
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 7, July-August 2004

Cite this column as follows: John D. McGregor: “Domain *”, in Journal of Object Technology, vol.
3, no. 7, July-August 2004, pp. 71-81. http://www.jot.fm/issues/issue_2004_07/column6

Domain *
John D. McGregor, Clemson University and Luminary Software LLC, U.S.A.

Abstract
Domain plays an increasingly important role in our business. In fact, it is our business.
The wildcard in the title indicates that there are several domain-related issues in
software engineering. This time in Strategic Software Engineering I want to explore
some of the implications of the increased recognition of the role of domain in software
engineering. I will contrast a domain-based approach to a requirements-based
approach and present a high-level domain-driven development process.

1 INTRODUCTION

Domain analysis, domain engineering, domain-specific languages, and many other
wildcard matches apply to the term domain. While some of the software we produce,
such as debuggers and compilers, manipulates other software most of our software
manipulates something else. The something else is the area in which we do business, our
domain.

Domain may be thought of in several different ways. Many of the technical
definitions view a domain as the subject for a family of programs, for example telephone
call switching systems. Yet literature in fields other than programming uses the term
domain as well. The definition that I like the best states that a domain is a body of
knowledge. I like this definition because it decouples the real-world domain from
software-based implementations of the domain. I also like it because it still leaves room
for interpretation.

Domain is what a piece of software is about. At one level of detail it may be banking
transactions or, at another level, it may be user interface controls. As we separate the
implementation from the specification, the domain becomes the central focus of the
specification. Product development is a effort to identify and separate the many domains
involved in solving a problem, describe the domains in models and languages, and
integrate them into a product.

Domains have a lifecycle that we can use to guide forward-looking decisions about
products. Domains are initially ill-defined and rapidly changing. The software products
that implement the domain are handcrafted for the individual business process of a
specific enterprise. Users of these products must have an understanding of the business

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_07/column6

DOMAIN *

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

process independent of the product, think bank tellers. As the domain matures, we build
software products that use standardized processes and these products can be sold to
multiple customers with little or no modification. Eventually the domain is sufficiently
stable for us to identify patterns and to abstract these to standardize product elements.
Users can now be customers of the former trained users, think ATM users. The domain
becomes sufficiently standardized that even end users can write scripts that embody
frequent operations, think intelligent agents. Successful products enter a domain’s market
at just the correct point in the lifecycle.

Domain knowledge is a commodity. Software architects with extensive knowledge
of telecommunications will be offered more by a telecommunications company than a
person with just as much experience creating architectures in some other domain. The
products of many companies implement a specific piece of domain functionality, such as
an encryption algorithm, rather than being an end user product. A number of consortia
have developed domain models available only to paying members.

The thesis of this article is: taking a domain-based approach provides a context for
software development that creates synergy with other business activities of the company
producing strategically significant results. Much has been written about focusing on the
“core business.” In fact, this has been one of the driving forces for outsourcing. The
company focuses on what it does best and pays for others to do supporting activities.
Domain-based development allows the software development group to focus on the core
business of the organization just as the rest of the product development group does.

I will discuss a domain engineering approach to software development that seeks to
make software development an integral part of strategic planning and product production
within the organization.

2 REQUIREMENTS-BASED AND DOMAIN-BASED
APPROACHES

One software development firm advertises, “We build exactly what you want.” That
sounds very good to a project manager who has a tight deadline for her project, but it is
very bad for the organization that needs to explore opportunities for new or improved
products. In a requirements-based approach to development, a team analyzes
requirements to understand the specific product to be built. A team, perhaps a different
one, then organizes to build the product. Communication between these teams and others
in the development effort is in terms of the specifics of this product. The team may
approach this as a completely independent effort from anything done before or they may
try to reuse code from previous products. The structures created in this type of
environment usually are implementation focused and are very difficult to use even in a
slightly different context.

In most development efforts, over half of the faults are related to incorrect
requirements or to misunderstanding the requirements. Ultimately no development effort
can be successful unless what is to be built is clearly and correctly understood. One of the

INTRODUCTION

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 73

improvements in requirements writing was Jacobson’s use case concept. Use cases were
seen as an improvement because of

• the ability to structure the use case model and show explicitly the relationships
among the use cases. This is an improvement over a bulleted list of short phrases
or a text document full of shalls.

• the use of scenarios in the use case. A good scenario helps you understand the
problem in the context of its domain. Of course these short stories can be just as
unilluminating as the bulleted list if they digress into details of the user interface
or specific implementations.

Use cases are part of the move toward domain-based development.
One of my early explorations into object-orientation came when I was working on a

project to develop an automatic programming system that would help physicists solve
systems of partial differential equations. We were trying to understand the problem and
creating a working model of the concepts involved in the problem seemed a useful
approach. This domain-based approach provided an effective basis for exploration and
learning. We eventually cast the results of the domain analysis in a domain model and a
library of classes, which was our equivalent to a domain-specific language.

We then worked with several development teams to build products from the domain
infrastructure. A number of problems had to be solved while building these products, but
they involved issues of implementation and meeting performance objectives. Throughout
the effort we were able to talk with the scientists who would use the products and they
were able to understand what we were doing since it was stated in domain terms.

The domain-based approach provided our extended team with a common basis for
understanding. It provided concepts, vocabulary, and relationships among the concepts.
These artifacts were easily reused on the development of several products in the same
domain.

To an extent the domain-based approach can be thought of as subsuming the
requirements-based approach. In a domain-based approach to development, a team
analyzes a broader domain before analyzing the requirements for a specific product. The
FODA technique used in software product lines is an example [Kang90] of a technique
that provides a natural transition from domain modeling to requirements analysis. In
short, domain provides a context for asking what a product should be while a
requirements-based process asks what a product should do.

Domain-based development enhances communication between business and
development personnel promoting reuse across products and in some cases even reuse
across organizations. The Object Management Group’s Catalog of OMG Domain
Specifications currently contains specifications for over 30 domains [OMG04]. Each
specification provides a set of interfaces that describe the concepts of the domain. These
specifications allow a vendor to create products that can interact with other products
within the same domain without direct interaction among the vendors as the products are
built.

DOMAIN *

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

Brian Foote [Foote00] discovered a useful pattern, “Deploy People Along the Grain
of the Domain.” This pattern takes advantage of the fact that as we have more experience
with a particular piece of functionality, we get more insights into how to improve it.
Sounds obvious, but traditional deployment of personnel develops expertise in a portion
of the process, such as analysis, as opposed to gaining experience in some slice of the
domain from analysis through implementation. This works as long as each new project is
disjoint from previous ones. Brian’s pattern is most effective when there is a longer term
vision beyond the current product.

3 DOMAIN ENGINEERING

Some in the software product line community have adopted the term domain engineering
to refer to the various activities related to the domain and the development of reusable
assets1. In fact, the term is used to refer to all of the activities that are related to the
product line as a whole as opposed to those activities related to individual products. This
terminology is chosen in recognition that reuse-oriented tasks such as building the
business case and identifying the scope of the product line are inherently domain-related.

Domain analysis is perhaps the most mature component of domain engineering.
Prieto-Diaz [Prieto-Diaz87] provided some of the early work in this area along with Kang
[Kang90]. Hewlett-Packard has applied domain analysis to enhance the reusability of
software elements [Cornwell96]. The idea is to understand the concepts in the domain
and then to translate those into objects in working programs. The domain objects form the
core of most good object-oriented software. That is not to say that the domain objects
define the software architecture, more later.

Czarnecki [Czarnecki00] describes a domain-based library development approach
that goes beyond traditional domain analysis. The approach takes the software-specific
definition of domain I mentioned above. That is, the domain is defined by studying
applications that share common requirements or features. They build one model on the
abstract data types (ADT) that are used in the implementations of the applications. They
build a feature model using Feature Analysis to capture the features provided by the
applications. Figure 1 lists the steps in the process.

Weiss et al [Weiss99] provide one approach to a complete product development
approach: family-oriented abstraction, specification, translation (FAST). The FAST
approach to product line development focuses on doing sufficient analysis and design to
create a domain-specific language. Product builders specify the desired product by
writing a program in the language and the product is produced automatically using
program transformations.

1 Those who use the term domain engineering for the product line level also use application engineering as
the product level organization. These terms are roughly equivalent to the core asset builder and product
builder terms used in the Software Engineering Institute’s product line model, but there are differences
[Clements01].

REQUIREMENTS-BASED AND DOMAIN-BASED APPROACHES

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 75

 Domain Analysis
 Domain Definition
 Domain Modeling
Domain Design
 Architecture creation
 Specification of domain-specific language
Domain Implementation
 Implementation of domain-specific language
 Implementation of components

Figure 1 - Domain Engineering Method For Algorithmic Libraries

I want to put the activities in Figure 1 into the context of a “complete” development
process, a portion of which is shown in Figure 3. The initial step is to identify the set of
domains that completely encompass the problem being solved. This implements the
“separation of concerns” pattern. The work of Tarr and Ossher [Tarr99] and others at
IBM has resulted in a concern manipulation environment (CME), implemented as an
Eclipse plug-in. The CME supports, among other things, tracking the elements that
constitute a single domain but that are distributed over several physical assets such as
files or class definitions. In Figure 2 I show a query, lower left window, in the CME that
searches for all classes whose name includes the word “Array”. This finds the core
domain classes for my application. In the visualizer, middel window on the right, the blue
bar near the top of some of the rectangles identifies the line of code that contains the class
name definition. The visualizer is also showing the relative size of each class file by
using different size rectangles.

Figure 2 - CME operation

DOMAIN *

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

Some of the domains deal with the business concepts involved in the problem. Others are
implementation domains such as the windowing functionality. Typically, some of the
domains will have already been analyzed and a domain-specific language defined,
perhaps as a set of classes such as the javax.swing.* packages in Java. Where necessary, a
domain is engineered following the process shown in Figure 1.

The tricky part comes in the final block in Figure 3. The separate streams of design
must be integrated. This is the role of the software architecture. The structures of the
domain models represent semantic relationships among elements but do not necessarily
represent the best structure for an executing system. The software architecture determines
execution time relationships among elements from several domains and among elements
within a single domain. A number of architectural patterns are used for this integration
including the aspect pattern that cuts across elements and the plug-in pattern used by
Eclipse. In the Eclipse open source project a number of domains, such as visual editing
and entity modeling, are being investigated and designed concurrently. They are
integrated using a registry that lists all plug-ins located by an instance of Eclipse and
providing services to allow one plug-in to find the other plug-ins upon which it depends.

D o m a in A n a ly s is
 D o m a in D e fin it io n
 D o m a in M o d e lin g
D o m a in D e s ig n
 A rc h i te c tu re c re a t io n
 S p e c if ic a t io n o f d o m a in -s p e c if ic la n g u a g e
D o m a in Im p le m e n ta tio n
 Im p le m e n ta tio n o f d o m a in -s p e c if ic la n g u a g e
 Im p le m e n ta tio n o f c o m p o n e n ts

D o m a in A n a ly s is
 D o m a in D e f in i t io n
 D o m a in M o d e lin g
D o m a in D e s ig n
 A rc h i te c tu re c re a tio n
 S p e c if ic a t io n o f d o m a in -s p e c if ic la n g u a g e
D o m a in Im p le m e n ta tio n
 Im p le m e n ta t io n o f d o m a in -s p e c if ic la n g u a g e
 Im p le m e n ta t io n o f c o m p o n e n ts

D o m a in A n a lys is
 D o m a in D e f in i t io n
 D o m a in M o d e lin g
D o m a in D e s ig n
 A rc h ite c tu re c re a tio n
 S p e c if ic a t io n o f d o m a in -s p e c if ic la n g u a g e
D o m a in Im p le m e n ta tio n
 Im p le m e n ta t io n o f d o m a in -s p e c if ic la n g u a g e
 Im p le m e n ta t io n o f c o m p o n e n ts

D e c o m p o s e
In to
D o m a in s

D o m a in s in te g ra t io n

P ro g ra m d e s ig n v ia d o m a in
in te g ra t io n a n d re la tio n s h ip
c o n s tra in ts .

Figure 3 – Domain-driven Development

DOMAIN ENGINEERING

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 77

4 DOMAIN STRATEGIES

Technical domain engineering processes are usually presented in isolation. In order for
me to fulfill my earlier promise, I need to tie these processes into the broader enterprise
level strategizing process. Corporate planning and strategy development interacts with the
two levels of engineering in the product line as shown in Figure 4. For the purposes of
this discussion I am ignoring tactical management activities.

 Domain Engineering

Application Engineering

Corporate Planning

Enterprise
architecture

Production
Planning

Shared
domains

Figure 4 - Strategic connections

The product line organization is constrained by the enterprise architecture. An enterprise
architecture is used to assure that various facets of the enterprise use compatible, if not
the same, technologies. Even companies that do not have an enterprise architecture often
have corporate standards for look and feel of user interfaces and standard definitions for
certain key concepts.

The fundamental strategy of an enterprise is to address a specified set of domains;
the markets that the enterprises targets with products. A product line organization
probably will not be the only business unit within the enterprise to address a certain
market. Domain information will be available to the product line organization. There will
at least be domain experts and there may also be domain assets that either can be used in
the product line or perhaps can flavor the development of new assets.

The product line organization may be constrained by the production techniques used
at the corporate level. There are several reasons for this constraint. There are often assets
that the enterprise owns that can be used in the product line, but these assets have already
been engineered to be used in particular ways. For example, the enterprise may have
invested in developing a program generator and a set of templates. The product line staff
have experience using the generator, gained on numerous previous projects, that must be
leveraged to full advantage. Adopting a totally new production process would be counter
productive.

Several early adopters of the product line approach have specifically sought benefits
related to the domain of application. They have experienced improved competitive

DOMAIN *

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

advantage, the ability to address niche markets within their domains of interest through
customization of domain assets, and the ability to respond to unanticipated opportunities
through that same customization.

5 EXAMPLE

In my first column I introduced an example product line of arcade games. The Arcade
Game Maker (AGM) is the fictional operator of that product line. I want to consider the
role of domain in that product line.

Figure 6 shows a domain model for the Game domain used in the product line. The
classes in the class diagram form a domain-specific language in a narrow sense of the
term. I can write lines of code such as shown in Figure 5. In these lines the object types
and the method names are all domain terminology. In languages such as Java and C#, the
strong type checking ensures some degree of compliance with the domain.

 StationarySprite ss1 = new StationarySprite();
StationarySprite ss2 = new StationarySprite();
ss1.hit(ss2);

Figure 5 - Domain code example

AGM is building nine products within this domain. In fact, AGM already has built a
number of products in this domain. The staff assigned to the product line organization
bring with them expertise in the domain even before the model is developed.

The domain objects in this product line contain non-domain functionality. The
architecture is a model-view-controller pattern, but the decision was made to implement
portions of the view in the same classes as the model since there would only ever be a
single view. The domain model in Figure 6 shows only methods related to the domain.
The architecture-specific methods were added after the domain had been modeled and
understood.

The concern manipulation environment was not available when we developed this
example product line. It would have been a useful tool for tracking the portions of each
class related to domain and the portion related to application-specific details.

DOMAIN STRATEGIES

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 79

Figure 6 – Partial Domain Model

6 SUMMARY

I have illustrated some aspects of the domain-driven development approach to software-
intensive product development. It is a useful perspective but it is not always the most
appropriate approach.
A requirements orientation is appropriate when

• a single product is to be built as quickly as possible
• the main domain of the product is changing so rapidly that elements will not be

reused
• a product is being built in an established domain in which the staff has extensive

experience (this assumes that a domain-based approach was followed at sometime
previously)

A domain orientation is appropriate when
• the implementation is not particularly specialized and the development staff can

focus on the problem.

DOMAIN *

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

• the domain is not well understood by the development staff and experimentation
with solutions will focus on domain algorithms rather than innovative
implementations.

• There is an emphasis on reuse as in a software product line
I have participated in a number of projects using both approaches. My experience has
shown that for a company that produces software-intensive products for specific markets
the domain-based approach will make the most sense in the long run but only if the
enterprise is sufficiently disciplined to take advantage. The industry’s experience is much
like my own. In recent, and so far unpublished, research on software product lines, over
half of the industry representatives indicated that they are using domain-oriented
techniques. Many of the recent trends and initiatives are heading in the direction of
domain *.

REFERENCES

[Clements01] Paul Clements and Linda Northrop: Software Product Lines: Practices
and Patterns, Addison-Wesley, 2001.

[Cornwell96] Patricia Collins Cornwell: “HP Domain Analysis: Producing Useful
Models for Reusable Software”, HP Journal, August 1996.

[Czarnecki00] Krzysztof Czarnecki and Ulrich Eisenecker: Generative Programming:
Methods, Tools and Applications, Addison-Wesley, 2000.

[Foote00] Brian Foote: “Deploy People Along the Grain of the Domain”. Seventh
Conference on Pattern Languages of Programs, Honolulu, Hawaii, 2000.

[Kang90] Kyo C. Kang; Sholom G. Cohen; James A. Hess; William E. Novak; and
A. Spencer Peterson: Feature-Oriented Domain Analysis Feasibility Study
(CMU/SEI-90-TR-21, ADA235785). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1990.

[OMG04] Object Management Group: Catalog of OMG Domain Specifications,
http://www.omg.org/technology/documents/domain_spec_catalog.htm,
2004.

[Prieto-Diaz87]Reuben Prieto-Diaz: “Domain Analysis for Reusability”, in Proceedings
of COMPSAC 87, October 1987.

[Tarr99] Peri Tarr, Harold Ossher, William Harrison, S. M. Sutton, Jr. (1999). N
“Degrees of Separation: Multi-Dimensional Separation of Concerns”,
Proceedings of the 21st International Conference on Software
Engineering, May 1999.

http://www.omg.org/technology/documents/domain_spec_catalog.htm

SUMMARY

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 81

[Weiss99] David M. Weiss and Chi TauRobert Lai: Software Product Line
Engineering: A Family-Based Software Development Process, Addison-
Wesley, 1999.

About the author
Dr. John D. McGregor is an associate professor of computer science at Clemson
University and a partner in Luminary Software, a software engineering consulting firm.
His research interests are software product lines and component-base software
engineering. His latest book is A Practical Guide to Testing Object-Oriented Software
(Addison-Wesley 2001). Contact him at johnmc@lumsoft.com.

mailto:johnmc@lumsoft.com

