level of abstraction higher than
classes, patterns [Gamma 1995] and components.

An object-oriented framework represents a software architecture that captures
several applications’ behaviours in a particular domain. It is composed of a set of
concrete and abstract classes with their relations. It is organized in two parts [Pree 1994] :
a core (also called frozen-spot) that is common to all applications derived from the
framework, and hot-spots that represent the variable parts which allow a framework to be
adapted to a particular application. Schmid [Schmid 1997] defines two types of hot-spots:

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_09/article1

A UML BASED FRAMEWORK DESIGN METHOD

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

whitebox hot-spots adapted by implementing some of their methods and classes, and
blackbox hot-spots adapted through composition.

Traditional object-oriented design methods (e.g., OMT [Rumbaugh 1991]) deal with
the design of only specific applications. They are inappropriate for the design of
frameworks since they lack concepts to determine and express hot-spots, an essential
concept that should be clearly expressed in order to avoid any framework misuse. This
deficiency motivated several proposals of new framework notations (c.f., [Riehle 2000],
[Fontoura 2000b], [Sanada 2002]) and design processes (c.f., [Schmid 1997], [Koskimies
1995], [Fontoura 2000a]).

In this paper, we present a framework design method that offers a UML-based
design language called F-UML [Bouassida 2001] and a bottom-up design process
[Bouassida 2002]. F-UML is an UML profile [Bouassida 2003b] that increases the
expressiveness of UML by adding tags and graphical annotations to UML use cases,
class, pattern and sequence diagrams. The extensions help to distinguish visually between
the core of the framework and its hot-spots and guide the user in instantiating a
framework. The design process is based on a bottom-up strategy that generates a
framework design by unifying a set of application designs. It is composed of three main
steps: The first step extracts the domain specifications and potential uses of the
framework through unification of the use case diagrams of different applications in the
domain. The second step models the framework static features through unification of the
class diagrams of the given applications. The last step extracts the dynamic framework
features through the unification of sequence diagrams.

The FBDM design method is supported by a toolset [Ayadi 2003] that allows an
easy representation of syntactically, well-defined frameworks [Bouassida 2003b] and a
semi-automatic generation of a framework design. The toolset prompts the framework
designer only to decide on the completeness of certain relations (inheritance,
association,….), which requires a deep domain knowledge.

This paper is organized as follows. Section 2 overviews existing framework design
methods. Section 3 and 4 present the framework design language F-UML and its design
process, respectively. Section 5 illustrates the method through the design of a framework
for electronic commerce brokers. Section 6 evaluates the method. Finally, section 7
summarizes the paper and outlines future work.

2 OVERVIEW OF FRAMEWORK DESIGN METHODS

In this section, we first outline a set of concepts necessary in a framework design
language. We then use the outlined concepts to examine current framework design
languages that are based on UML. Finally, we present current framework design
processes.

The following five requirements detail out concepts necessary in a design language
for frameworks [Bouassida 2001]:

A UML BASED FRAMEWORK DESIGN METHOD

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 99

1. The framework design notation must provide for a means to describe statically the
framework:

a) classes and their relations (association, generalization, aggregation);
b) core; and
c) whitebox and blackbox hot-spots.

2. Within a whitebox hot-spot, the notation must statically guide the user to the
potential changes they are expected to introduce. For example, the notation
indicates that the user is expected to redefine the code of a method, or the user
may add inheriting classes, etc. This criterion facilitates a correct reuse of a
framework.

3. The notation must contain concepts for regulating the interactions within a
framework by:

a) explicitly showing the collaborations between objects instantiated from the
framework classes;

b) clarifying the object responsibilities, contexts on which the responsibilities
depend and how the objects may combine the different responsibilities;
and

c) being abstract and independent of unessential implementation details that
may unnecessarily tie the design to a specific environment and limit the
framework generality.

4. The notation must show the framework aim and potential uses of the, i.e., it must
show scenarios of the framework instantiations.

5. The notation must be unambiguous to facilitate the correct comprehension of the
framework.

Current Framework Design Languages

[Rational 2001] models a framework through three UML diagrams: a class diagram
enriched with packages, a collaboration diagram and a use case diagram. The enriched
UML class diagram expresses the static structure of a design (1.a). However, it does not
distinguish between the classes in the core and those in the hot-spots (1.b-c). Although
the name of an abstract class is in italic in the UML notation, this is not sufficient to
deduce all the hot-spots. The UML collaboration diagram successfully shows the object
interactions (3.a) and responsibilities (sender/receiver) (3.b partially). However, working
at the message exchange level can be too detailed and does not indicate how and in which
context the framework works. The UML use case diagram defines a set of external actors
and their possible uses of the system. It could therefore be used to define the aim and
possible contexts (4).

Fontoura et al. [Fontoura 2000b] propose a UML profile for frameworks, called
UML-F, where a design is expressed by a class diagram and a sequence diagram both
extended by presentation tags (e.g., complete, incomplete), basic modeling tags (e.g.,
fixed, application, framework) and essential pattern tags (e.g., FacM-Creator, FacM-
ConcreteCreator). The added tags are used to mark, essentially, the complete and
incomplete parts, the variable parts in the diagrams and the roles of diagram elements. In

A UML BASED FRAMEWORK DESIGN METHOD

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

this notation, the extended class diagram represents the framework classes and relations
(1.a). However, according to the tag definitions, this notation only identifies the whitebox
hot-spots (1.c partially and 2). In addition, several tags are complementary and thus
redundant (e.g., complete and incomplete, application and framework). Furthermore, the
combined pattern tags and presentation tags could overcharge the diagram and impede
the understanding of the design. The extended sequence diagram guides the user when
adapting framework interactions (2 partially), and it explicitly shows the object
collaborations (3.a) and responsibilities (3.b partially). However, similar to the UML
sequence diagrams, it remains at a detailed level.

Sanada [Sanada 2002] presents an UML extension that aims to be comprehensive
and well defined. However, most of the extensions proposed have already been defined
by Fontoura[Fontoura 2000b], and the only difference is the constraint “covariant” which
shows that adding a subclass to a certain class might result in adding a subclass to another
one.

Riehle [Riehle 2000] proposes a role modeling language that adapts the OORAM
methodology [Reenskaug 1996]. The proposed language represents a framework through
a class model with an extension-point class set (points of extension), a built-on class set
(framework interface) and a free role type set (the use of the framework by other
frameworks). Overall, this notation represents the architecture and collaborations in a
framework (1.a and 3.a-b) and describes the framework context (3.b). However, it
focuses more on framework composition than framework adaptation. For instance, it does
not visually distinguish between extension-point classes and frozen classes in the
framework. Therefore, one cannot easily recognize the whitebox and blackbox hot-spots.

Current Framework Design Processes

Current framework design processes can be classified as either bottom-up or top-down.
Bottom-up design works well where a framework domain is already well understood, for
example, after some initial evolutionary cycles. In this case, the design process starts
from a set of existing applications and generalizes them to derive a framework design
(c.f., [Koskimies 1995], [Schmid 1997]). On the other hand, top-down design is preferred
when the domain has not yet been sufficiently explored. In this case, the design process
starts from a domain analysis and then constructs the framework design (c.f., [Aksit
1998]).

Koskimies and Mossenback [Koskimies 1995] propose a two-phase bottom-up
framework design process. The first phase, called problem generalization, generalizes a
representative application in the framework domain into “the most general” form. In the
second phase, called framework design, the generalization levels of the previous phase
are considered in a reverse order leading to an implementation for each level. The
implementation of the framework at level i requires adding specific classes and applying
various design patterns on the framework. The last step in the design phase is to apply the
resulting framework to the initial example problem of the generalization phase. This
design process lacks guidelines for the problem generalization phase. In addition, both
the reuse degree of the resulting framework and the ease of deriving the framework

A UML BASED FRAMEWORK DESIGN METHOD

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 101

depend on how well the original application represents the domain. Furthermore, the
resulting framework does not provide for reuse guidelines; that is, it does not clearly
identify nor does it guide the designer in finding the framework core and hot-spots.

Schmid [Schmid 1997] decomposes the framework design process into three steps:
1. design of a class model for an (arbitrary) application in the framework domain;
2. analysis and specification of the domain variability and flexibility, i.e.,

identification of the hot-spots; and
3. generalization of the class model by applying a sequence of transformations that

incorporate the domain variability.
This design process leaves it to the developer’s expertise to identify the hot-spots during
the second step.

Pree [Pree 1994] proposes a framework design process based on combining hot-
spots specified as metapatterns. These latter are a set of design patterns that describe how
to construct frameworks. This design process focuses on hot-spot combination without
defining how to determine them.

Fontoura et al [Fontoura 2000a] propose a design process that considers a set of
applications as viewpoints (i.e., perspectives) of the domain. The process informally
defines a set of unification rules that describe how the viewpoints can be combined to
compose a framework. The result of applying the unification rules is a template hook
model that represents the hot-spots through template and hook methods. After developing
the template hook model, the developer has to find which meta-pattern should be used to
model each hot-spot. The resulting framework is an OMT class diagram that does not
completely specify the framework; in particular, it neither distinguishes between the two
hot-spot types, nor does it not specify the object interactions. In addition, this process
does not address semantic issues in the unified applications (e.g., synonyms,
homonyms,…); it supposes that all the semantic inconsistencies between the viewpoints
have been solved beforehand.

3 THE DESIGN LANGUAGE F-UML

The development of the design language F-UML was motivated by the design criteria
outlined earlier. In F-UML, a framework design consists of the following four UML
based diagrams:

1. A use case diagram that determines the framework scope, objectives and domain
limits (criteria 4). The extensions to the use case diagram are summarized in
Table 1.

A UML BASED FRAMEWORK DESIGN METHOD

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

GGrraapphhiiccaall

NNoottaattiioonn

EExxppllaannaattiioonn OObbjjeeccttiivvee

 A highlighted use case (actor) border

to show the framework core

 A use case (actor) filled in gray

to show the framework hot-spot

 The constraint {incomplete} associated to
the inheritance relation between use cases
or actors

to show that it is possible to add an
inheriting actor (use case) in an
application reusing the framework.

Table 1. F-UML extensions to UML use case diagrams

2. A class diagram that describes the static architecture of a framework. The
extensions to the class diagram (see Table 2) let the user distinguish between the
core of the framework and its hot-spots (1) and guide him/her in adapting a
whitebox hot-spot to a specific application (2).

3. A pattern diagram that shows the design patterns and metapatterns identifying the
roles of the framework classes (3.a-b). The pattern diagram helps understanding
the interactions among the objects of the framework.

4. Sequence diagrams that describe possible interactions between various object
instances of the class diagram (3.a, 4). While the sequence diagrams might
present too detailed information compared to the previous diagrams, they can
provide important information in understanding how to use, and consequently
reuse, a framework. The F-UML extensions to the sequence diagram are
summarized in Table 3.

The F-UML diagrams can be enriched with OCL constraints [OCL 1997] to specify
constraints and invariants on classes and types and pre and post conditions on methods.

The F-UML notation is a UML profile whose syntax (derived from the UML meta-
model) has a formal semantics [Bouassida 2003b] (criteria 5).

GGrraapphhiiccaall NNoottaattiioonn EExxppllaannaattiioonn OObbjjeeccttiivvee

A highlighted class border to show the framework core

A square filled in black at

the top-right corner of a

class

to show the framework blackbox hot-spot

A square filled in gray at

the top-right corner of a

class

to show that this class with all its inheriting

classes are in the framework whitebox hot-

spot

{incomplete}

A UML BASED FRAMEWORK DESIGN METHOD

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 103

Method()

A circle filled in gray in

front of a method’s name

to show a virtual method

undefined)

The tag undefined for a

method with a varying

signature

to show a method with an undefined

signature

 {extensible}

The tag {extensible} in a
class

to show that the class can be adapted by

adding/removing attributes/methods

{incomplete}

The UML constraint
incomplete on a relation
(generalization,
aggregation, association)

to show that the framework may be adapted

by adding other related classes

Table 2. F-UML extensions to the UML class diagram

Graphical Notation EExxppllaannaattiioonn OObbjjeeccttiivvee

Class : Object

A highlighted object border to show the framework core

Class : Object

A square filled in gray at the top-
right corner of an object

to show the framework
whitebox hot-spot

Class : Object

A square filled in gray at the top-
right corner of an object

to show the framework
blackbox hot-spot.

{optional}

Class : Object Class : Object

The tag optional attached to a
message as proposed by [Fontoura
2000]

to show that the message
may not exist in an
application adapting the
framework

Table 3. F-UML extensions to UML sequence diagrams

4 THE FBDM DESIGN PROCESS

The F-UML bottom-up design process helps the framework designer to structure the
framework by determining its core, blackbox and whitebox hot-spots. It starts from
several application designs and goes through three unification steps (in fact, Roberts
[Roberts 1996] states that three applications sufficiently represent their domain):

1. Design of the framework use case diagram: The unification process first extracts
use cases common to all the applications and puts them as the framework core.
Secondly, it extracts the different use cases and puts them as hot-spots.

2. Design of the framework class diagram: The unification process first extracts
common classes and puts them as the framework core. Secondly, it puts the

A UML BASED FRAMEWORK DESIGN METHOD

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

remaining classes as hot-spots. For certain relations, the designer is probed to
decide on their completeness.

3. Design of the framework sequence diagrams: The unification process identifies
optional messages and tags them as hot-spots.

Currently, the pattern diagram is not obtained through unification. It is obtained from the
class diagram (obtained in step 2) by filtering out the details inside the classes and by
matching the resulting structure to a set of design patterns and metapatterns. At this level
of representation, the user is interested in the roles and interactions between the various
classes of the framework.

The above three unification steps use a set of unification rules based on semantic
comparison criteria. These latter rely on linguistic definitions to define semantic
equivalence, generalization-specialization, variation and composition between names.

In the remainder of the paper, to facilitate the presentation of unification process, we
note:

• The class C (object O) in the application Ai as CAi (OAi;);
• The use case U (actor A) in the application Ai as UAi (AAi);
• The message M in the application Ai as MAi; and
• The application A1 as the application containing the minimal number of actors and

use cases in the use case diagram (classes in the class diagram or messages in the
sequence diagram).

Use case diagram unification

The unification of use case diagrams relies on semantic correspondences among the
actors, use cases and their relations. These latter are expressed by the following relations:

• N_equiv(AA1,...,AAn) means that the names of the actors are either identical or
synonym, e.g., ConsumerA1-BuyerA2.

• N_var(A A1,...,AAn) means that the names of the actors are a variation of a concept,
e.g., employee-contractual, employee-permanent, employee-vacationer.

• Gen_Spec(A A1;A A2,...,AAn) means that the name A A1 is a generalization of the
specific names A A2 ,…, AAn, e.g., Person A1-Employee A2.

• N_dist(A A1,...,AAn) means that none of the above relations holds.

The relations between use cases are defined in a similar manner.
The design of the framework use case diagram is guided by the six rules depicted in

Figure 1. As illustrated in this figure, the core and hot-spots of the framework are derived
automatically. In addition, the designer’s intervention is guided (rule 2 and 3); it is
needed to decide on the completeness of the diagram, which requires domain expertise.

A UML BASED FRAMEWORK DESIGN METHOD

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 105

The generic actor and inheriting
actors are added to the

framework with generalization
relation between them*

Rule 1:

Take an actor AA1 (use case U A1)

Name
comparison

N-dist(AA1,…AAn)

Repeat until all the actors
(use cases) of A1 are taken

N-equiv(AA1,…AAn)

Add the actor (use case) to
the framework core

The actors (use cases) are added to
the framework as inheriting to a new

generic core actor (use case)*

N-Var(AA1,…AAn) Gen-Spec(AAi;…AAn)

Rule 2: Rule 3:

Rule 4:

*if the designer decides that the inheriting actors (use
cases) do not represent all the domain, then the
inheritance relation is tagged with {incomplete}
**if the designer decides that the extensions or
inclusions of a use case do not represent all the domain,
then the extends or includes relation is tagged with
{incomplete} or if he decides that an actor can have
other associations with use cases, then the association is
tagged with {incomplete}

Yes

No

Transfer all the relations between actors (use
cases) added through Rules 1-5. If the relation
involves a core actor (use case), then *, **

Rule 5:
All the actors (use cases) remaining in the
applications A2,.., An are added to the framework
as hot-spots if Rdc(AAi) 2/3; or AAi would be two
levels away from a core actor(use case)

Rule 6:

Add the actor (use case)
to the framework as a hot-
spot, if Rdc(AA1) 2/3; or
AA1 would be two levels
away from a core actor

More
Actors(use cases)

Fig. 1: Design of the use case diagram

Rules 4 and 5 add or ignore hot-spot actors (use cases) according to the domain coverage
ratio Rdc(AAi) :

nsapplicationumber of
,.., A Aalents) in its equiviations or (or its As ofoccurrencenumber of) (AR nAi

Aidc
1var

=

Class diagram unification

The design of the framework class diagram consists of the eight unification rules shown
in Figure 2. The unification rules essentially take classes “common” to all of the
applications as the framework core and add the remaining (specific) classes as hot-spots.
These rules use semantic correspondence criteria to compare class names, attributes and
operations. The class name comparison criteria use five relations among class names.
Four of these relations are defined in a way similar to the relations between actors. The
fifth relation reflects class composition:

• N_comp(CA1;CA2,...,CAn) means that the name CA1 is a composite of the
components CA2,…,CAn, e.g., HouseA1-RoomA2.

The attribute comparison criteria use four relationships to compare the attribute names
and types:

A UML BASED FRAMEWORK DESIGN METHOD

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

• Att_equiv(CA1,..., CAn) means that the classes have eitheridentical or synonym
attribute names with the same types.

• Att_int(CA1,..., CAn) means that the classes CA1,..., CAn have attributes in
intersection.

• Att_conf(CA1,..., CAn) means that there exists at least one attribute of CA1
having a name equivalent to some attributes of CA2,..., CAn but these attribute
types are different.

• Att_dist(CA1,..., CAn) means that none of the above relations holds.

The operation comparison criteria use four relations (Op_equiv(CA1,...,CAn),
Op_int(CA1,...,CAn), Op_dist(CA1,...,CAn), Op_Conf(CA1,...,CAn)) to compare the
operation names and signatures (returned types and parameter types). These relations are
defined in a way similar to the attribute comparison relations.

In the unification process shown in Figure 2, Rule 5 deals with the generalization-
specialization relation in a manner similar to N-Comp relation of Rule 4. Furthermore,
Rule 3.b may add new inheriting classes to the framework. The addition depends on the
significance of the number of attributes and methods in an inheriting class C with respect
to another class C’. This is defined using the ratio Rsig:

f C methods o number of of Cattributesnumber of
and C'long to C ds that be and methoattributesnumber of (C, C') Rsig

+
=

Informally, a class C has a significant number of attributes and methods with respect to a
class C’, if Rsig is greater than a fixed threshold (e.g., 50%) that can be fixed by the
framework designer.

Further, Rule 6 adds or ignores hot-spot classes according to the domain coverage
ratio Rdc :

nsapplicationumber of
,.., An Aalents) in its equiviations orits s of C(or occurrencenumber of

 (C) Rdc
1var

=

Informally, this ratio is used to determine the reuse potential of a class. If a class is
present in several applications, then it covers an important space of the framework
domain; thus, it must be present in the framework hot-spot. On the other hand, if a class
is present in few applications, it is too application specific; thus, if it is added to the
framework, it may complicate unnecessarily the framework comprehension.

Sequence diagram unification

The design of the framework sequence diagram consists of five unification rules (shown
in Figure 3) that rely on the semantic relations among classes adapted to objects and on
name comparison of messages. The main idea of these rules is to unify sequence
diagrams that correspond to the same or an equivalent scenario. That is, the process takes
the “union” of all the sequence diagrams of the applications and marks any message as
{optional} if it does not appear in all the applications.

A UML BASED FRAMEWORK DESIGN METHOD

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 107

1 T he designer m ust decide on the com pleteness of the re la tion . If he decides tha t the com p onen t
(inheriting) cla sses do not represent the en tire dom ain , then the com position (inheritance) re la tion is
tagged w ith {incom plete} .
2 N ew classes inheriting from the added class cou ld be added acco rd ing to the follow ing ru le : for each
app lica tion , if its class has a “sign ifican t” num ber of a ttributes and m e thods (w ith re spect to the a lready
add ed class), then an in heritin g class is ad ded to the fram ew ork w ith th e addition al a ttributes and
m ethods.
3 If O p-C on f (C A 1,… C A n) , thus the m ethod in con flict has a correspond ing m ethod in the fram ew ork
core class w ith the sam e n am e, an d an un defined sign ature, it is a virtual m ethod . If A tt-C on f
(C A 1,… C A n) , thus th e attr ib u te in con flict has a corresp on din g attr ibu te in the class of th e fram ew ork
core that has the sam e nam e and the m ore general a ttribute type .
4 T h e d om ain co verage ra tio R d c(C)=num ber of occuren ces o f C (o r its variations or its equ iva lents) in
A 1,.., A n / n

O p -equ iv
 ⊕ O p -int
 ⊕ O p -d ist

T ak e a cla ss C A1

N -dist(C A1,… C An)

N -e qu iv .(C A1,… C A n)

A tt-d ist

A t t -e qu iv

O p -equ iv

A tt-int

 O p -in t
⊕ O p -dist

O p -equ iv
 ⊕ O p -int
 ⊕ O p -dist

N -V ar(C A1,… C An)

N -C o m p(C Ai,… C An)

 A tt -equ iv

A tt-in t

O p -int
⊕ O p -d ist

O p era tion
co m parison

A tt-d ist

 O p -equ iv

 A tt-e qu iv

A tt-d ist

O p -equ iv

O p -int ⊕
 O p -dist]

N am e
co m parison

A ttribu te
co m parison

A tt-in t

A ttribu te
co m parison

A ttribu te
co m parison

O p era tion
co m pariso

O p -equ iv
 ⊕ O p -int
 ⊕ O p -dist

O p era tion
co m parison

O p era tion
co m parison

O p era tion
co m parison

O p era tion
co m parison

A dd C A1 to the
fra m ew o rk as a ho t-
spo t w ith an
u nd eterm in ed ty pe
if R dc(C A1) 2 /3 ; or
C A1 w ou ld b e tw o
lev els a w a y fro m a
co re c la ss4

A dd C A1 to
th e
fra m ew o rk
a s a core
cla ss

A dd a core c la ss con ta in in g the
a ttribu tes an d m e th o d s in
in ter section to the fra m ew ork
ta gg e d {exten sib le} . T he a d d ed
cla ss hiera rch y is w h iteb o x
sin ce the cla ss inter fa c e m a y
cha n ge 2 & 3

T he cla sses C A1,..C An a re a dd ed to
th e fra m ew ork a s in h eritin g
cla sses to a n e w a b stra ct core
cla ss c o nta in ing th e a ttribu tes an d
m etho d s in inter se ctio n ta gg e d
{ex ten sib le} . T he a d ded cla ss
hiera rch y is w h iteb o x sin ce th e
cla ss inter fa ce m ay cha ng e 1

T he co m p o site cla ss a n d the
co m p on ent c la sses a re a d ded to
th e fram ew ork w ith a
co m p o sitio n re la tion . T he
a ttribu tes an d m eth o d s in
inter section a re pu t in the
co m p o site c la ss w hich is
m ark ed a s core 1

R u le2 .a R ule2 .b R ule 2 .c R u le 2 .d R ule3 .a R u le3 .c R ule3 .d R ule 4 .a R ule4 .d R ule 4 .c R u le1 R ule3 .b R ule 4 .b

R ule 6 : E ach cla ss C re m ainin g in A 2,..,
A n is a dd ed to th e fram ew ork as a n
u nd eterm in ed h ot-spo t i f th e d o m ain
co v erag e ra tio R d c(C) 2 /3 ; or C w ou ld b e
tw o le v els a w a y fro m a core cla ss4

R ule 7 : T ra n sfer a ll th e r ela t io n s b etw een
cla sse s to th e fra m ew ork . I f th e re la tion
in vo lv es a core cla ss, th e n 1

G e n -S p ec(C Ai,… C A n)

R u le 5

R ule 8 : V isit a l l ho t-sp ot c la sses C w ith a n
u nd eterm in ed ty p e. I f C conta in s vir tu a l or
u nd efin ed m etho d s or i f o n e o f its
in her itin g cla sses is w hiteb ox , th en m a rk
C as a w h iteb o x, o th erw ise m a rk C a s a
bla ck b ox. I f C ha s a r ela tio n w ith a core
cla ss, th en 1

Y es

N o

M ore
cla sses

Fig. 2: Design of the framework class diagram

The design unification rules are implemented in the FUMLTool [Ayadi 2003]. This tool
provides for the graphical representation of both applications and frameworks. Moreover,
it manages the comparisons relations through a dictionary. In addition, it allows a semi-
automatic generation of a framework design in F-UML based on the above presented
unification rules. As the rules indicate the designer is probed only to identify the
completeness of certain relations.

A UML BASED FRAMEWORK DESIGN METHOD

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

Rule 3.a :

N-dist(OA1,…OAn)

Repeat until all the
messages of A1 are taken

N-equiv(OA1,…OAn) N-Var(OA1,…OAn)

Rule 4.a: Rule 3.b:

 Sender Object
name

comparison

 Receiver
Object name
comparison

 Receiver
Object name
comparison

 Receiver
Object name
comparison

N-Var

N-dist(MA1,…MAn)

N-equiv(MA1,…MAn)

Rule 1: Transfer all objects O Ai in the framework sequence
diagram, such that if O Ai is an instance of CAi in the framework
class diagram (or its equivalent), thus the type of OAi (core,
whitebox, blackbox) is the same as that of CAi

Take a message MA1

Message

 name
comparison

N-dist(MA1,…MAn)

N-equiv(MA1,…MAn)

Message

 name
comparison

Rule 4.b:

N-Var

N-dist(MA1,…MAn)

N-equiv(MA1,…MAn)

Message

 name
comparison

The message MA1 is tagged
{optional}and it is added to
the framework sequence
diagram.

The message MA1 is added to
the framework sequence
diagram.

If the message belongs to a class of the core in the
framework class diagram, thus the message is
transferred between OA1 (O’A1) and the object,
which is an instance of this core class. Otherwise,
it is marked {optional}.

N-equiv

N-dist(MA1,…MAn)

N-equiv(MA1,…MAn)

Message

 name
comparison

N-dist(MA1,…MAn)

N-equiv(MA1,…MAn)

Message

 name
comparison

N-var

Yes

No

Rule 5: All the remaining messages
in A2…An are transferred in the
framework sequence diagram tagged
optional

Rule 2: Rename all messages transferred in the framework
sequence diagram, taking the name of the respective operation
in the framework class diagram

More

messages

N-equiv

Fig. 3: Design of the sequence diagram

5 APPLICATION: E-BROKER FRAMEWORK

To evaluate the F-UML language, process and tool, we designed an electronic commerce
broker. The choice of electronic commerce domain has several motivations. One
motivation is the expansion of e-commerce; a second motivation is the importance of the
broker entity in this type of commerce; a third motivation is the software complexity of

A UML BASED FRAMEWORK DESIGN METHOD

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 109

electronic brokers, which makes design reuse a judicious choice in order to benefit from
the expertise gained in the design of particular e-broker applications.

In order to design the E-broker framework, we followed three steps. First, we took
three e-broker applications designs: a book broker called Tunisia Book [Khelifi 2000], an
auto broker called Auto Broker [Birkes 1995] and a broker for antiquities called Antique
Broker [Antique 2002]. Secondly, we constructed the relation dictionary used in the
comparison rules of the design process. Finally, we used the framework generation
function of the F-UMLTool to obtain the E-broker framework. Due to space limitations,
we next present a simplified version of this case study.

Fig. 4: The use case diagram of Tunisia Book

Use case generation

Figure 4 presents part of the use case diagram of Tunisia Book. As illustrated in this
figure, the actors that use the brokerage services are the Consumer and the Provider. One
of the functionalities assumed by this application is the consumer/provider subscription to
the broker. Another functionality is the Provider registration of its products for sale and

A UML BASED FRAMEWORK DESIGN METHOD

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

the Consumer product request submission. The functionality of the broker is to search for
the best offer and to return the list of books found. The consumer evaluates the list of
found offers and decides which books to buy and pays for them.

Figure 5 presents part of the use case diagram of the Auto broker. As illustrated in
this figure, the actors that use the system are Buyer and Seller, two variants of the actors
in Tunisia Book. Unlike Tunisia Book, this broker does not require a subscription. Figure
6 presents part of the use case diagram of the Antique Broker.

Fig.5: The use case diagram of Auto broker Fig. 6:. The use case diagram of Antique Broker

Fig. 7: The framework use case diagram

The generated use case diagram of the E-broker framework is shown in Figure 7. It has
been obtained by applying the unification rules as indicated in Table 4.

A UML BASED FRAMEWORK DESIGN METHOD

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 111

Rule

 Criteria N°
Framework

N-equiv(ProviderA1, SellerA2 SellerA3) 1 The actor Seller is added to the framework core
N-equiv(ConsumerA1, BuyerA2 BuyerA3) 1 The actor Buyer is added to the framework core
N-equiv(makereqestA1,DetermineInitialParameterA2
Enter Information Describing Item wanted A3)

1 The use case Enter Information Describing Item
wanted is added to the framework core

N-equiv(EntersourceInformation A1,Register
productA2, Enter Information Describing Item for
sale A3)

1 The use case Enter sources of information is added
to the framework core

N-equiv(Evaluate choices A1 select an offer A2 select
an offer A3)

1 The use case Evaluate choices is added to the core

N-equiv(Search A1Find potential match A2SearchA 3) 1 The use case Search is added to the core
Gen-Spec(Search A1, Search auto A2 Search A3) 3 A generalization between the use case Find

potential matches and search auto is added
N-dist(subscription to the services of a broker)
N-dist(Subscription)
N-dist (Determine max price)
N-dist (Payment with credit card)

4 The use cases subscription, determine max price
and Payment with credit card are added as
framework hot-spots

Table 4: Design of the use case diagram of the framework broker

Class diagram generation

Figure 8 presents part of the class diagram of Tunisia Book. The Broker manages the
Consumer and Provider subscriptions. Furthermore, the association between the
Consumer class and the Book class represents the consumers’ evaluation and selection of
found offers.

Fig. 8: The class diagram of Tunisia Book

A UML BASED FRAMEWORK DESIGN METHOD

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

Fig. 9: The class diagram of Auto broker

Figure 9 partially presents the class diagram of Auto Broker. Similar to the previous
broker class diagram, the class diagram of Auto broker has the classes Broker, Seller and
Buyer. In addition, it has the class Auto and its aggregate classes: Options and Technical
Details.

Fig. 10: The class diagram of Antique Broker

A UML BASED FRAMEWORK DESIGN METHOD

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 113

Rule N° Framework

N-equiv(BrokerA1, BrokerA2 BrokerA3)ƒ
Att-equiv(BrokerA1, BrokerA2 BrokerA3) ƒ
Op-dist(BrokerA1, BrokerA2, BrokerA3)) ƒ
Op-conf(BrokerA1, BrokerA2, BrokerA3)

2.d Broker is added to the framework core with the tag
{extensible}. The method Search is an operation in
conflict, thus it has an undefined signature. Broker is
a whitebox hot-spot.

N-equiv(ProviderA1, SellerA2 SellerA3)ƒ
Att-equiv(ProviderA1, SellerA2 SellerA3) ƒ
Op-equiv(ProviderA1, SellerA2 SellerA3)

2.b Seller is added to the framework core

N-equiv(ConsumerA1, BuyerA2 BuyerA3)ƒ
Att-equiv(ConsumerA1, BuyerA2 BuyerA3)ƒ
Op-equiv(ConsumerA1, BuyerA2 BuyerA3)

2.b Buyer is added to the framework core

N-var(Book A1, AntiqueItemsForsaleA2
AutoA3)ƒAtt-int (BookA1,
AntiqueItemsForsaleA2 AutoA3)ƒ
Op-int var(Book A1, AntiqueItemsForsaleA2
AutoA3)

3.d Auto, Book, AntiqueItemsForsale are added to the
framework as inheriting classes to the class Product.
The class Product has the common attributes and
methods and is tagged with {extensible}. This
hierarchy constitutes a whitebox hot-spot in the
Framework. We added the tag {incomplete} to the
hierarchy because the application does not contain all
possible variants of Product.

N-dist(Certification A1) 1 The class Certification is a hot-spot
N-dist(Basket A1) 1 The class Basket is a hot-spot
N-dist(Order A1) 1 The class Order is a hot-spot
 6 The remaining classes: Option, Technical Details,

Antique Item wanted are transferred in the framework
as blackbox hot-spots

 7 The relations between classes are transferred in the
framework

Table 5: Design of the class diagram of the framework broker

As illustrated in Figure 10, which presents the class diagram of Antique Broker, the
common classes with the previous applications are Broker, Buyer and Seller. The main
difference is the class AntiqueItemWanted which is a hot-spot.

The framework class diagram (Figure 11) has been obtained by applying the
unification rules shown in Table 5. The application A1 is Tunisia Book since it contains
the minimum number of classes, A2 is Antique Broker and A3 is Auto Broker. During
the generation of the class diagram, F-UMLTool produced the diagram shown in Figure
11 with the inheritance relation between auto, book, antiqueitemwanted and Product as
undecided (Rule 3.d). We have decided that it is incomplete since the inheriting classes
does not cover all the domain.

A UML BASED FRAMEWORK DESIGN METHOD

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

Fig. 11: The framework class diagram

Sequence diagram generation

 Fig. 12: A sequence diagram of Tunisia book Fig. 13: A sequence diagram of auto Broker

Figure 12 presents the simplified sequence diagram of Tunisia Book, which corresponds
to the scenario “Search and buy”. Figure 13 presents a part of a sequence diagram Auto
Broker, which corresponds to the scenario “Search and evaluate auto”. Figure 14 presents
a part of the sequence diagram of the antique Broker corresponding to the scenario
“Search and evaluation”.

A UML BASED FRAMEWORK DESIGN METHOD

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 115

 Fig. 14: A sequence diagram of antique Broker Fig. 15: The framework sequence diagram

The Framework sequence diagram corresponding to the scenario “Search and evaluation”
(Figure 15) was automatically derived using the semantic comparison between the
message’ names and types and between the sending and receiving object names.

6 EVALUATION OF THE FBDM METHOD

In addition to the E-commerce domain, we have evaluated the FBDM method and its
associated toolset in the graphical drawing editor domain [Bouassida 2005]. This domain
was chosen since a popular and mature framework already exists: the JHotDraw
framework (about one hundred classes) [Gamma 1997]. Furthermore, JHotDraw was
chosen in order to have a comparison basis for the generated framework since several
applications were derived from it.

On one hand, both case studies showed that the F-UML notation facilitates the
distinction between the core of the framework, which must be present in any application
derived from it, and its variable parts (hot-spots). This in turn can guide the designer in
estimating the degree of reuse the framework can offer. On the other hand, both case
studies showed that the FBDM design process generates a framework that contains the
whole framework core (e.g., Buyer, Seller, Product for E-Broker). However, the design
process produces a framework with (possibly too many) application specific increments
i.e., classes specific to a particular application (e.g., Antique item wanted, Option,
Technical details in E-Broker). These latter could complicate the comprehension of the
framework and hence impede its reuse. However, the F-UML notation helps by visually
distinguishing these details. Thus, when reusing a framework, the designer can first focus
on the core, and later he/she can choose to examine or ignore the hot-spots. Moreover,
some of the framework internal increments (i.e., classes belonging to the library
accompanying the framework) are not deduced by our design process since they are
absent in the original applications. However, the process puts the tag {incomplete}

A UML BASED FRAMEWORK DESIGN METHOD

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

wherever the designer can add details (classes, attributes, or methods). While this may
reduce the number of classes reused (as a reuse measurement), the designer is at least
advised of the places he/she is expected to focus his/her design effort.

Overall, we can note that the degree of details produced in the generated framework
depends on the level of domain coverage in the unified applications. Finally, the F-UML
Tool was vital in the design process, especially in managing the complexity of applying
the rules face to the size of the diagrams, in particular for the JHotDraw case study.

7 CONCLUSION

This paper first reviewed current framework design languages and processes. Secondly, it
presented a framework design method that offers a UML-based design language and a
systematic bottom-up design process. The presented FBDM method is distinguished
from existing methods in three ways: 1) its UML-profile language visually distinguishes
between the framework core, whitebox and blackbox hot-spots; 2) its design process is
well-defined through a precise set of unification rules that identifies automatically the
core and hot-spots; and 3) its toolset provides for the graphical representation of
applications and the semi-automatic generation of a framework. The FBDM design
method was illustrated through the design of a framework for brokers of e-commerce. It
was evaluated through two case studies in the e-commerce and graphical editor domains.

We are currently investigating how to generate automatically the dictionary of the
semantic relations in the design process. Future works include the development of a
module for the generation of the pattern diagram. The module would propose the patterns
adapted to a design and the framework designer would decide which pattern fits the
problem.

REFERENCES

[Antique02] http://www.Antiqnet.com

[ArgoUML02] ArgoUML, http://arguml.tigris.org

[Aksit99] M. Aksit, B. Tekinerdogan, F. Marcelloni and L. Bergmans: Deriving
Object-Oriented Frameworks from Domain Knowledge, Building
Application Frameworks: Object-Oriented Foundations of Framework
Design, M. Fayad, D. Schmidt, R. Johnson (Eds.), John Wiley & Sons
Inc., pp. 169-198, 1999.

[AYADI03] T. Ayadi, N. Bouassida, H. Ben-Abdallah, F. Gargouri, D. Slimane: F-
UMLTool: A Tool for Object-Oriented Framework Design, Int’l
conference on Industrial Engineering and Production Management
(IEPM’03), Portugal, 26-28 May 2003.

http://www.Antiqnet.com
http://arguml.tigris.org

A UML BASED FRAMEWORK DESIGN METHOD

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 117

[Birkes95] A. Y. Birkes, C. H. Hsiung, T. Cohen and R. E. Fulton: A Prototype
Multimedia Auto Broker, ASME Computers in Engineering Conference,
Proceedings of the engineering Database Symposium Boston, MA, Sept
17-21, 1995.

[Bosch97] J. Bosch, P. Molin, M. Mattsson, P. O. Bengtsson: Object oriented
frameworks: problems & experiences, http://www.ide.hk-
r.se/~michaelm/papers/ex-frame.ps , 1997.

[Bouassida01] N. Bouassida, H. Ben-Abdallah, and F. Gargouri: A UML based Design
Language for Framework Reuse, 7th International Conference on
Object-Oriented Information Systems (OOIS’01), Calgary, Canada,
2001.

[Bouassida02] N. Bouassida, H. Ben-Abdallah, and F. Gargouri, A. Ben-Hamadou: A
stepwise Framework Design Process, IEEE International Conference on
Systems Man and Cybernetics, 07-09 October, Hammamet, Tunisia,
2002.

[Bouassida05] N. Bouassida, H. Ben-Abdallah, F. Gargouri, A. Ben-Hamadou:
“Evaluation of a framework design method”, submitted to Information
Sciences for Decision Making Journal (ISDM), 2005.

[Bouassida03b] N. Bouassida, H. Ben-Abdallah, and F. Gargouri, A. Ben-Hamadou: F-
UML: a design language for frameworks and its formal specification,
International conference on Software Engineering and Formal Methods
(SEFM’2003), Australia, Brisbane, 26-29 September, 2003.

[Fontoura00a] M.F. Fontoura, S. Crespo, C.J. Lucena, P. Alencar, D. Cowan: Using
viewpoints to derive Object-Oriented Frameworks: A case study in the
web education domain, Journal of Systems and Software (JSS) Elsevier
Science, 54 (3), 2000.

[Fontoura00b] M.F. Fontoura, W. Pree, B. Rumpe: UML-F: A Modeling Language for
Object-Oriented Frameworks, Proceedings of European Conference on
Object Oriented Programming (ECOOP 2000), Springer-Verlag, 2000.

[Gamma95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design patterns: Elements
of reusable Object Oriented Software, Addisson-Wesley, Reading,
MA,1995.

[Gamma97] E. Gamma, T. Eggenschwiler, http://www.jhotdraw.org

[Johnson88] R. E. Johnson, B. Foote: Designing reusable classes, Journal of Object
Oriented Programming, Vol 1, N°2, June/July 1988,pp 22-35.

[Khelifi00] A. Khelifi, Les Brokers pour le commerce électronique : analyse de
l’existant, développement d’un prototype, rapport de fin d’études,
Faculté des sciences de Tunis, 2000.

http://www.ide.hkr.se/~michaelm/papers/ex-frame.ps
http://www.jhotdraw.org

A UML BASED FRAMEWORK DESIGN METHOD

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

[Koskimies95] K. Koskimies, H. Mossenback: Designing a framework by stepwise
generalization, 5th European Software Engineering Conference,
Barcelona. Lecture Notes in Computer Science 989, Springer-Verlag,
1995.

[OCL97] Object Constraint Language, version 1.1, September, 1997.

[Pree94] W. Pree: Meta-patterns: a means for capturing the essentials of object-
oriented designs, Proceedings of the 8th European Conference on Object
Oriented Programming, Bologna, Italy, 1994.

[Rational01] Rational Software, URL: http://www.rational.com/UML/

[Reenskaug96] T. Reenskaug : Working with objects, Greenwich : Manning, 1996.

[Riehle00] D. Riehle, Framework design: A Role modelling approach, Dissertation
N° 13509, ETH, Zurich, 2000. http://www.riehle.org/diss/

[Roberts96] D. Roberts, R. Johnson, Evolving Frameworks: A pattern language for
Developing Object Oriented Frameworks, Proceedings of the third
conference on pattern languages and programming, Montecilio, Illinois,
1996.

[Rumbaugh91] Rumbaugh et al., Object Oriented Modelling and design, Prentice Hall,
1991.

[Sanada02] Y. Sanada, R. Adams: Representing Design Patterns and Frameworks in
UML-Towards a Comprehensive Approach, Journal of Object
Technology, Vol. 1, N°2, July-August 2002.

[Schmid97] H. A. Schmid: Systematic framework design by generalization,
Communications of the ACM, Special issue on Object Oriented
Application frameworks, vol. 40, no. 10, October 1997.

About the authors

Hanene Ben-Abdallah received a Ph.d. in Computer and Information Science from
theUniversity of Pennsylvania, Philadelphia, PA. She is currently Assistant Professor at
the Department of Computer Science of Faculté des Sciences Economique et de Gestion
de Sfax at the University of Sfax, Tunisia. Her research interests include formal method
application and architecture reuse techniques. Her e-mail address is hanene@gnet.tn.

Nadia Bouassida is preparing a Doctorate degree in Computer Science at the Faculté des
Sciences de Tunis, Tunisia. She is a Teaching Assistant at the Institut Supérieur
d'Informatique et du Multimédia of The University of Sfax, Tunisia. Her e-mail address
is nadia.bouassida@isimsf.rnu.tn.

http://www.rational.com/UML/
http://www.riehle.org/diss/
mailto:hanene@gnet.tn
mailto:nadia.bouassida@isimsf.rnu.tn

A UML BASED FRAMEWORK DESIGN METHOD

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 119

Faiez Gargouri is an Associate Professor at the Institut Supérieur d'Informatique et du
Multimédia of The University of Sfax, Tunisia. He worked in Paris 5 and Paris 13
universities. His research interests include object-oriented software design, Data
Warehouses and conceptual reuse. His e-mail address is faiez.gargouri@fsegs.rnu.tn.

Abdelmajid Ben-Hamadou is Professor of Computer Science and the director of the
Institut Supérieur d'Informatique et du Multimédia of The University of Sfax, Tunisia. He
has been the director of the LARIS reserach laboratory since 1983. His research interests
include automatic processing of Natural Language, object-oriented design and component
software specification. His e-mail address is abdelmajid.benhamadou@isimsf.rnu.tn.

mailto:faiez.gargouri@fsegs.rnu.tn
mailto:abdelmajid.benhamadou@isimsf.rnu.tn

