
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 7, July-August 2004

Cite this column as follows: Dave Thomas, Brian Barry: “Using Active Objects for Structuring
Service Oriented Architectures”, in Journal of Object Technology, vol. 3, no. 7, July-August 2004,
pp. 7-14. http://www.jot.fm/issues/issue_2004_07/column1

Using Active Objects for Structuring
Service Oriented Architectures
Anthropomorphic Programming with Actors

Dave Thomas, Bedarra Corp., Carleton University and University of
Queensland
Brian Barry, Bedarra Research Labs.

1 SOA – SOMETHING OLD SOMETHING NEW

Service Oriented Architectures (SOAs), which were previously beneficial in legacy
OLTP and Telecom systems, are once again popular, this time for use with web services.
SOAs offer language and technology independence, including the important ability to not
require every useful program to be in the latest language and/or on the latest platform.
SOAs use self described wire formats such as SOAP, which make it easy to communicate
between different technologies.

Large grained encapsulation facilitates simpler interface description and use, while
avoiding the pitfalls of frameworks. Most importantly, SOAs provide dynamic binding,
which supports flexible and even dynamic service provisioning.

2 CHALLENGES IN STRUCTURING SERVICE ORIENTED
ARCHITECTURES

There has been much effort in the so-called choreography/orchestration of web services,
primarily with special languages and/or visual tools to connect services. However, there
has been little work done in the area of structuring complex web services. At this time,
workflow languages and coordination protocols are very new and there is little explicit
modeling or structuring support for constructing workflow applications.

In business, threats and opportunities result in new models for doing business and
these in turn result in new roles, responsibilities and processes. Increasingly these new
models required collaborative organizations which many hope can be realized through a
technology such as web services. Of particular interest to us is the ability to model a
virtual business and populate that virtual business with both human, human augmented,

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_07/column1

USING ACTIVE OBJECTS FOR STRUCTURING SERVICE ORIENTED ARCHITECTURES

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

and fully mechanized activities. Unfortunately, current software tools provide little high
level support for this style of modeling and execution. In particular they maintain and/or
increase the gap between business designer and software designer.

MDA and classic Workflow tools support complex state machine descriptions that
are often far too complex for composable workflow. State machines and petri nets are
difficult to adapt to the needs of dynamically changing business. In particular it is very
difficult to cope with the exception handling which is commonplace in asynchronous
office systems. They also impose an additional runtime complexity, embedding their own
concurrency semantics for states, flows etc. which are opaque to the business analyst.

Web Services use many specialized languages including BPEL4WS, WSDL, XML,
and SOAP, each of which is itself focused on one aspect of the problem. While such an
approach definitely has its merits, it creates a lot of additional accidental complexity at
the seams. It greatly complicates design and implementation choices leading to increased
complexity for service builders.

Finally current modern programming languages, for example, are limited to passive
objects and associated low-level concurrency machinery. The designer is forced to
manually build active objects using low-level thread/process and synchronization
primitives. This leads to greater accidental complexity and hence potential performance
and concurrency problems. Many of the examples cited by the AOSD community address
the complexity of weaving concurrency, transaction, persistence and security aspects in
modern application servers.

3 ACTORS – AN ANTHROPOMORPHIC APPROACH TO
WORKFLOW

In the early 80s, we worked in the office automation and business process automation
space. The work at the time was focused on data flow techniques for transforming paper
flow to automated workflow. Those early days in office automation (OA) saw the first
application of state machines and petrinets to specify office semantics [Zisman, Ellis 13].
These efforts quickly ran into the classic problems of ill-defined office semantics and
exception handling. Further, they lacked modularity as is often experienced with large
state machine descriptions.

Smalltalk, the Xerox Star, Programming By Example [14, 16] and Actors [1, 15]
provided powerful new metaphors for building complex business systems. Actors in
particular provided an extensible active object architect for designing business processes,
associated workflows and behavior.

We feel now, as we did then, that Actors provide a simple and elegant language
mechanism for SOA applications. Specifically they provide a family of anthropomorphic
active classes which meet both the needs of the business designer and those of the
software implementer.

ACTORS – AN ANTHROPOMORPHIC APPROACH TO WORKFLOW

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 9

Actor Languages

Carl Hewitt (MIT) and others (principally Henry Baker and Gul Agha) developed actor
languages. Hewitt’s actors are autonomous and concurrent objects that communicate
asynchronously and are intended to be a model of an intelligent person.

When an actor receives a message, it executes according to its script and
communicates with a well- defined and finite set of other known actors. Actor languages
are clean, simple, elegant and powerful.

Actors unify synchronization, message passing and encapsulation in much the same
way as a monitor unifies procedure calls and synchronization. The actor allows one to
model computations as an organization of communicating active objects and to apply
anthropomorphic roles such as workers, coordinators, managers, couriers, notifiers etc.
This allows business processes to be expressed using common organizational design
principles.

Actor Programming Model

The Actor programming model is to begin with a simulation or animation of the whole
system and then build it out, i.e. build an executable model. As the system grows, it takes
on characteristics of a solution. Normally this model followed a variant of the interactive
Spiral Model that underlies Agile Development approaches. First get the functional
requirements right and then focus on the performance.

4 THE ACTRA PROJECT

The Actra Project [9] was a joint research project at Carleton University and OTI for the
Canadian Defense Research Establishment during the years 1985 through 1990. The
project applied advanced OO and iterative development to the design and implementation
of a complex embedded command and control application [10, 11]. Actra sought to show
how far Smalltalk could be used in the development of complex embedded applications.
The principal research results include: Orwell (aka ENVY/Developer), a team
development environment; the Actra actor model and its integration into Smalltalk; a
multiprocessor virtual machine implementation – GC in particular; high performance
object serialization; and application development using active objects.

Actra combined Smalltalk, Actors and Multiprocessors and used the Harmony
multiprocessor operating system as a foundation. An Actor encapsulates cooperating
passive (non-Actor) objects. Actors synchronize and communicate by sending messages.
Actra ran successfully in both SMP and networked environments, but in 1990 it stretched
the state of the art in operating systems and hardware to its limits.

USING ACTIVE OBJECTS FOR STRUCTURING SERVICE ORIENTED ARCHITECTURES

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

Message Based OS Kernels

Thoth was the archetype operating system that was developed at the University of
Waterloo in the late 1970’s. It has many descendants including Port, V Kernel, Harmony,
and QNX.

Harmony offers a very robust and stable implementation. Harmony has very
lightweight tasks (tasks = processes = threads), and a common interface for local and
remote tasks.

It has a portable real-time multitasking multiprocessing kernel and is based on
simple primitives: Blocking Send, Blocking Receive, Reply, Create, Terminate and
special forms for Non-Blocking Receive and Interrupts. It provided standard system
services such as ClockServer, DirectoryServer, and LogServer.

Harmony is small and was essentially written by one very smart person. It was an
elegant solution with a simple synchronous communication model and a stable
performance implementation which was easy to understand and easy to get right.

Process Structuring in Harmony

Process Structuring in Harmony includes Anthropomorphic Programming. Tasks are
assigned personified roles such as Servers, Administrators, Workers, Couriers, Notifiers,
etc. Each of these roles has well known pre-defined semantics.

The process structuring (or architecture in today’s language) in Harmony is such that
tasks are assigned to processors. Tasks then communicate synchronously, with non-
blocking reply. Servers must be responsive, so they delegate most of the work. Processes
spend most of their life in a “receive any” loop, while Workers do most computations.
The Administrator helps organize this.

Actra Actors

Actra provides a new object class called Actor. This replaces the Smalltalk co-routine
process model. Actors execute in pseudo parallel on a single processor and in parallel on
multiple processors. Actors have the granularity of lightweight processes (threads/tasks).
There are uniform semantics for remote/local processes and these processes have a well-
defined life cycle.

The Actra Message Model is designed to allow a serial Smalltalk application to be
naturally evolved into a concurrent application. Actors are invoked from another actor via
message send which causes an implicit OS blocking send. Method return executes an
implicit OS unblocking reply, releasing the sender. A message is accepted when a target
actor is receive-blocked state. Explicit send, receive, reply are also supported. There is no
receive_specific call (as in Harmony), only receive_any. The resulting coding style is
very natural for Smalltalk programmers. Switching between active/passive roles didn’t
affect most of the code.

THE ACTRA PROJECT

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 11

Process structuring is with Actors, which execute concurrently and are “large scale”
objects with personified roles. The Harmony message-passing model was used and the
same generic actors are used: Servers, Workers, Notifiers, Couriers, and Administrators.
Programmers create their own application specific actors by specializing the generic
ones. The complete taxonomy of known Actors, some generic, many more application
specific, creates a vocabulary that populates the programming model and defines its
semantics.

5 DESIGNING ACTOR BASED SYSTEMS

Hewitt defined a design process for his actor languages:
1. Decide what the actors are
2. Determine their message protocols
3. Define their behavior

In Actra, we add structure by providing a taxonomy for Actors and introducing OO
inheritance. Working Groups of collaborating Actors are defined with only a few Actors
in each Working Group. Actors know about Superiors, Subordinates, and Colleagues
(who share a common supervisor).

To help with modeling and mapping concurrency, semantics for message passing are
similar for actors and objects. Consequently decisions made about concurrent behavior
are easily changed. There are uniform semantics for local and remote Actors, so
Processor/Actor assignment becomes a runtime optimization. Our rule of thumb is, when
in doubt, assume a component is an actor. It will usually become obvious when the
assumption is wrong.

Actra has well-defined life cycle policies including initialization (e.g. order of object
creation) and finalization (e.g. handling child Actors). There is a standard activation
sequence and configurable serialization. Policies can be refined in subclasses. Delegation
is used to share responsibility, to task subordinates and to refer to supervisor.

6 ACTOR TAXONOMY

First class active objects are components that encapsulate a set of state and behavior
together with a thread of control. Simple inheritance was used because it is an easy model
to understand and use. Mixins and multiple inheritance, etc. are more powerful but add
complexity (always choose the simplest powerful solution).

Generic Actors include:
From Anthropomorphic Programming - Clients, Servers, Agents, Managers,

Secretaries, Couriers, Workers, Notifiers ...
• Workers: send to servers for work, perform computation

USING ACTIVE OBJECTS FOR STRUCTURING SERVICE ORIENTED ARCHITECTURES

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

• Notifier: event handling Worker
• Courier: messenger Worker, used for delegation and communication
• Server: provides services
• Proprietor: manages resources, mitigates access
• Administrator: manages worker pool
• Dispatcher: provides asynchronous communication

Transactor: adds ACID properties to computation for coordinating distributed
transactions across multiple services.

Business Processes = Workflow + Rules + Control (e.g.. Taylor engines)
Agents = Actor where methods are rules
Avitar = Actor where method is script and displayOn: uses VRML

7 CONCLUSION

Conventional SOAs are based on anonymous services. Thousands of anonymous services
don’t help – we’re back to the 10-foot shelf of API manuals. There is a need to group,
categorize, organize, and manage services. In our view, the use of actors is a powerful
and natural model for describing such systems.

The anthropomorphic approach seems to be very natural. Actor taxonomy is a dense
encoding of knowledge. It populates the programming model, defines its semantics, it is
easy to customize/extend the model and easy to remember and use. Concurrency and
collaboration are built-in and there is an incremental, interactive, navigational
programming style. Our motto is: Choose a uniform deep model and then learn to live
within it. Code and debug at the level of the abstraction. For example, the send graph
allows one to reason about the concurrency of the actor application, showing that simple
natural models may also lead to more tractable reasoning about correctness.

Strong models and deep domain abstractions means very dense code, which we
believe is a good property – dense code means less code, hence greater productivity for
skilled knowledge workers.

REFERENCES

1. Hewitt's Message Passing SemanticsGroup: Actors Foundations for Open System,
http://www.erights.org/history/actors.html

2. David R. Cheriton, Michael A. Malcolm, Lawrence S. Melen, Gary R. Sager: “Thoth,
a portable real-time operating system”, ACM CACM Vol. 22, 2, pages 105-115, 1979.

3. W. Morven Gentleman: “Message Passing Between Sequential Processes: the Reply
Primitive and the Administrator Concept. Softw.”, Pract. Exper. 11(5): 435-466
(1981)

http://www.erights.org/history/actors.html

CONCLUSION

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 13

4. Stephen A. MacKay, W. Morven Gentleman, D. A. Stewart: “Harmony as an object-
oriented operating system”. SIGPLAN Notices 24(4): 209-211 (1989)

5. David R. Cheriton: "The V Kernel: a software base for distributed systems”. IEEE
Software, 1(2), pp.19-42.

6. David R. Cheriton: “The V Distributed System”. Computer Science Department,
Stanford University, March 1987.

7. David R. Cheriton: “The V Kernel: a software base for distributed systems”. IEEE
Software, 1(2), pp.19-42.

8. QNX Software Systems, QNX Neutrino RTOS is a true microkernel operating
system, http://www.qnx.com/

9. David A.Thomas, Wilf R. Lalonde, John Duimovich, Michael Wilson, Jeff McAffer,
and Brian M. Barry, “Actra- A Multitasking/Multiprocessing Smalltalk”, Proceedings
of the ACM SIGPLAN Workshop on Object-Based Concurrent Programming, San
Diego, October 1988. Published as ACM SIGPLAN Notices, Vol. 24, No 4, 1989.

10. Brian M. Barry, D.A.Thomas, J.R. Altoft, and M. Wilson, “Using Objects to Design
and Build Radar ESM Systems”, Proceedings of OOPSLA'87, ACM SIGPLAN,
Orlando, October 1987.

11. Brian M. Barry, “Prototyping a Real-Time Embedded System in Smalltalk”,
Proceedings of OOPSLA'89, ACM SIGPLAN, New Orleans, October 1989.

12. Brian M. Barry, Active Object Programming Models, 2004.

13. http://www.workflow-research.de/Research/

14. de Jong, S.P., and Zloof, M.M., “The system for business automation
(SBA): programming language”, Communications of the ACM, Volume 20, Issue 6
(June 1977), Pages: 385 - 396

15. Roy J. Byrd , Stephen E. Smith , S. Peter deJong, “An actor-based programming
system”, ACM SIGOA Newsletter, v.3 n.1-2, p.67-78, June 21-23, 1982

16. Giuseppe Attardi , Maria Simi, “Extending the power of programming by examples”,
Proceedings of the SIGOA conference on Office information systems, p.52-66, June
21-23, 1982

About the authors

Dave Thomas is CEO of Bedarra Corp., Adjunct Professor at Carleton
University, Canada and University of Queensland, Australia, founding
Director of AgileAlliance.com, and founder of Object Technology
International. Bedarra works with research labs and commercial partners
to transition innovations into products and practices.

http://www.qnx.com/
http://www.workflow-research.de/Research/

USING ACTIVE OBJECTS FOR STRUCTURING SERVICE ORIENTED ARCHITECTURES

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

Brian Barry is currently CEO of Bedarra Research Labs. From 1991-
2002 he served variously as Chief Scientist, CEO, President and CTO at
Object Technology International, Inc. Under his leadership OTI
developed the Eclipse IDE Platform, IBM VisualAge for Java, and IBM
VisualAge MicroEdition for embedded systems. Brian has over 20
years of experience in the design and implementation of object-oriented
and component-based systems, including distributed, client/server,
embedded and real-time applications. He was a charter member of the

ANSI Smalltalk committee and a co-author of the Smalltalk standard. He holds a Ph.D.
from Queen's University.

