"

JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 8, September-October 2004

A UML based Framework Design
Method

H. Ben-Abdallah, Faculté des Sciences Economiques et de Gestion de Sfax
N. Bouassida, F. Gargouri, A. Ben-Hamadou, Institut Supérieur
d’Informatique et de Multimédia de Sfax, Tunisie

Abstract

Object-oriented frameworks offer reuse at a high design level promising several benefits
to the development of complex systems. However, framework design remains a difficult
task due to the generality and variability frameworks must encompass. In addition,
traditional object-oriented design methods only deal with the design of specific
applications and do not facilitate the design of frameworks.

In this paper, we present a UML-based framework design method called FBDM. The
method offers a design language, called F-UML, and a semi-automatic design process
both of which supported by a CASE environment. The design language F-UML visually
distinguishes among the fixed components and the adaptable components of a
framework. The design process for F-UML is based on stepwise, bottom-up unification
rules that apply a set of comparison criteria on various applications in the framework
domain. The design method is illustrated and evaluated through the design of a
framework for electronic commerce brokers.

1 INTRODUCTION

Frameworks promise increased productivity, shorter development times and a higher
quality of applications since they allow developers to reuse their previous experience in
problem solving both at the design and code levels [Johnson 1988]. In fact, they are an
extension to object-oriented designs, that helps reuse at a level of abstraction higher than
classes, patterns [Gamma 1995] and components.

An object-oriented framework represents a software architecture that captures
several applications’ behaviours in a particular domain. It is composed of a set of
concrete and abstract classes with their relations. It is organized in two parts [Pree 1994] :
a core (also called frozen-spot) that is common to all applications derived from the
framework, and hot-spots that represent the variable parts which allow a framework to be
adapted to a particular application. Schmid [Schmid 1997] defines two types of hot-spots:

Cite this article as follows: H. Ben-Abdallah , N. Bouassida, F. Gargouri, A. Ben-Hamadou: “A
UML based Framework Design Method”, in Journal of Object Technology, vol. 3, no. 8,
September-October 2004, pp. 97-119. http://www.jot.fm/issues/issue 2004 09/articlel

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_09/article1

A UML BASED FRAMEWORK DESIGN METHOD

whitebox hot-spots adapted by implementing some of their methods and classes, and
blackbox hot-spots adapted through composition.

Traditional object-oriented design methods (e.g., OMT [Rumbaugh 1991]) deal with
the design of only specific applications. They are inappropriate for the design of
frameworks since they lack concepts to determine and express hot-spots, an essential
concept that should be clearly expressed in order to avoid any framework misuse. This
deficiency motivated several proposals of new framework notations (c.f., [Riehle 2000],
[Fontoura 2000b], [Sanada 2002]) and design processes (c.f., [Schmid 1997], [Koskimies
1995], [Fontoura 2000a]).

In this paper, we present a framework design method that offers a UML-based
design language called F-UML [Bouassida 2001] and a bottom-up design process
[Bouassida 2002]. F-UML is an UML profile [Bouassida 2003b] that increases the
expressiveness of UML by adding tags and graphical annotations to UML use cases,
class, pattern and sequence diagrams. The extensions help to distinguish visually between
the core of the framework and its hot-spots and guide the user in instantiating a
framework. The design process is based on a bottom-up strategy that generates a
framework design by unifying a set of application designs. It is composed of three main
steps: The first step extracts the domain specifications and potential uses of the
framework through unification of the use case diagrams of different applications in the
domain. The second step models the framework static features through unification of the
class diagrams of the given applications. The last step extracts the dynamic framework
features through the unification of sequence diagrams.

The FBDM design method is supported by a toolset [Ayadi 2003] that allows an
easy representation of syntactically, well-defined frameworks [Bouassida 2003b] and a
semi-automatic generation of a framework design. The toolset prompts the framework
designer only to decide on the completeness of certain relations (inheritance,
association,....), which requires a deep domain knowledge.

This paper is organized as follows. Section 2 overviews existing framework design
methods. Section 3 and 4 present the framework design language F-UML and its design
process, respectively. Section 5 illustrates the method through the design of a framework
for electronic commerce brokers. Section 6 evaluates the method. Finally, section 7
summarizes the paper and outlines future work.

2 OVERVIEW OF FRAMEWORK DESIGN METHODS

In this section, we first outline a set of concepts necessary in a framework design
language. We then use the outlined concepts to examine current framework design
languages that are based on UML. Finally, we present current framework design
processes.

The following five requirements detail out concepts necessary in a design language
for frameworks [Bouassida 2001]:

98 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

A UML BASED FRAMEWORK DESIGN METHOD

1. The framework design notation must provide for a means to describe statically the
framework:

a) classes and their relations (association, generalization, aggregation);

b) core; and

c) whitebox and blackbox hot-spots.

2. Within a whitebox hot-spot, the notation must statically guide the user to the
potential changes they are expected to introduce. For example, the notation
indicates that the user is expected to redefine the code of a method, or the user
may add inheriting classes, etc. This criterion facilitates a correct reuse of a
framework.

3. The notation must contain concepts for regulating the interactions within a
framework by:

a) explicitly showing the collaborations between objects instantiated from the
framework classes;

b) clarifying the object responsibilities, contexts on which the responsibilities
depend and how the objects may combine the different responsibilities;
and

c) being abstract and independent of unessential implementation details that
may unnecessarily tie the design to a specific environment and limit the
framework generality.

4. The notation must show the framework aim and potential uses of the, i.e., it must
show scenarios of the framework instantiations.

5. The notation must be unambiguous to facilitate the correct comprehension of the
framework.

Current Framework Design Languages

[Rational 2001] models a framework through three UML diagrams: a class diagram
enriched with packages, a collaboration diagram and a use case diagram. The enriched
UML class diagram expresses the static structure of a design (1.a). However, it does not
distinguish between the classes in the core and those in the hot-spots (1.b-c). Although
the name of an abstract class is in italic in the UML notation, this is not sufficient to
deduce all the hot-spots. The UML collaboration diagram successfully shows the object
interactions (3.a) and responsibilities (sender/receiver) (3.b partially). However, working
at the message exchange level can be too detailed and does not indicate how and in which
context the framework works. The UML use case diagram defines a set of external actors
and their possible uses of the system. It could therefore be used to define the aim and
possible contexts (4).

Fontoura et al. [Fontoura 2000b] propose a UML profile for frameworks, called
UML-F, where a design is expressed by a class diagram and a sequence diagram both
extended by presentation tags (e.g., complete, incomplete), basic modeling tags (e.g.,
fixed, application, framework) and essential pattern tags (e.g., FacM-Creator, FacM-
ConcreteCreator). The added tags are used to mark, essentially, the complete and
incomplete parts, the variable parts in the diagrams and the roles of diagram elements. In

VoL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 99

A UML BASED FRAMEWORK DESIGN METHOD

this notation, the extended class diagram represents the framework classes and relations
(1.a). However, according to the tag definitions, this notation only identifies the whitebox
hot-spots (1.c partially and 2). In addition, several tags are complementary and thus
redundant (e.g., complete and incomplete, application and framework). Furthermore, the
combined pattern tags and presentation tags could overcharge the diagram and impede
the understanding of the design. The extended sequence diagram guides the user when
adapting framework interactions (2 partially), and it explicitly shows the object
collaborations (3.a) and responsibilities (3.b partially). However, similar to the UML
sequence diagrams, it remains at a detailed level.

Sanada [Sanada 2002] presents an UML extension that aims to be comprehensive
and well defined. However, most of the extensions proposed have already been defined
by Fontoura[Fontoura 2000b], and the only difference is the constraint “covariant” which
shows that adding a subclass to a certain class might result in adding a subclass to another
one.

Riehle [Riehle 2000] proposes a role modeling language that adapts the OORAM
methodology [Reenskaug 1996]. The proposed language represents a framework through
a class model with an extension-point class set (points of extension), a built-on class set
(framework interface) and a free role type set (the use of the framework by other
frameworks). Overall, this notation represents the architecture and collaborations in a
framework (1.a and 3.a-b) and describes the framework context (3.b). However, it
focuses more on framework composition than framework adaptation. For instance, it does
not visually distinguish between extension-point classes and frozen classes in the
framework. Therefore, one cannot easily recognize the whitebox and blackbox hot-spots.

Current Framework Design Processes

Current framework design processes can be classified as either bottom-up or top-down.
Bottom-up design works well where a framework domain is already well understood, for
example, after some initial evolutionary cycles. In this case, the design process starts
from a set of existing applications and generalizes them to derive a framework design
(c.f., [Koskimies 1995], [Schmid 1997]). On the other hand, top-down design is preferred
when the domain has not yet been sufficiently explored. In this case, the design process
starts from a domain analysis and then constructs the framework design (c.f., [Aksit
1998)).

Koskimies and Mossenback [Koskimies 1995] propose a two-phase bottom-up
framework design process. The first phase, called problem generalization, generalizes a
representative application in the framework domain into “the most general” form. In the
second phase, called framework design, the generalization levels of the previous phase
are considered in a reverse order leading to an implementation for each level. The
implementation of the framework at level i requires adding specific classes and applying
various design patterns on the framework. The last step in the design phase is to apply the
resulting framework to the initial example problem of the generalization phase. This
design process lacks guidelines for the problem generalization phase. In addition, both
the reuse degree of the resulting framework and the ease of deriving the framework

100 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

A UML BASED FRAMEWORK DESIGN METHOD

depend on how well the original application represents the domain. Furthermore, the
resulting framework does not provide for reuse guidelines; that is, it does not clearly
identify nor does it guide the designer in finding the framework core and hot-spots.

Schmid [Schmid 1997] decomposes the framework design process into three steps:

1. design of a class model for an (arbitrary) application in the framework domain;

2. analysis and specification of the domain variability and flexibility, i.e.,
identification of the hot-spots; and

3. generalization of the class model by applying a sequence of transformations that
incorporate the domain variability.

This design process leaves it to the developer’s expertise to identify the hot-spots during
the second step.

Pree [Pree 1994] proposes a framework design process based on combining hot-
spots specified as metapatterns. These latter are a set of design patterns that describe how
to construct frameworks. This design process focuses on hot-spot combination without
defining how to determine them.

Fontoura et al [Fontoura 2000a] propose a design process that considers a set of
applications as viewpoints (i.e., perspectives) of the domain. The process informally
defines a set of unification rules that describe how the viewpoints can be combined to
compose a framework. The result of applying the unification rules is a template hook
model that represents the hot-spots through template and hook methods. After developing
the template hook model, the developer has to find which meta-pattern should be used to
model each hot-spot. The resulting framework is an OMT class diagram that does not
completely specify the framework; in particular, it neither distinguishes between the two
hot-spot types, nor does it not specify the object interactions. In addition, this process
does not address semantic issues in the unified applications (e.g., Synonyms,
homonymes,...); it supposes that all the semantic inconsistencies between the viewpoints
have been solved beforehand.

3 THE DESIGN LANGUAGE F-UML

The development of the design language F-UML was motivated by the design criteria
outlined earlier. In F-UML, a framework design consists of the following four UML
based diagrams:

1. A use case diagram that determines the framework scope, objectives and domain
limits (criteria 4). The extensions to the use case diagram are summarized in
Table 1.

VoL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 101

A UML BASED FRAMEWORK DESIGN METHOD

Graphical Explanation Objective
Notation
o 2 A highlighted use case (actor) border to show the framework core
> % A use case (actor) filled in gray to show the framework hot-spot
The constraint {incomplete} associated to |to show that it is possible to add an
? the inheritance relation between use cases | inheriting actor (use case) in an
incomplete} | o actors application reusing the framework.

Table 1. F-UML extensions to UML use case diagrams

2. A class diagram that describes the static architecture of a framework. The

extensions to the class diagram (see Table 2) let the user distinguish between the
core of the framework and its hot-spots (1) and guide him/her in adapting a
whitebox hot-spot to a specific application (2).

A pattern diagram that shows the design patterns and metapatterns identifying the
roles of the framework classes (3.a-b). The pattern diagram helps understanding
the interactions among the objects of the framework.

Sequence diagrams that describe possible interactions between various object
instances of the class diagram (3.a, 4). While the sequence diagrams might
present too detailed information compared to the previous diagrams, they can
provide important information in understanding how to use, and consequently
reuse, a framework. The F-UML extensions to the sequence diagram are
summarized in Table 3.

The F-UML diagrams can be enriched with OCL constraints [OCL 1997] to specify
constraints and invariants on classes and types and pre and post conditions on methods.

The F-UML notation is a UML profile whose syntax (derived from the UML meta-

model) has a formal semantics [Bouassida 2003b] (criteria 5).

Graphical Notation Explanation Objective

A highlighted class border | to show the framework core

A square filled in black at | to show the framework blackbox hot-spot

the top-right corner of a

class

A square filled in gray at|to show that this class with all its inheriting

the top-right corner of a|classes are in the framework whitebox hot-

class spot

102

JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

A UML BASED FRAMEWORK DESIGN METHOD

A circle filled in gray in

Qv front of a method’s name

to show a virtual method

Dundefined)

The tag undefined for a
method with a varying

signature

signature

to show a method with an undefined

{extensible} class

The tag {extensible} in a

to show that the class can be adapted by

adding/removing attributes/methods

The

{inc%mplete}

UML

constraint | to show that the framework may be adapted
incomplete on a relation
(generalization,
aggregation, association)

by adding other related classes

Table 2. F-UML extensions to the UML class diagram

Graphical Notation

Explanation

Objective

to show the framework core

oo | A highlighted object border
A square filled in gray at the top- | to show the framework
right corner of an object whitebox hot-spot

Class : Object

—

A square filled in gray at the top-

right corner of an object

to show the framework
blackbox hot-spot.

Class : Objectg Class Oh]ect
{optional}
—

The tag optional attached to a

message as proposed by [Fontoura

2000]

to show that the message
may not exist in an
application adapting the
framework

Table 3. F-UML extensions to UML sequence diagrams

4 THE FBDM DESIGN PROCESS

The F-UML bottom-up design process helps the framework designer to structure the
framework by determining its core, blackbox and whitebox hot-spots. It starts from
several application designs and goes through three unification steps (in fact, Roberts
[Roberts 1996] states that three applications sufficiently represent their domain):
1. Design of the framework use case diagram: The unification process first extracts
use cases common to all the applications and puts them as the framework core.
Secondly, it extracts the different use cases and puts them as hot-spots.

2. Design of the framework class diagram: The unification process first extracts
common classes and puts them as the framework core. Secondly, it puts the

VoL. 3, NO. 8

JOURNAL OF OBJECT TECHNOLOGY

103

A UML BASED FRAMEWORK DESIGN METHOD

remaining classes as hot-spots. For certain relations, the designer is probed to
decide on their completeness.

3. Design of the framework sequence diagrams: The unification process identifies
optional messages and tags them as hot-spots.

Currently, the pattern diagram is not obtained through unification. It is obtained from the
class diagram (obtained in step 2) by filtering out the details inside the classes and by
matching the resulting structure to a set of design patterns and metapatterns. At this level
of representation, the user is interested in the roles and interactions between the various
classes of the framework.

The above three unification steps use a set of unification rules based on semantic
comparison criteria. These latter rely on linguistic definitions to define semantic
equivalence, generalization-specialization, variation and composition between names.

In the remainder of the paper, to facilitate the presentation of unification process, we
note:

e The class C (object O) in the application A;jas Caj (Oai});

e The use case U (actor A) in the application A;as Uai (Aai);

e The message M in the application A;jas Mai; and

e The application A; as the application containing the minimal number of actors and
use cases in the use case diagram (classes in the class diagram or messages in the
sequence diagram).

Use case diagram unification

The unification of use case diagrams relies on semantic correspondences among the
actors, use cases and their relations. These latter are expressed by the following relations:

e N_equiv(Aai,...,Aan) means that the names of the actors are either identical or
synonym, e.g., Consumera;-Buyera.

e N_var(A a1,...,Aan) means that the names of the actors are a variation of a concept,
e.g., employee-contractual, employee-permanent, employee-vacationer.

e Gen_Spec(A a1;A az....,Aan) means that the name A a; is a generalization of the
specific names A a2 ,..., Aan, €.9., Person a;-Employee a..

o N_dist(A a1,...,Aan) Mmeans that none of the above relations holds.

The relations between use cases are defined in a similar manner.

The design of the framework use case diagram is guided by the six rules depicted in
Figure 1. As illustrated in this figure, the core and hot-spots of the framework are derived
automatically. In addition, the designer’s intervention is guided (rule 2 and 3); it is
needed to decide on the completeness of the diagram, which requires domain expertise.

104 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

A UML BASED FRAMEWORK DESIGN METHOD G?L_/

Take an actor Aa; (use case U a1) l: - \'\._
Repeat until all the actors
l (use cases) of A; are taken
N-equiV(Aa,... Aan) Name N-dist(Aa1,... Aan)
comparison
N-Var(Aaz, ... Aan) ‘ Gen-Spec(Aai;... Aan)
Rule 4:
Rule 1: Rule 2: Rule 3: Add the actor (use case)
A to the framework as a hot-
Add the actor (use case) to The actors (use cases) are added to The generic actor and inheriting spot, if Ra(Aa1)=2/3; or
the framework core the framework as inheriting to a new actors are added to the - Ana: would be two levels
generic core actor (use case)* framework with generalization away from a core actor
relation between them*
[
A4 > More
Actors(use case
]
Rule 5:
*if the designer decides that the inheriting actors (use All the actors (use cases) remaining in the
cases) do not represent all the domain, then the :E%‘éia;'z?: @%"’(AA" 357;1;12?/&0 ﬂxoflﬁdmsgvt%\;g
inheritance relation is tagged with {incomplete} levels a‘f’vav fmn;“a C’;‘re actbr(use’“éase]
**if the designer decides that the extensions or RUE S v
inclusions of a use case do not represent all the domain, Transf '" the relations bet tors (

: . H s ransfter a e relations between actors (use
then the extends. or |nc|ur_:|es relation is tagged with cases) added through Rules 1-5. If the relation
{mcompletg}.or if _he decides that an actor cz_in_hav_e involves a core actor (use case), then *, **
other associations with use cases, then the association is
taaaed with {incomnolete}

Fig. 1: Design of the use case diagram
Rules 4 and 5 add or ignore hot-spot actors (use cases) according to the domain coverage
ratio Rdc(AAi) .
Rec (Aw) = number of occurrences of Aai (or its variations or its equivalents) in As,.., An

number of applications

Class diagram unification

The design of the framework class diagram consists of the eight unification rules shown
in Figure 2. The unification rules essentially take classes “common” to all of the
applications as the framework core and add the remaining (specific) classes as hot-spots.
These rules use semantic correspondence criteria to compare class names, attributes and
operations. The class name comparison criteria use five relations among class names.
Four of these relations are defined in a way similar to the relations between actors. The
fifth relation reflects class composition:

e N_comp(CA1;,CA2,...,.CAn) means that the name CAL is a composite of the

components CA2,...,CAn, e.g., HouseA1-RoomAZ2.

The attribute comparison criteria use four relationships to compare the attribute names
and types:

VoL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 105

A UML BASED FRAMEWORK DESIGN METHOD

e Att equiv(CAl,..., CAn) means that the classes have eitheridentical or synonym
attribute names with the same types.

e Attt _int(CAL,..., CAn) means that the classes CAL,..., CAn have attributes in
intersection.

e Att conf(CAL,..., CAn) means that there exists at least one attribute of CAl
having a name equivalent to some attributes of CA2,..., CAn but these attribute
types are different.

e Att dist(CAL,..., CAn) means that none of the above relations holds.

The operation comparison criteria use four relations (Op_equiv(Cai,...,Can),
Op_int(Ca1,...,Can), Op_dist(Caz,....Can), Op_Conf(Cas,...,Can)) to compare the
operation names and signatures (returned types and parameter types). These relations are
defined in a way similar to the attribute comparison relations.

In the unification process shown in Figure 2, Rule 5 deals with the generalization-
specialization relation in a manner similar to N-Comp relation of Rule 4. Furthermore,
Rule 3.b may add new inheriting classes to the framework. The addition depends on the
significance of the number of attributes and methods in an inheriting class C with respect
to another class C’. This is defined using the ratio Rgig:

number of attributes and methods that belong to C and C'

Rsi C, C' = N
o) number of attributes of C + number of methods of C

Informally, a class C has a significant number of attributes and methods with respect to a
class C’, if Rsig is greater than a fixed threshold (e.g., 50%) that can be fixed by the
framework designer.

Further, Rule 6 adds or ignores hot-spot classes according to the domain coverage
ratio Ryc :

number of occurrences of C(or its variations or its equivalents) in Al,.., An
number of applications

Rdc (C) =

Informally, this ratio is used to determine the reuse potential of a class. If a class is
present in several applications, then it covers an important space of the framework
domain; thus, it must be present in the framework hot-spot. On the other hand, if a class
IS present in few applications, it is too application specific; thus, if it is added to the
framework, it may complicate unnecessarily the framework comprehension.

Sequence diagram unification

The design of the framework sequence diagram consists of five unification rules (shown
in Figure 3) that rely on the semantic relations among classes adapted to objects and on
name comparison of messages. The main idea of these rules is to unify sequence
diagrams that correspond to the same or an equivalent scenario. That is, the process takes
the “union” of all the sequence diagrams of the applications and marks any message as
{optional} if it does not appear in all the applications.

106 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

A UML BASED FRAMEWORK DESIGN METHOD

Gen-Spec(Cai,... Can)

Take a class Car

N-Comp(C ai,... Can)

Attribute
comparison

N-Var(Cai,... Can)
<
<

Name

N-dist(Cas,... Can)

comparison

»

N-equiv.(Caz,... Can)

Attribute

'

Attribute

Att-dist

Attidist comparison comparison
Att-int
Operation Att-equiv Att-equiv
comparison Operation Operation
comparison comparison
Op-equi .
® Op-in Op-equ_iv) 4 O@pgqu_lv[
@ Op-dipt . @® Op-int p-in
Operation @ Op-dist Operation @ Op-dist Operation
compariso comparisy cw
Op-equiv
p-eq Op-equiv
Op-int §
Op-dist] oplint
Op-int ® dp-dist Opfequiv
@ Op-dist
Rufe4.d Rule 4fc Rule 4.b ule 4.a Ruld3.d Rule3lc Rule3. Rule3.a Rule2ld Rule2.c Rufe2.b Rule2.a Rufel
v v A ¢ A

The composite class and the The classes Cas,..Can are added to Add a core class containing the Add Ca: to Add Car to the

component classes are added to the framework as inheriting attributes and methods in the framework as a hot-

the framework with a classes to a new abstract core intersection to the framework framework spot with an

composition relation. The class containing the attributes and tagged {extensible}. The added as a core undetermined type

attributes and methods in methods in intersection tagged class hierarchy is whitebox class if Ryc(Ca1)=2/3; or

intersection are put in the {extensible}. The added class since the class interface may Ca: would be two

composite class which s hierarchy is whitebox since the change 243 levels away from a

marked as core * class interface may change® core class* v

es
{ A
¢ ¢ ¢ * More
> classes

1 The designer must decide on the completeness of the relation. If he decides that the component 3 No

(inheriting) classes do not represent the entire domain, then the composition (inheritance) relation is

tagged with {incomplete}.

2 New classes inheriting from the added class could be added according to the following rule: for each
application, if its class has a “significant” number of attributes and methods (with respect to the already
added class), then an inheriting class is added to the framework with the additional attributes and

methods.

31f Op-Conf (Cay,... Can) , thus the method in conflict has a corresponding method in the framework
core class with the same name, and an undefined signature, it is a virtual method. If Att-Conf
(Ca1,... Can) , thus the attribute in conflict has a corresponding attribute in the class of the framework
core that has the same name and the more general attribute type.
4 The domain coverage ratio Rqc(C)=number of occurences of C(or its variations or its equivalents) in

Aiq,..,Ayln

Fig. 2: Design of the framework class diagram

Rule 6: Each class C remaining in Az,..,
A, is added to the framework as an
undetermined hot-spot if the domain
coverage ratio Ruc(C)=2/3; or C would be
two levels awav from a core class®

v

Rule 7: Transfer all the relations between
classes to the framework. If the relation
involves a core class, then!

v

Rule 8: Visitall hot-spot classes C with an
undetermined type. If C contains virtual or
undefined methods or if one of its
inheriting classes is whitebox, then mark
C as a whitebox, otherwise mark C as a
blackbox. If C has a relation with a core
class, then *

The design unification rules are implemented in the FUMLTool [Ayadi 2003]. This tool
provides for the graphical representation of both applications and frameworks. Moreover,
it manages the comparisons relations through a dictionary. In addition, it allows a semi-
automatic generation of a framework design in F-UML based on the above presented
unification rules. As the rules indicate the designer is probed only to identify the
completeness of certain relations.

VoL. 3, NO. 8

JOURNAL OF OBJECT TECHNOLOGY

107

A UML BASED FRAMEWORK DESIGN METHOD

L 4
Rule 1: Transfer all objects O 4; in the framework sequence
diagram, such that if O a; is an instance of Ca; in the framework
class diagram (or its equivalent), thus the type of Oa; (core,
whitebox, blackbox) is the same as that of Ca;
Rule 2: Rename all messages transferred in the framework
sequence diagram, taking the name of the respective operation
in the framework class diagram
v
| Take a message Ma; L
<
Repeat until all the
l messages of A; are taken
N-equiv(Oat,... Oan) Sender Object N-Var(Oa,... Oan)
name
comparison
N-dist(O1,... Oan)
: Receiver Receiver
Receiver A .
Object name Object name Object name
omparisop comparison comparison
N-equiv(May,... M)
N-equiv(Ms,... Man) N-equiv(Ma,... Man) N-equiv(Mas,... Man) N-equivqMas,... Man)
N-dist(Maz,... Man)
N-dist(Ma,... Man) N-dist(Ma,... Man) N-dist(Maz,... Man) N-dist(Mas,... M4n)
Rule 3.b: l Rule 4.h) l .
Rule 3.Y: Rule 4.a:
f The message Ma; is tagged If the message belongs to a class of the core in the
Th Y dded t ! L ! '
€ message May ls adcec fo {optional}and it is added to framework class diagram, thus the message is
the framework sequence) -
dia the framework sequence transferred between Oa: (O’a:) and the object,
gram. : It - . ;
diagram. which is an instance of this core class. Otherwise, Yes
it is marked {optional}.
or
messages
A »
>
No
Rule 5: All the remaining messages
in A2...An are transferred in the
framework sequence diagram tagged
optional

Fig. 3: Design of the sequence diagram

5 APPLICATION: E-BROKER FRAMEWORK

To evaluate the F-UML language, process and tool, we designed an electronic commerce

broker. The choice of electronic commerce domain has several

motivations. One

motivation is the expansion of e-commerce; a second motivation is the importance of the
broker entity in this type of commerce; a third motivation is the software complexity of

108

JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

A UML BASED FRAMEWORK DESIGN METHOD

electronic brokers, which makes design reuse a judicious choice in order to benefit from
the expertise gained in the design of particular e-broker applications.

In order to design the E-broker framework, we followed three steps. First, we took
three e-broker applications designs: a book broker called Tunisia Book [Khelifi 2000], an
auto broker called Auto Broker [Birkes 1995] and a broker for antiquities called Antique
Broker [Antique 2002]. Secondly, we constructed the relation dictionary used in the
comparison rules of the design process. Finally, we used the framework generation
function of the F-UMLTool to obtain the E-broker framework. Due to space limitations,
we next present a simplified version of this case study.

F-UML Tool - Untitled

File Edit “iew Creste Diagram Arrange Generste Framework Gerate Dictionary Help

o

Orierté Diagramme

L BRI ERIERNE N ——"

[og IE use caze diagram 1

@ clazz diagram 1
=, ki st Regist duct
Sequence diagram 1 makes 3 reque: egister 3 provdu:

A

I

q |
<dinchudp >

I

Subscrption to the services of a broker

Select an offer
Payment with credit card

Prowider

[4]

[»

lﬂs Diagram
| By Pricrity - |E 9 fems + ik EURALE |/‘ iejilip ez |/‘ Eleipzirzipiis |/‘ N EEE R ES r‘ B ekl
lj High A ToDoten |/ ik BLEEETH eSS |/ ok WA Ent T r & =t e |
[lj Medium |Nc- ToDoltem selected |
T Lo =

Fig. 4: The use case diagram of Tunisia Book

Use case generation

Figure 4 presents part of the use case diagram of Tunisia Book. As illustrated in this
figure, the actors that use the brokerage services are the Consumer and the Provider. One
of the functionalities assumed by this application is the consumer/provider subscription to
the broker. Another functionality is the Provider registration of its products for sale and

VoL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 109

A UML BASED FRAMEWORK DESIGN METHOD

the Consumer product request submission. The functionality of the broker is to search for
the best offer and to return the list of books found. The consumer evaluates the list of
found offers and decides which books to buy and pays for them.

Figure 5 presents part of the use case diagram of the Auto broker. As illustrated in
this figure, the actors that use the system are Buyer and Seller, two variants of the actors
in Tunisia Book. Unlike Tunisia Book, this broker does not require a subscription. Figure
6 presents part of the use case diagram of the Antique Broker.

B3] 15] [T [D]O]OINARSIE] e en i (N3] (2IS] =2 1] [DIo]ON A RIS[S] e eeson saamsrse

enter information descrbing kems for sale

M I \é enter nformation destrbing tem warted

cincludk» caincluder
| | /I\
«dinplude
1
ine
% find pateniial matches
ouces

N I

seller

eller

Dl | [

e tsgram E—
Fig.5: The use case diagram of Auto broker Fig. 6:. The use case diagram of Antique Broker

W] [£[o] 317 [O]0]O] A [QISIE] vee e iram: vee coceFramerers

e

I I
<<include>? dineludes >
i

enter sources of information)

LEnter infarmation describing ftem wanted J

buyer

evaluate choices)

[
#= Diagram

Fig. 7: The framework use case diagram

The generated use case diagram of the E-broker framework is shown in Figure 7. It has
been obtained by applying the unification rules as indicated in Table 4.

110 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

A UML BASED FRAMEWORK DESIGN METHOD

Rule Framework

Criteria N°
N-equiv(Provideras, Sellera, Selleras) 1 | The actor Seller is added to the framework core
N-equiv(Consumer s, Buyera, Buyeras) 1 | The actor Buyer is added to the framework core
N-equiv(makeregesta;,DeterminelnitialParametery, | 1 | The use case Enter Information Describing Item
Enter Information Describing Item wanted 3) wanted is added to the framework core
N-equiv(Entersourcelnformation a;,Register 1 | The use case Enter sources of information is added
productay, Enter Information Describing Item for to the framework core
sale a3)

N-equiv(Evaluate choices a; select an offer o, select | 1 | The use case Evaluate choices is added to the core
an offer a3)

N-equiv(Search a;Find potential match p,Searchy s) 1 | The use case Search is added to the core

Gen-Spec(Search a1, Search auto o, Search a3) 3 | A generalization between the use case Find

potential matches and search auto is added
N-dist(subscription to the services of a broker) 4 | The use cases subscription, determine max price
N-dist(Subscription) and Payment with credit card are added as
N-dist (Determine max price) framework hot-spots

N-dist (Payment with credit card)

Table 4: Design of the use case diagram of the framework broker

Class diagram generation

Figure 8 presents part of the class diagram of Tunisia Book. The Broker manages the
Consumer and Provider subscriptions. Furthermore, the association between the
Consumer class and the Book class represents the consumers’ evaluation and selection of
found offers.

% F-UML Tool - Class Diagram.zargo

File Edit Wiew Creste Diagram Arrange Generste Framewerk Gerste Dictionary Help
2 A &
EEL S| EREEEEIEREREREERRE R NN
@ [T Tunisia Bask
broker cerification
use case diagra
consumer fid-cer: int
& [Auto Broker [e T e
; (- hijcind; String, title: String, price: flagt): woid
o Antique Broker Hid: int subseribe 2iing. 1t ; X S
@ 4 pFirstName: String rHaetid-cer(): int (==
eLast Mame: String 1.7 corbe [Etda-cen): Date
LEmail: String 1.7 1.7
ity - String
Hadress: String book provider
l+State: String
id_baok: int .
hegetidy: int [pdes_book: String eName: String
lgetFirstMame(x String [dnd_baok: String L Email: String
hgetlast Nameqy: String| [hous_ed: String 12 pass 1 ity String
hgetEmail(): String *p"“:_ﬂDa' State: String
HgetCity(): String = consult 15 prauantity: int
kgetdressy string : : hgatid(zint
ligetstater Sting [rgetid_book(y:int kget Hame(: String
praetdes_book(): String tget Emaili): String
lgethind_book(: String| liges ity string
Basket paethaus_ed(y: String lrget Stated): String
taetpricel: float
ard :
al Date: date Hquartity(y: it
Date: date [Tatal- int
EiriceBooks jflost | eddBookgBook: iney: woid 1 =
W it i =
B [[¥]
iE Z[]| A= Dingram
m Ey Priarity - E 180 kems - E; FUML rA Source rg Constrairts r‘ Taggedvalues r‘ CREERITER
& lj High | - ToDokem r A Froperties r A Docurnertation r A Stile
© [Medium Hame: broker Associztions | [¥] § Operations: |search =1
& Low Sterectype: - | 1 Implements: | = Jettributes: G =]
| IDerivad Owned Elements: aaaé =]
s

Fig. 8: The class diagram of Tunisia Book

VoL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 111

A UML BASED FRAMEWORK DESIGN METHOD

LEREEEEENEARNEERRCI DR E =N

braker

bryuer . . seller
s request belong to i
pHd - int searchitwpe: String, option: String, price: float): woid| pHd: irit
p-FirstHame: String HMame: String
: tril Email: Stri
+Last.Namel. String ok +) a! _nng
HEmail: String b WCity: String
fty: St HState: Strin
HCity Stnl?g — q
HState: String - -
leAdress: String . - lid_aute: int il.# 1.7 [HgetidQeint
1. aEmEil 1.5 e .0 ! process leget Nameq): String
Hprice: float A
begetid iy int Lcator: String +9etEl_'naI|0- St_nng
leget FirstMame(: String LinbrofDaors: int prget Citw (: Stnljg
lgetLastMamed: String Lsize - int e thget State(): String
igetEmail): String echnical details
beget Citw(x $tring rgetid_autaly: int 1.5 bhorse_power: flogt
lget Stater): String tgetpricel): float k™o caleration: float
lgetadrass0); String praetcolor(): String lturning_raduis: float
pgetnbrot Doors(): iny hengine_noise: float
Hgetsized) int
Financial Data raethorse_powen]): float
i Cost: flagt 4= (} raetaceeleration(): float
intenance Cost: flo — . :
. ettuming_raduis): float
Loan Availability | boolean option i 9- 0

gethfintenance Cost): float
get LoanAuwrailability () boolean|

precorderType: String

rgetengine_noized): float

rgetrecarderTypel): String

[«

1

Fig. 9: The class diagram of Auto broker

[

Figure 9 partially presents the class diagram of Auto Broker. Similar to the previous
broker class diagram, the class diagram of Auto broker has the classes Broker, Seller and
Buyer. In addition, it has the class Auto and its aggregate classes: Options and Technical

Details.

W 1] (5] 7]1] BIt] [s]=] (& [O]o[OfNA[G]S[S] o sran: aniaue roter

of

risult
1.7

antiquehemitanted

fsreterence: Sting
l+description: String
priceRange: float

bconditionFange int
bryearRange: int

buyer broker seller
:‘:;"Nam_ . 1" cubscribe [Hd_breker: int subsoripe 1 [.
[asthame: string |+findhtsteh(descrip: String, price: Float): woid [+ mait: string
f+Email: String ity String
f+City: String lState: String
feadrass: String L gerid(y: weid
rétate: String f+getNamed: woid
igetid(): veid figetEmail(y: void
getFirst Namec): void hgetCity(y: void
bgetLastmame): woid rgetstaten): veid
getEmail: woid
bget Cityx woid 1.7
hgetadress(y: veid posseds
bget State): woid 1.5

find matches

antiquettems For sale

kid: int
deseription: String
kprice: float
preondition: int

lsgen Deseripriong): woid

[+year: int

Laetprice(: woid
kgetdeseription(y: void
gatyear): void
gateonditiongy: woid

[»]

A= Dizgram

Fig.

10: The class diagram of Antique Broker

112

JOURNAL OF OBJECT TECHNOLOGY

VoL. 3, NO. 8

A UML BASED FRAMEWORK DESIGN METHOD

Rule N°

Framework

N-equiv(Brokeras, Brokera, Brokeras) f 2.d
Att-equiv(Brokera;, Brokera, Brokeras) f
Op-dist(Brokera;, Brokera,, Brokeras)) f
Op-conf(Brokera;, Broker,, Brokeras)

Broker is added to the framework core with the tag
{extensible}. The method Search is an operation in
conflict, thus it has an undefined signature. Broker is
a whitebox hot-spot.

N-equiv(Provideras, Sellera, Selleras) f 2.b
Att-equiv(Providera;, Sellera, Selleras) f

Op-equiv(Providera;, Sellera, Selleras)

Seller is added to the framework core

N-equiv(Consumeray, Buyera, Buyeraz)f 2.b
Att-equiv(Consumera, Buyera, Buyeras) f

Op-equiv(Consumera;, Buyera, Buyeras)

Buyer is added to the framework core

N-var(Book a1, AntiqueltemsForsalea, 3.d
Autoas)fAtt-lnt (BOOkAl,
AntiqueltemsForsalea, Autoas) f

Op-int var(Book a;, AntiqueltemsForsalea,

Autoas)

Auto, Book, AntiqueltemsForsale are added to the
framework as inheriting classes to the class Product.
The class Product has the common attributes and
methods and is tagged with {extensible}. This
hierarchy constitutes a whitebox hot-spot in the
Framework. We added the tag {incomplete} to the
hierarchy because the application does not contain all
possible variants of Product.

N-dist(Certification ;)

The class Certification is a hot-spot

N-dist(Basket a;)

The class Basket is a hot-spot

N-dist(Order a1)

The class Order is a hot-spot

I

The remaining classes: Option, Technical Details,
Antique Item wanted are transferred in the framework
as blackbox hot-spots

7

The relations between classes are transferred in the
framework

Table 5: Design of the class diagram of the framework broker

As illustrated in Figure 10, which presents the class diagram of Antique Broker, the
common classes with the previous applications are Broker, Buyer and Seller. The main
difference is the class AntiqueltemWanted which is a hot-spot.

The framework class diagram (Figure 11) has been obtained by applying the
unification rules shown in Table 5. The application Al is Tunisia Book since it contains
the minimum number of classes, A2 is Antique Broker and A3 is Auto Broker. During
the generation of the class diagram, F-UMLTool produced the diagram shown in Figure
11 with the inheritance relation between auto, book, antiqueitemwanted and Product as
undecided (Rule 3.d). We have decided that it is incomplete since the inheriting classes

does not cover all the domain.

VoL. 3, NO. 8

JOURNAL OF OBJECT TECHNOLOGY

113

A UML BASED FRAMEWORK DESIGN METHOD

pHgetid_autol): irt

pgetid_book(): int
Hgetdes_book(): String
rgetkind_book(): String

technical details .

thorse_power: flogt
raceeleration: float
Hturming _raduis: float
tengine_noize: float

tgethorse_power(): float
rgetaceeleration): float

taetengine_noise(): float

rgetcolor: String

raetsizel): int

rgetnbrof DoorsC): int

1.7

Hgethous_ed(): String
bquantitwlL it

hwear: int

fentensible}

prgetidl): irt
poetdescrption(): String

antique hemw‘am

pd: int

escription: String

ppricerandge: float
reondition Range: int
tyearRange: int

pHd-cer: int
pdat-cer: Date
etid-ergy: it {enensible}l . =
:ge‘tda't-cer("_): er subscribe |_cearchiyndefined: 1 awoj
. Consumer
belong to subscrbe request
fHd - int
zearch . jHFirstName: String
provider 1.7 rocuct bLastName: String
i it {extensible} b Email: String
bName: String five: float h-City: String
frEmail: String fextensible} b idress: String
jHCity: String jetpriced): float jrState: String
ritate: String bagetide): int
bgetidr: int pgetFirst Name(): String
frgetMame): String {fncomnlate ! pgetLast Mamed: String
frget Emailly: String Tpnsult et Email(): String
frget Cityi(): String 1" 1.7 . prget City () String
st State () Strin o . 1.7 1.7 poetAdress(r String
1. st Stater): Strin,
| Process N _ EP_D_E_WUH
auto entenzibla}
Jextanzible} [Hd_boak: int
tdes_book: String X Furs . 1.7
[Hd_auta: int ilnd_boo.k: S.tnng lextensible}
lcolor: String ous_ed: String)
pnbrof Doors: int «:luantrt\rl' ot Lid: int adlatches
1.7 peize: int iz bdescription: String
fextensible} peondition: int

tgetdezcrption(): woid

option

Financial Data .

rgettuming_raduiz): float]

precorderType: String

pgetrecorderTypel): String

Hhbintenance Cost: float
H-Loanswailability : boolean

tgetcondition): int
bgetyeanl it

Bashet .

wDate: date
pTotal: int

pDate: date

pPriceBooks: float

Order .

tgethiaintenance Cost(): float
pget Loanfwailability (: boolean|

tredd BookBook: int): woid

tDvelete Book(Book: imt): woid

HCreateorden]): void

Fig. 11: The framework class diagram

Sequence diagram generation

A [B] [lel] =] | [O/ O] AIIS[E] saren wosasen

Kind:string price:float) :

EvaluateBook() - int

Searohithe: string, indstring, price: flat)

(X A4] [B] [=]z=]] =] | [a]o]olN Al S[E)

S0

gendes_back(s\an

Fig. 12: A sequence diagram of Tunisia book

Buyer :
BuyerPrferences() : .
Ll
Sef
hoices(futa) : e
il

I

@rchAutoltype @ string)

[~]

|

Fig. 13: A sequence diagram of auto Broker

Figure 12 presents the simplified sequence diagram of Tunisia Book, which corresponds
to the scenario “Search and buy”. Figure 13 presents a part of a sequence diagram Auto
Broker, which corresponds to the scenario “Search and evaluate auto”. Figure 14 presents
a part of the sequence diagram of the antique Broker corresponding to the scenario
“Search and evaluation”.

114

JOURNAL OF OBJECT TECHNOLOGY

VoL. 3, NO. 8

A UML BASED FRAMEWORK DESIGN METHOD

1] [C[o[ONARIS[E] o WA B EFIT DOONARIS[E) oo s

LYEINEIEY
Burer : PFotiqueftemuarted : Broker :

Gt Description()

-N:I|

‘ Baer ‘ ‘ Boker | | et

ki 4
-

Ejalustebbteh():

Findmatehes{descp:strng, price:flpat

aptdes_book(: sting

Evaluateh it ale) &
F ot} L LHJ

w

Fig. 14: A sequence diagram of antique Broker Fig. 15: The framework sequence diagram

The Framework sequence diagram corresponding to the scenario “Search and evaluation”
(Figure 15) was automatically derived using the semantic comparison between the
message’ names and types and between the sending and receiving object names.

6 EVALUATION OF THE FBDM METHOD

In addition to the E-commerce domain, we have evaluated the FBDM method and its
associated toolset in the graphical drawing editor domain [Bouassida 2005]. This domain
was chosen since a popular and mature framework already exists: the JHotDraw
framework (about one hundred classes) [Gamma 1997]. Furthermore, JHotDraw was
chosen in order to have a comparison basis for the generated framework since several
applications were derived from it.

On one hand, both case studies showed that the F-UML notation facilitates the
distinction between the core of the framework, which must be present in any application
derived from it, and its variable parts (hot-spots). This in turn can guide the designer in
estimating the degree of reuse the framework can offer. On the other hand, both case
studies showed that the FBDM design process generates a framework that contains the
whole framework core (e.g., Buyer, Seller, Product for E-Broker). However, the design
process produces a framework with (possibly too many) application specific increments
i.e., classes specific to a particular application (e.g., Antique item wanted, Option,
Technical details in E-Broker). These latter could complicate the comprehension of the
framework and hence impede its reuse. However, the F-UML notation helps by visually
distinguishing these details. Thus, when reusing a framework, the designer can first focus
on the core, and later he/she can choose to examine or ignore the hot-spots. Moreover,
some of the framework internal increments (i.e., classes belonging to the library
accompanying the framework) are not deduced by our design process since they are
absent in the original applications. However, the process puts the tag {incomplete}

VoL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 115

A UML BASED FRAMEWORK DESIGN METHOD

wherever the designer can add details (classes, attributes, or methods). While this may
reduce the number of classes reused (as a reuse measurement), the designer is at least
advised of the places he/she is expected to focus his/her design effort.

Overall, we can note that the degree of details produced in the generated framework
depends on the level of domain coverage in the unified applications. Finally, the F-UML
Tool was vital in the design process, especially in managing the complexity of applying
the rules face to the size of the diagrams, in particular for the JHotDraw case study.

7/ CONCLUSION

This paper first reviewed current framework design languages and processes. Secondly, it
presented a framework design method that offers a UML-based design language and a
systematic bottom-up design process. The presented FBDM method is distinguished
from existing methods in three ways: 1) its UML-profile language visually distinguishes
between the framework core, whitebox and blackbox hot-spots; 2) its design process is
well-defined through a precise set of unification rules that identifies automatically the
core and hot-spots; and 3) its toolset provides for the graphical representation of
applications and the semi-automatic generation of a framework. The FBDM design
method was illustrated through the design of a framework for brokers of e-commerce. It
was evaluated through two case studies in the e-commerce and graphical editor domains.

We are currently investigating how to generate automatically the dictionary of the
semantic relations in the design process. Future works include the development of a
module for the generation of the pattern diagram. The module would propose the patterns
adapted to a design and the framework designer would decide which pattern fits the
problem.

REFERENCES

[Antique02] http://www.Antignet.com
[ArgoUML02] ArgoUML, http://arguml.tigris.org

[Aksit99] M. Aksit, B. Tekinerdogan, F. Marcelloni and L. Bergmans: Deriving
Object-Oriented Frameworks from Domain Knowledge, Building
Application Frameworks: Object-Oriented Foundations of Framework
Design, M. Fayad, D. Schmidt, R. Johnson (Eds.), John Wiley & Sons
Inc., pp. 169-198, 1999.

[AYADIO3] T. Ayadi, N. Bouassida, H. Ben-Abdallah, F. Gargouri, D. Slimane: F-
UMLTool: A Tool for Object-Oriented Framework Design, Int’l
conference on Industrial Engineering and Production Management
(IEPM’03), Portugal, 26-28 May 2003.

116 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

http://www.Antiqnet.com
http://arguml.tigris.org

A UML BASED FRAMEWORK DESIGN METHOD

[Birkes95]

[Bosch97]

[Bouassida01]

[Bouassida02]

[Bouassida05]

[Bouassida03b]

[Fontoura00a]

[FontouraOO0b]

[Gamma95]

[Gamma97]
[Johnson88]

[Khelifi00]

A. Y. Birkes, C. H. Hsiung, T. Cohen and R. E. Fulton: A Prototype
Multimedia Auto Broker, ASME Computers in Engineering Conference,
Proceedings of the engineering Database Symposium Boston, MA, Sept
17-21, 1995.

J. Bosch, P. Molin, M. Mattsson, P. O. Bengtsson: Object oriented
frameworks: problems & experiences, http://www.ide.hk-
r.se/~michaelm/papers/ex-frame.ps , 1997.

N. Bouassida, H. Ben-Abdallah, and F. Gargouri: A UML based Design
Language for Framework Reuse, 7th International Conference on
Object-Oriented Information Systems (OOIS’01), Calgary, Canada,
2001.

N. Bouassida, H. Ben-Abdallah, and F. Gargouri, A. Ben-Hamadou: A
stepwise Framework Design Process, IEEE International Conference on
Systems Man and Cybernetics, 07-09 October, Hammamet, Tunisia,
2002.

N. Bouassida, H. Ben-Abdallah, F. Gargouri, A. Ben-Hamadou:
“Evaluation of a framework design method”, submitted to Information
Sciences for Decision Making Journal (ISDM), 2005.

N. Bouassida, H. Ben-Abdallah, and F. Gargouri, A. Ben-Hamadou: F-
UML.: a design language for frameworks and its formal specification,
International conference on Software Engineering and Formal Methods
(SEFM’2003), Australia, Brisbane, 26-29 September, 2003.

M.F. Fontoura, S. Crespo, C.J. Lucena, P. Alencar, D. Cowan: Using
viewpoints to derive Object-Oriented Frameworks: A case study in the
web education domain, Journal of Systems and Software (JSS) Elsevier
Science, 54 (3), 2000.

M.F. Fontoura, W. Pree, B. Rumpe: UML-F: A Modeling Language for
Object-Oriented Frameworks, Proceedings of European Conference on
Object Oriented Programming (ECOOP 2000), Springer-Verlag, 2000.

E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design patterns: Elements
of reusable Object Oriented Software, Addisson-Wesley, Reading,
MA,1995.

E. Gamma, T. Eggenschwiler, http://www.jhotdraw.org

R. E. Johnson, B. Foote: Designing reusable classes, Journal of Object
Oriented Programming, Vol 1, N°2, June/July 1988,pp 22-35.

A. Khelifi, Les Brokers pour le commerce électronique : analyse de
I’existant, développement d’un prototype, rapport de fin d’études,
Faculté des sciences de Tunis, 2000.

VoL. 3, NO. 8

JOURNAL OF OBJECT TECHNOLOGY 117

http://www.ide.hkr.se/~michaelm/papers/ex-frame.ps
http://www.jhotdraw.org

A UML BASED FRAMEWORK DESIGN METHOD

[Koskimies95] K. Koskimies, H. Mossenback: Designing a framework by stepwise
generalization, 5th European Software Engineering Conference,
Barcelona. Lecture Notes in Computer Science 989, Springer-Verlag,

1995.
[OCL97] Object Constraint Language, version 1.1, September, 1997.
[Pree94] W. Pree: Meta-patterns: a means for capturing the essentials of object-

oriented designs, Proceedings of the 8" European Conference on Object
Oriented Programming, Bologna, Italy, 1994.

[Rational01] Rational Software, URL: http://www.rational.com/UML/
[Reenskaug96] T. Reenskaug : Working with objects, Greenwich : Manning, 1996.

[Riehle00] D. Riehle, Framework design: A Role modelling approach, Dissertation
N° 13509, ETH, Zurich, 2000. http://www.riehle.org/diss/

[Roberts96] D. Roberts, R. Johnson, Evolving Frameworks: A pattern language for
Developing Object Oriented Frameworks, Proceedings of the third
conference on pattern languages and programming, Montecilio, Illinois,
1996.

[Rumbaugh91] Rumbaugh et al., Object Oriented Modelling and design, Prentice Hall,
1991.

[Sanada02] Y. Sanada, R. Adams: Representing Design Patterns and Framewaorks in
UML-Towards a Comprehensive Approach, Journal of Object
Technology, Vol. 1, N°2, July-August 2002.

[Schmid97] H. A. Schmid: Systematic framework design by generalization,
Communications of the ACM, Special issue on Object Oriented
Application frameworks, vol. 40, no. 10, October 1997.

About the authors

Hanene Ben-Abdallah received a Ph.d. in Computer and Information Science from
theUniversity of Pennsylvania, Philadelphia, PA. She is currently Assistant Professor at
the Department of Computer Science of Faculté des Sciences Economique et de Gestion
de Sfax at the University of Sfax, Tunisia. Her research interests include formal method
application and architecture reuse techniques. Her e-mail address is hanene@gnet.tn.

Nadia Bouassida is preparing a Doctorate degree in Computer Science at the Faculté des
Sciences de Tunis, Tunisia. She is a Teaching Assistant at the Institut Supérieur
d'Informatique et du Multimédia of The University of Sfax, Tunisia. Her e-mail address
is nadia.bouassida@isimsf.rnu.tn.

118 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 8

http://www.rational.com/UML/
http://www.riehle.org/diss/
mailto:hanene@gnet.tn
mailto:nadia.bouassida@isimsf.rnu.tn

A UML BASED FRAMEWORK DESIGN METHOD G?L_/

Faiez Gargouri is an Associate Professor at the Institut Supérieur d'Informatique et du S
Multimédia of The University of Sfax, Tunisia. He worked in Paris 5 and Paris 13

universities. His research interests include object-oriented software design, Data

Warehouses and conceptual reuse. His e-mail address is faiez.gargouri@fsegs.rnu.tn.

Abdelmajid Ben-Hamadou is Professor of Computer Science and the director of the
Institut Supérieur d'Informatique et du Multimédia of The University of Sfax, Tunisia. He
has been the director of the LARIS reserach laboratory since 1983. His research interests
include automatic processing of Natural Language, object-oriented design and component
software specification. His e-mail address is abdelmajid.benhamadou@isimsf.rnu.tn.

VoL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 119

mailto:faiez.gargouri@fsegs.rnu.tn
mailto:abdelmajid.benhamadou@isimsf.rnu.tn

