
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 7, July-August 2004

Cite this article as follows: Liwu Li: “Extending the Java Language with Dynamic Classification”, in
Journal of Object Technology, vol. 3, no. 7, July-August 2004, pp. 101-120.
http://www.jot.fm/issues/issue_2004_07/article2

Extending the Java Language with
Dynamic Classification

Liwu Li, University of Windsor, Canada

Abstract
The dynamic classification feature of an object-oriented programming language allows
an object to change its class membership without changing its identity at runtime. The
new membership of the object can be signified with a role, which is taken on by the
object and which can be implemented as an object of the target class. Here, we
propose an approach to extend the Java language with a dynamic classification
mechanism, which can be implemented by extending the Java language, compiler, and
standard library. We present a prototypical implementation of the mechanism to show
the feasibility of the approach to dynamic classification.

1 INTRODUCTION

In real life, a person may be employed by a company and registered as a student and,
later, promoted or graduated. Following the literature, we say the person plays the role of
an employee and that of a student dynamically. In an object-oriented language such as
Smalltalk, C++, Java, or C#, an object of class Person can be used to represent the
person. But, the object cannot represent the employee or student role of the person. It
cannot be reclassified into class Employee or Student. Possible solutions to
representing dynamic roles of a person object are:

R1. Using objects of classes Employee and Student to represent employee role and
student role of a person. Thus, we need to represent a person with multiple
independent objects, each having a distinctive identity.

R2. Using slots or fields in class Person to keep information on the employee status,
student status, and other possible status of the person [Bachman and Daya 1977].

R3. Melting data and functionality of person, employee, and student into a class and
using an object of the new class to replace the person object. The new class may
inherit classes Person, Employee, and Student.

The first solution needs extra efforts for a programmer to maintain and coordinate
dynamically changing memberships and multiple objects for a real-world evolving entity.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_07/article2

EXTENDING THE JAVA LANGUAGE WITH DYNAMIC CLASSIFICATION

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

Similar ideas have been explored in design and analysis patterns for programmers to cope
with dynamic classification manually [Bäumer et al. 2000, Fowler 1997]. The second
solution burdens class Person with fields that are not essential or necessary for all real-
world persons and, thus, blurs the responsibility of the class. The third solution needs a
large number of classes to meet the different combinations of roles of persons. It needs
multiple inheritance feature of an object-oriented programming language to ease the task
of class programming.

In this paper, we propose extending the Java language with a dynamic classification
mechanism and present a prototypical implementation of the mechanism to show the
feasibility of the mechanism. In the next section, we extend the Java language with
dynamic classification constructs in the forms of declaration and expression, which can
be used in programs. In Section 3, we describe how the Java compiler and the Java
standard library can be extended to support the dynamic classification mechanism. A
prototypical implementation of the mechanism is described in Section 4. We conclude the
paper in Section 5.

In the following presentation, we distinguish identifiers and terminal symbols used in
programs from non-terminal symbols used in grammar rules. The identifiers and terminal
symbols appeared in programs are printed in blue color. The non-terminal symbols and
other symbols that are used in grammar rules are printed in green color. In a grammar
rule, we use a pair of braces followed by an asterisk {}* to enclose a component that
may be repeated zero or more times. We use a pair of square brackets [] to enclose an
optional component in a grammar rule.

2 EXTENDING THE JAVA LANGUAGE

We propose introducing the following constructs to the Java language [Arnold et al.
2000] for programmers to code dynamic classification in applications:

J1. Dynamic classification declaration for supporting programmers to specify dynamic
classification associations, which indicate which types of objects can play which
types of roles and which also specify labels to identify roles;

J2. Dynamic reclassification and declassification expressions for objects to take on new
roles and drop the roles; and

J3. Expressions of role access, dynamic field access, and dynamic method invocation for
retrieving roles, accessing fields of roles, and invoking methods of roles.

2.1 Dynamic Classification Declaration
The dynamic classification mechanism proposed here is based on two tenets:

D1. Any (non-abstract) class in an object-oriented program can be instantiated to create
roles as well as create objects.

D2. The kinds of roles that can be played by objects of a class are labeled with identifiers,
which can be used to access roles.

EXTENDING THE JAVA LANGUAGE

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 103

The first tenet allows using any class to create roles that are taken on by existing objects
and roles. The second allows naming roles with labels (identifiers) used in our real life.
For example, we may use class Employee to create employee roles that are played by
objects or roles of class Student. Here, the roles are named employee. The two tenets
are reified with the notion of a dynamic classification declaration, which is defined as
follows.

A dynamic classification association (DCA), denoted with a triplet 〈D1, l, D2〉,
relates classes D1 and D2 with a label l. It indicates that an object or role of class D1 can
play, and thus take on, a role of class D2 and the role is named l. Based on the DCA 〈D1,
l, D2〉, we call class D1 a dynamic parent (class) of class D2, which is a dynamic child
(class) of class D1. For example, the DCAs 〈Student, employee, Employee〉,
〈Employee, deptManager, Manager〉, and 〈Employee, projectManager,
Manager〉 indicate that a student object or role can have an add-on employee role of
class Employee, and an employee object or role can play two roles of class Manager,
which are called deptManager and projectManager, respectively.

We could introduce DCAs in an object-oriented program by declaring DCAs
directly. Instead, we propose construct dynamic classification declaration (DCD) to
introduce DCAs that share a dynamic parent class in a program. A DCD is coded in a
source code file in one of two forms: stand-alone or dynamic-clause.

A stand-alone DCD can be placed anywhere outside class definitions in a source
code file. Using keywords dynamic and label, the syntax of a stand-alone DCD is

<parent> dynamic <child> {, <child>}*
[label [<label> {, <label>}*] {[<label> {, <label>}*]}*] ;

Non-terminals <parent> and <child> denote class names, <label> denotes an
identifier. Keyword dynamic is followed by a sequence of dynamic child names that
share the dynamic parent denoted by <parent>. The keyword dynamic and dynamic
child names compose a dynamic-clause. Keyword label is followed by a sequence of
label blocks, each of which is enclosed with a pair of square brackets []. The keyword
label and label blocks compose a label-clause, which is optional. The number of label
blocks in a DCD must be less than or equal to the number of dynamic child names in the
DCD. A stand-alone DCD is terminated with a semicolon. For example, the DCD

Employee dynamic Manager
label [deptManager, projectManager];

associates dynamic parent Employee and child Manager. It indicates an employee
object can play manager roles called deptManager and projectManager.

A Java class definition can be extended with a dynamic-clause, which designates the
defined class as the dynamic parent of the DCAs introduced by the dynamic-clause. The
syntax of a dynamic-clause in a class definition is

dynamic <child> {, <child>}*

EXTENDING THE JAVA LANGUAGE WITH DYNAMIC CLASSIFICATION

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

[label [<label> {, <label>}*] {[<label> {, <label>}*]}*]

A dynamic-clause in a class definition is placed between the head and body of the class
definition. It is a shorthand of a stand-alone DCD. For example, the following source
code defines class Employee and presents a stand-alone DCD that declares dynamic
parent Employee.

Employee dynamic Manager
label [deptManager, projectManager];

public class Employee extends Person {
// class body is omitted

}

The above code is equivalent to the following source code, which uses a dynamic-clause
in the definition of class Employee to replace the above stand-alone DCD.

public class Employee extends Person
dynamic Manager label [deptManager, projectManager] {
// class body is omitted

}

We now explain how to extract DCAs from a stand-alone DCD that has a label-
clause. A stand-alone DCD with no label-clause is a special case for the following
algorithm. A dynamic-clause in a class definition is processed similarly. We shall use a
container named DCAs to hold all the DCAs declared in a program. Assume a DCD that
declares m dynamic child classes childNamei with 0 ≤ i < m and n label blocks Lj
with 0 ≤ j < n ≤ m. Also assume each label block Lj encloses sj ≥ 1 labels. The DCD
has the form

parentClass dynamic childName0, …, childNamem-1
label L0, …, Ln-1

Each label block Ljwith 0 ≤ j< n has the form
[labelj1, …, labeljsj]

where sj ≥ 1. The DCAs introduced by the above DCD can be extracted with the
following pseudo-code, where expression lower(childNamei) changes the first letter
of identifier childNamei to lowercase and returns the changed identifier.

for (int i=0; i < n; i++)
 for (int j=1; j <= si; j++)
 place DCA 〈parentClass, labelij, childNamei〉 into DCAs;
for (int i=n; i < m; i++)
 place DCA 〈parentClass, lower(childNamei), childNamei〉 into DCAs;

For example, an execution of the above algorithm for the DCD
Person dynamic Student, Employee

label [undergrad, grad];

EXTENDING THE JAVA LANGUAGE

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 105

places DCAs 〈Person, undergrad, Student〉, 〈Person, grad, Student〉, and
〈Person, employee, Employee〉 into the container DCAs. The DCAs allow a person
object to play an undergrad, a grad, and an employee role, which are created by
instantiating class Student or Employee.

A Java program may be composed of multiple source code files, each of which may
include stand-alone DCDs and dynamic-clauses. All the DCAs implied by the DCDs in
the program are collected into the container DCAs. We require the DCAs 〈C1, l1, D1〉 and
〈C2, l2, D2〉 of a program satisfy condition

(C1 = C2) ∧ (l1 = l2) ⇒ (D1 = D2).
The condition means that a dynamic parent C and a label l uniquely decide a dynamic
child D and a DCA 〈C, l, D〉. Thus, each label l signifies only one type D of roles for a
given dynamic parent C. The condition is a reasonable constraint for an application. No
other constraints are enforced for DCDs or DCAs in a program.

In object-oriented programming, objects of a subclass of a class are objects of the
class. A DCA 〈C, l, D〉 implies that an object or role instantiated with a subclass C' of
class C can take on a role that is instantiated with a subclass D' of class D and that is
named l.

2.2 Dynamic Reclassification and Declassification
By the dynamic classification mechanism, a class can be used to create objects and roles.
An independent object, which is not a role, can be created as specified in the Java
language [Arnold et al. 2000]. For instance, expression new Employee()invokes the
default constructor of class Employee to create an object. We introduce keyword
newChild in the following expressions for creating roles:

o1 newChild(D1, l, D2, C2)
o1 newChild(D1, l)
o1 newChild(l)

A role o2 created with a newChild-expression is associated with an object or role o1,
which is called the parent of o2. It is is a child of its parent o1. We detail the expressions
as follows.

The first newChild-expression is based on a DCA 〈D1, l, D2〉 and a subclass C2 of the
dynamic child D2. Its execution creates a role o2 by instantiating class C2 and links the
created child role o2 to its parent o1 through DCA 〈D1, l, D2〉. Based on the fact that
dynamic child D2 is uniquely determined by dynamic parent D1 and label l, the second
newChild-expression is a shorthand of expression o1 newChild(D1, l, D2, D2),
which creates a role o2 by instantiating the dynamic child class D2. If the runtime class of
object o1 is class C1 and 〈C1, l, D2〉 is a DCA for a class D2, the last newChild-expression
denotes a shorthand of expression o1 newChild(C1, l, D2, D2). The above three

EXTENDING THE JAVA LANGUAGE WITH DYNAMIC CLASSIFICATION

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

newChild-expressions return (references to) the created roles o2. Like objects, created
roles o2 can be assigned to variables and parameters.

In Section 2.3, we shall explain how to access fields and invoke methods defined in a
child role o2 through the parent o1 of o2. Hence, a newChild-expression reclassifies an
object or role o1 into a class C1 or D2 effectively without changing the identity of o1.

The dynamic classification mechanism permits selective removal of roles associated
with an object or role o1. Thus, we declassify o1 from some classes. Declassifications are
realized with following expressions, which use keywords removeAll, removeSelf,
and removeChild to signify intended operational semantics.

o1 removeAll
o1 removeChild(D1, l)
o1 removeSelf

The above removeAll-expression removes all the links between o1 and its child roles o2.
It also removes links between the child roles and the child roles of the child roles
recursively. Thus, the removeAll-expression effectively removes all the links between o1
and roles that are directly or indirectly associated to o1. If a parent o1 is linked to a child
role o2 through DCA 〈D1, l, D2〉 for a class D2, the removeChild-expression removes the
link between o1 and o2 and, then, performs o2 removeAll. If a role o1 is linked to its
parent o' through DCA 〈D1, l, D2〉, the removeSlef-expression is equivalent to
removeChild-expression o' removeChild(D1, l).

When the dynamic classification mechanism evaluates a newChild-expression such
as o1 newChild(D1, l, D2, C2), if o1 is already linked to a role o' through the
DCA 〈D1, l, D2〉, the mechanism performs operation o1 removeChild(D1, l) prior to
evaluating the newChild-expression. Thus, an object or role o1 is linked to at most one
child role through a given DCA.

For example, the first statement in the following source code creates a graduate
student object and assigns the object to variable tom. The second statement creates an
employee role for the graduate student object and assigns the employee role to variable e.
The third and fourth statements create a deptManager role and a projectManager
role for the role e. Thus, we reclassify object tom (and role e) into class Manager. The
last statement removes the links between object tom and its roles and, thus, declassifies
object tom from the classes Employee and Manager. It also declassifies role e from
class Manager and renders e to an independent object. After the last statement is
executed, the manager roles are no longer associated with any object or referenced by any
variable. They are subject to garbage collection of the Java virtual machine.

tom = new GraduateStudent();
e = tom newChild(Person, employee);
e newChild(deptManager);
e newChild(projectManager);
tom removeAll;

EXTENDING THE JAVA LANGUAGE

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 107

Only newChild-expressions in a program can create roles. A newChild-expression
extends an existing object or role o1 with a link to a new role o2. Hence, all the existing
objects and roles of a program at runtime are linked with DCAs into a forest. For
example, the objects and roles created by the first four statements in the above code form
a tree shown in Fig. 2.1. The removeAll-expression changes the tree into a forest shown
in Fig. 2.2, in which the two manager objects are no longer referenced by any variables
and, therefore, subject to gabage collection.

 Figure 2.1 An object and its roles

Figure 2.2 Independent objects

2.3 Role Access

The following child-expression retrieves a role o2 of a given object or role o1. Keyword
child introduces dynamic parent D1 and label l of the DCA that links parent o1 and the
intended child o2. The DCA 〈D1, l, D2〉 is uniquely determined by the arguments D1 and
l of the child-expression.

o1 child(D1, l)

EXTENDING THE JAVA LANGUAGE WITH DYNAMIC CLASSIFICATION

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

The following parent-expression retrieves the parent o1 of a given role o2. We use
the keyword parent to signify the operational semantics. As described in Section 2.2,
the parent o1, if exists, of the given role o2 is unique.

o2 parent

The above two expressions explicitly request to traverse a parent-child link
downward or upward. The dynamic classification mechanism supports implicit access to
a field in a role as well. Assume that expression e1.v is the rvalue of an assignment
operation or an argument in a method invocation, expression e1 denotes an object or role
o1, and v is an identifier. All the roles associated with o1 form a tree T rooted at o1. If o1
encapsulates field v, expression e1.v is equal to the field v in o1; otherwise, e1.v is
equal to the field v in the highest role o' in T that encapsulates field v. In the latter case,
expression e1.v accesses the field v in role o' of o1. When each object or role in tree T
does not encapsulate field v or there are multiple highest roles that encapsulate field v,
we leave the semantics of expression e1.v for an implementation of the dynamic
classification mechanism to resolve.

The dynamic classification mechanism supports implicit invocation of a method
encapsulated by a role o' of an object or role o1. Assume a method invocation
expression e1.m(a0, …, ak-1) is executed, where e1 denotes an object or role o1, m is
a method name, a0, …, ak-1 are arguments with k ≥ 0. In the execution, expressions
a0, …, ak-1 are evaluated to basic values, objects, or roles b0, …, bk-1. Note that all the
roles of o1 form a tree T rooted at o1. When evaluating e1.m(a0, …, ak-1), the
dynamic classification mechanism tries to find a highest role o' in T that has a method
that can be invoked by the expression m(b0, …, bk-1) in the normal semantics of Java.
Particularly, if o1 encapsulates a method that satisfies methond invocation m(b0, …,
bk-1), execution of expression e1.m(a0, …, ak-1) amounts to executing expression
o1.m(b0, …, bk-1); otherwise, a role o' of o1 is responsible to execute m(b0, …,
bk-1). A Java method that searches for a highest role o' in T that can execute
m(b0, …, bk-1) will be described in Section 4.5.

3 EXTENDING THE JAVA COMPILER AND STANDARD LIBRARY

3.1 Extending the Java Compiler

A Java class has at most one class initialization method, which is invoked implicitly by
the Java virtual machine as part of the class initialization process [Lindholm and Yellin
1999]. A class initialization method cannot be included directly in a Java program. It is
never invoked directly from any Java virtual machine instruction. Initialization of a class
consists of executing static initializers and static field initializers defined in the class.

The Java compiler translates a class definition to a class file in a format defined in
the Java virtual machine specification [Lindholm and Yellin 1999]. In the class file, each

EXTENDING THE JAVA LANGUAGE AND STANDARD LIBRARY

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 109

method, including each instance initialization method and the class initialization method,
is described by a method_info structure. A code attribute in the method_info structure
contains the Java virtual machine instructions and auxiliary information for the method.
Particularly, a code array in the code attribute gives the actual bytes of the Java virtual
machine instructions that realize the method. A Java virtual machine instruction consists
of an opcode that specifies the operation to be performed, followed by zero or more
operands that embody values to be operated upon. The latest specification of the Java
virtual machine defines 201 opcodes for the Java compiler to compose Java virtual
machine instructions and 3 opcodes reserved for implementations of the Java virtual
machine.

A support for the dynamic classification mechanism in Java programming does not
need to extend the instruction set of the Java virtual machine or change the class file
format. It requires the Java compiler to translate the DCDs into static initializers in class
definitions before the class definitions are compiled to class files. The Java compiler also
needs to translate dynamic classification expressions appeared in a method definition to
Java code before it compiles the method definition to a method_info structure. We now
explain how to compile DCDs and dynamic classification expressions with the extended
Java compiler.

In the next subsection, we propose extending the Java standard library with a class
named Dynamic for running the dynamic classification mechanism at runtime. Class
Dynamic contains two static fields named DCAs and dynamicLinks to hold DCAs
and parent-child links, respectively. To simplify the discussion, we assume the static
fields hold objects of a subclass of class Hashtable. Hash table DCAs uses the
composite of a dynamic parent D1 and a label l as a key and the dynamic child D2 of the
DCA 〈D1, l, D2〉 as value to store the DCA. Assume a source code file that declares a
DCD, which is either stand-alone or a dynamic-clause. As indicated in Section 2.1, the
DCD specifies a set of DCAs. The Java compiler adds a static initializer into each class
definition in the source code file. The inserted static initializer includes a statement
similar to the following one for each DCA 〈D1, l, D2〉 implied by the DCD. Thus, the
Java compiler can eliminate DCDs from source code files and stores DCAs into the hash
table DCAs in class Dynamic.

if (Dynamic.DCAs.containsKey(D1, l)) {
 if (!Dynamic.DCAs.get(D1, l).equals(D2))
 throw new DynamicException();
}
else Dynamic.DCAs.put(D1, l, D2);

A DCA is used to link parent o1 to child o2 when the child role o2 is created by a
newChild-expression. The newChild-expression instantiates a class C2 to create the child
role o2. The Java compiler translates the newChild-expression

o1 newChild(D1, l, D2, C2)
to source code similar to the method invocation expression

EXTENDING THE JAVA LANGUAGE WITH DYNAMIC CLASSIFICATION

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

Dynamic.addLink(o1, new C2(), D1, l, D2)
The static method addLink of class Dynamic removes any previous link that is labeled
with DCA 〈D1, l, D2〉 between o1 and any role, generates a parent-child link between
parent o1 and the newly created role o2 of class C2, and labels the link with the DCA 〈D1,
l, D2〉. Class Dynamic uses hash table dynamicLinks to keep parent-child links. The
static method addLink adds links into the hash table when newChild-expressions are
realized. The Java compiler translates other newChild-expressions similarly to method
invocation expressions, which can be compiled into Java virtual machine instructions. A
static method removeLink of class Dynamic can be used to remove links for realizing
removeAll-, removeSelf-, and removeChild-expressions that appear in method bodies.

A child-expression o1 child(D1, l) placed in a method body accesses a child o2
of parent o1 such that the parent and child are linked with DCA 〈D1, l, D2〉 for some class
D2. As indicated above, hash table dynamicLinks in class Dynamic contains the link
if the link exists. Hence, the child-expression can be compiled to Java source code that
uses arguments o1, D1, and l to access hash table dynamicLinks. Similarly, the Java
compiler translates a parent-expression o2 parent to Java source code that accesses
hash table dynamicLinks to find the parent of o2.

When expression e1.v is used as an rvalue or argument, if the Java compiler decides
a type C1 for expression e1, it can decide whether the class or interface C1 defines or
inherits field v. If C1 does, the Java compiler keeps expression e1.v as is so that it will
translate the expression to Java virtual machine instructions directly; otherwise, the Java
compiler generates source code to perform the following actions at runtime:

F1. Visit roles associated with o1 in a breadth-first manner to search for roles o' that
encapsulate field v;

F2. Return field v in the role o' as the value of expression e1.v if step F1 returns only
one role o'.

The generated Java code may invoke a method of class Dynamic to perform action F1
or F2. In the description of step F2, we assumes action F1 finds exactly one role o'.
Other cases in which action F1 finds no role or multiple highest roles that have field v are
left for an implementation of the dynamic classification mechanism to resolve.

We can program action F1 in Java. The action at runtime accesses hash table
dynamicLinks in class Dynamic to find the roles o' of o1 that encapsulate field v. It
applies Java reflection feature to decide whether a role o' encapsulates field v. The field
v is reflected as an object v_field of class Field. Action F2 is coded by invoking
method get of the Field object v_field with argument o'. In the description of the
prototypical implementation, we shall show how to code actions F1 and F2.

The Java compiler can handle a method invocation expression e1.m(a0, …, ak-1)
similarly. Particularly, if the Java compiler can evaluate a type C1 for expression e1 and
the class or interface C1 defines or inherits a method named m and arguments a0, …, ak-1

EXTENDING THE JAVA LANGUAGE AND STANDARD LIBRARY

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 111

can be substituted for the method parameters, the Java compiler translates the expression
to Java virtual machine instructions directly. Otherwise, the Java compiler generates
source code from the method invocation expression to invoke the dynamic classification
mechanism at runtime. The source code searches for a role o' of the object or role
denoted by e1 such that o' defines or inherits method m that can be invoked by
expression m(a0, …, ak-1). The source code executes the found method m for object
o' through the Java reflection feature. It invokes a standard static method of class
Dynamic to perform the actions.

3.2 Standard Class Dynamic

The Java virtual machine starts up by creating an initial class using the bootstrap class
loader [Lindholm and Yellin 1999]. It then links the initial class and invokes the main
method of the initial class. The main method drives further execution and may cause
additional classes and interfaces to be linked. The creation of a class or interface C
constructs an internal representation of C in the method area of the Java virtual machine.
It can be triggered by another class or interface D that references C or invokes methods of
C. If C is not an array class, it is created by loading a binary representation, compiled by
the Java compiler.

The Java virtual machine contains explicit support for objects. An object is either a
dynamically allocated class instance or an array. A reference to an object is considered to
have a Java virtual machine type reference. Values of type reference can be thought of as
pointers to objects. More than one reference to an object may exist. Objects are always
operated on, passed, and tested via values of type reference.

Roles created at runtime are implemented with objects that are linked to existing
objects or roles through DCAs. The Dynamic class is responsible to maintain the links,
which reference roles. We propose adding the class Dynamic to the standard Java
library. The class Dynamic supports the dynamic classification mechanism with static
fields DCAs and dynamicLinks. The field DCAs holds DCAs specified by the source
code files of a Java program. The field dynamicLinks holds existing parent-child links
during the program execution. Any statement or expression that invokes the dynamic
classification mechanism triggers the loading of class Dynamic, which fills container
DCAs with DCAs declared in the program and creates container dynamicLinks.

In addition to containers DCAs and dynamicLinks, the class Dynamic provides
utility methods to serve the code generated from dynamic classification expressions by
the Java compiler. The generated code does not access the above containers directly. It
invokes the utility methods to fulfill the responsibilities of dynamic reclassification and
declassification as described in Section 2.2 and that of role access as described in Section
2.3. For example, a utility method named invokeMethod in class Dynamic searches a
role o' for an invoked method. The utility method will be explained in Section 4.5.

EXTENDING THE JAVA LANGUAGE WITH DYNAMIC CLASSIFICATION

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

4 A PROTOTYPICAL IMPLEMENTATION

The prototypical implementation of the proposed dynamic classification mechanism
consists of classes RoleProcessor, Dynamic, and several other classes. The main
method of class RoleProcessor translates dynamic classification declarations and
expressions that appear in a program. Class Dynamic is used to support the execution of
the source code generated by class RoleProcessor. We expect the functionality of
class RoleProcessor to be incorporated into the Java compiler, class Dynamic to be
included in the Java standard library. Thus, the dynamic classification mechanism
becomes an integrated part of the Java language.

The main method of class RoleProcessor translates the source code files of a
program that apply the dynamic classification feature to Java code files. For example,
assume a program is composed of source code files Employee.txt, Student.txt,
and Experiment.java. Only the first two files include DCDs and dynamic
classification expressions. The command

java RoleProcessor Employee.txt Student.txt

invokes class RoleProcessor to translate files Student.txt and Employee.txt
to Java code files Student.java and Employee.java. The Java compiler can
compile each of the three Java code files of the program. The main method defined in
class Experiment can be executed by command

java Experiment

which invokes a method defined in class Student that applies dynamic classification
and, hence, triggers loading class Dynamic by the Java virtual machine.

Source code files and compiled class files of the prototypical implementation of the
dynamic classification feature for the Java language and sample files Student.txt,
Employee.txt, and Experiment.java can be found at [Li 2003]. The prototypical
implementation is detailed as follows.

4.1 Class Definition
In a Java class definition, an implements-clause introduces superinterfaces for the class.
For simplicity of class RoleProcessor, we assume a user-defined class does not
include implements-clause. A source code file may define several classes. We allow
DCDs to be placed anywhere outside class definitions in a source code file. A DCD in the
form of a dynamic-clause can be inserted between the head and body of any user-defined
class.

For simplicity of class RoleProcessor, we assume the body of a user-defined
class consists of variable declarations and method definitions. A variable declaration is
in the form

<modifiers> <type> <varName> ;

A PROTOTYPICAL IMPLEMENTATION

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 113

which has no initialization clause and which is terminated with a semicolon. In the above
grammar rule, non-terminal <modifiers> denotes a series of modifiers, which may
include a visibility keyword such as public, private, or protected and keyword
static. To facilitate access to the declared variables in a role by invoking the Java
reflection feature, we assume the visibility of the variables is public. The restriction
can be removed by an implementation of the dynamic classification mechanism since the
Java reflection can be extended to reflect non-public inherited fields.

A method definition in a Java program is in the form
<modifiers> [<returnType>] <methodName> (<parameters>) {
 { <statement> }*
}

If a method definition does not specify a return type, it defines a constructor and the
method name denoted with non-terminal <methodName> is same as the class name. In
Java, a constructor is not inherited by subclass. Non-terminal <parameters> denotes a
series of parameter declarations, each of which consists of a type name and a parameter
name. For simplicity, we assume the type name is either double or a class name so that
class RoleProcessor does not have to handle array parameters.

In the Java virtual machine [Lindholm and Yellin 1999, Section 7.6], n arguments
passed by a method invocation expression are received in the local variables numbered 1
through n in the frame created for the method invocation. Local variables declared in the
method body are also implemented with local variables in the frame. A method body may
use parameters as local variables. Without loss of generality, we assume a method body
in a user-defined class does not declare any local variable.

4.2 DCDs and Symbol Table

Class RoleProcessor collects variables and method signatures of user-defined classes
of a program. It also collects DCAs from the source code files of the program. The first
activity of the class RoleProcessor is a normal function of the Java compiler. The
second activity for handling DCDs can be added to the Java compiler. Class
RoleProcessor uses static fields inheritTable, symbolTable, and DCAs to
collect inheritance, symbols (variables and method signatures), and DCAs declared in
user-defined source code files. We explain the three data structures as follows.

Data structure inheritTable is implemented in class RoleProcessor with a
hash table. It stores the name of a user-defined class as a key and the superclass declared
in the class definition as the value. We assume that a declared superclass that is not a
user-defined class is in package java.lang. This assumption can be extended to other
packages easily. Note that a user-defined class has class java.lang.Object as its
default superclass.

Data structure symbolTable is a hash table with user-defined class names as keys.
For each user-defined class ownerClass, we put key ownerClass and a hash table

EXTENDING THE JAVA LANGUAGE WITH DYNAMIC CLASSIFICATION

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

table as the value into hash table symbolTable. If class ownerClass defines a
field v or inherits field v from a user-defined class, we put field name v as key and the
declared type T of v as the value into hash table table. If class ownerClass defines a
method m or inherits method m from a user-defined class, we put method name m as a key
and a vector object signatures as the value into the hash table table. We collect the
signatures of methods with name m that are defined in class ownerClass or inherited
by class ownerClass from a user-defined class into vector signatures. Hash table
inheritTable is used in deciding fields and methods inherited from user-defined
classes. It will not be used by class Dynamic at runtime.

Data structure DCAs is a hash table that uses a dynamic parent D1 as a key and a hash
table labelChilds as the value. It takes the advantage of the constraint that a dynamic
parent D1 and a label l uniquely determine a dynamic child D2. For each DCA 〈D1, l, D2〉
declared in a program, key l and value D2 are saved in the hash table labelChilds,
which is the value for key D1 in hash table DCAs.

4.3 Field and Method Resolution at Compilation Time

For an expression that accesses a field fieldName or invokes a method methodName
of an object o1, the Java compiler can decide whether (the type of) object o1 has the field
or method. Class RoleProcessor depends on the same decision to determine whether
the field or method should be searched for in the roles of o1. The fields and methods of
user-defined classes can be reflected only after the classes are compiled by the Java
compiler and loaded by the Java virtual machine. They cannot be reflected at compilation
time. In the class RoleProcessor, static methods searchField(objType,
fieldName) and searchMethod(objType, methodName, argTypes) decide
whether a user-defined class objType defines or inherits field fieldName or method
methodName. The method searchMethod compares the argument types kept in array
argTypes with parameter types of the methods of class objType. The methods
searchField and searchMethod are explained as follows. Details such as
exception handling and utility method invocations are omitted for easy understanding.

Method invocation searchField(objType, fieldName) returns the name of
the type of the field fieldName that is declared or inherited by a user-defined class
objType if objType defines or inherits the field; otherwise, it returns null. It
implements the following algorithm, which is explained shortly.

Hashtable table = (Hashtable) symbolTable.get(objType);
if (table.containsKey(fieldName))

return (String) table.get(fieldName);
String superclass = objType;
while (inheritTable.containsKey(superclass))

superclass = (String) inheritTable.get(superclass);
if (symbolTable.containsKey(superclass))

superclass = "java.lang.Object";

A PROTOTYPICAL IMPLEMENTATION

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 115

else
if (superclass.indexOf('.') == -1)
 superclass = "java.lang." + superclass;

return Class.forName(superclass).
getField(fieldName).getType().getName();

The hash table symbolTable contains the name objType of each user-defined
class as a key and a hash table table as the value for the key. The hash table table
contains each field fieldName defined or inherited from a user-defined class by class
objType as a key and the declared type of the field as the value. In the above algorithm,
the first two statements resolve fieldName by accessing hash table table. If symbol
fieldName cannot be resolved, the algorithm accesses hash table inheritTable to
find the first superclass superclass that has no entry in the hash table
inheritTable. If the class superclass has an entry in hash table symbolTable,
it is a user-defined class and it has the default superclass java.lang.Object;
otherwise, the class superclass is a standard Java class. In the latter case, if the class
name superclass does not include a package name, the algorithm adds the prefix
java.lang. to the class name. The last statement in the algorithm applies the Java
reflection feature to retrieve the declared type of field fieldName of the standard Java
class superclass. The method searchField returns null when it cannot resolve
fieldName by applying the above algorithm.

The static method searchMethod(objType, methodName, argTypes) of
class RoleProcessor uses an algorithm similar to the above one to decide whether a
user-defined class objType defines or inherits a method methodName such that the
method parameters can be replaced by arguments of types argTypes. It returns the
return type of the method if class objType defines or inherits the method; otherwise, it
returns null.

4.4 Statements
As indicated in Section 4.1, a method body is a series of statements enclosed within a pair
of braces {}. Class RoleProcessor recognizes the following kinds of statement.
Other statements can be handled similarly.

<assignment> ::= <lvalue> = <rvalue> ;
<methodInvocation> ::= <varMethodName> (<arguments>);
<assiMethodInvocation> ::= <lvalue> = <methodInvocation>
<new> ::= [<lvalue> =] new <className> ([<arguments>]);
<newChild> ::= [<lvalue> =] <lvalue> newChild

 (<className> , <label>, <className>, <className>); |
 [<lvalue> =] <lvalue> newChild

 (<className> , <label>); |
[<lvalue> =] <lvalue> newChild (<label>);

<removeAll> ::= <lvalue> removeAll ;

EXTENDING THE JAVA LANGUAGE WITH DYNAMIC CLASSIFICATION

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

<removeSelf> ::= <lvalue> removeSelf ;
<removeChild> ::= <lvalue> removeChild (<className> ,

 <label>);
<parent> ::= <lvalue> parent ;
<child> ::= <lvalue> child (<className> , <label>);
<return> ::= return [<rvalue>] ;

For simplicity of class RoleProcessor, we assume non-terminal <lvalue> in
the above grammar rules denotes expressions in three forms:

<lvalue> ::= <identifier> | this . <varName> |
<identifier> . <varName>

An <lvalue> expression that consists of more than two identifiers can be handled
similarly. An identifier denoted by non-terminal <identifier> in the above rule can
be a parameter or (instance or static) variable. Non-terminal <varName> denotes a
(instance or static) variable. Keyword this references an object for which the method
that includes the <lvalue> expression is invoked. Each <lvalue> expression denotes
either a parameter or a (instance or static) field. It simulates the Java compiler to evaluate
a type for each <lvalue>. We explain the type evaluation by class RoleProcessor
as follows.

Assume an <lvalue> appeared in method m of user-defined class ownerClass.
If the <lvalue> consists of a single identifier d, d must be a parameter or a field
defined or inherited by class ownerClass. If the <lvalue> is this.v, identifier v
must be a variable defined or inherited by class ownerClass. If the <lvalue> is
d.v, the identifier d must be a parameter or a field defined or inherited by class
ownerClass and, therefore, class RoleProcessor can evaluate a type D from
identifier d. Then, class RoleProcessor searches for field v in the class or interface
D. The search for field d or v in a class or interface invokes the method searchField,
which was described in Section 4.3. Class RoleProcessor does not change any
<lvalue> expression, which will be compiled by the Java compiler to an operand of a
Java virtual machine instruction for storing a value or reference into the parameter or
field denoted by the <lvalue> expression.

For simplicity of class RoleProcessor, we assume an <rvalue> expression in
a statement is a double value, a string constant, or an expression in one of the three
<lvalue> forms. Assume an <rvalue> that is in an <lvalue> form. Like handling
an <lvalue>, class RoleProcessor tries to evaluate a type for the <rvalue> at
compilation time. If it can evaluate a type, class RoleProcessor does not modify the
<rvalue> expression and the expression will be compiled by the Java compiler to an
operand of a Java virtual machine instruction, which retrieves a value from the parameter
or field denoted by the <rvalue>. Otherwise, class RoleProcessor invokes class
Dynamic at runtime to access parent-child links for retrieving a field in a role.

A PROTOTYPICAL IMPLEMENTATION

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 117

For example, assume the type GraduateStudent of parameter tom does not
define or inherit field salary. The <rvalue> expression tom.salary is translated
by class RoleProcessor to method invocation expression Dynamic.Dynamic-
Field(tom, "salary"), which invokes the method dynamicField of class
Dynamic. Method dynamicField searches for field salary in a role of object tom.
The search performed at runtime follows parent-child links in a breadth-first manner. It is
described in the next subsection.

In the grammar rule for a <new> statement, non-terminal <arguments> denotes a
series of <rvalue> expressions, which are separated with comma ,. The class
RoleProcessor processes each argument in a way described above. It also generates
Java source code that uses an array to hold the argument values and that invokes the
constructor mentioned in the <new> statement with the array elements as arguments.
Thus, an object is created.

In the grammar rule for non-terminal <methodInvocation>, the non-terminal
<varMethodName> denotes an expression in one of the three forms:

<varMethodName> ::= <methodName> | this . <methodName> |
<identifier> . <methodName>

Non-terminal symbol <methodName> denotes the name of an instance or static method,
<identifier> denotes a parameter or field. Non-terminal <methodInvocation>
denotes a method invocation in one of three forms: methodName(a1, …, ak),
this.methodName(a1, …, ak), and d.methodName(a1, …, ak) with k ≥ 0.
We explain how the static method invokeMethod of class RoleProcessor handles
the three method invocation expressions as follows. We assume the method invocation
expressions appear in the definition of class ownerClass.

First, method invokeMethod decides whether all the <rvalue> expressions
a1, …, ak can be evaluated without invoking the dynamic classification mechanism.
Suppose the answer is positive. If the method invocation expression is in the form
methodName(a1, …, ak), method invokeMethod searches the invoked method
methodName in class ownerClass. If class ownerClass defines or inherits an
instance or static method that can be invoked with the expression, the method
invokeMethod does not translate the expression; otherwise, the method invocation
expression is prefixed with string "this." and, thus, method invokeMethod needs
to handle only the last two forms of method invocation expression. For the last two
forms, method invokeMethod evaluates a type varType for keyword this or
identifier d and, then, searches methodName in the class or interface varType with
the types of arguments a1, …, ak. If both the evaluation and search succeed, the method
invokeMethod does not translate the statement. Otherwise, method invokeMethod
generates Java source code that will

IM1 Create array arguments for holding argument values;
IM2 Evaluate each argument and stores the argument value into array arguments;

EXTENDING THE JAVA LANGUAGE WITH DYNAMIC CLASSIFICATION

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

IM3 Invoke static method invokeMethod of class Dynamic.

At runtime, the method invokeMethod of class Dynamic searches methodName in
roles and will be explained in the following subsection. For example, assume class
GraduateStudent does not define method setSalary. Method invokeMethod
of class RoleProcessor translates the statement

tom.setSalary(2000);

for a graduate student object tom to Java source code
Object[] arguments = new Object[1];
arguments[0] = new Double(2000.0);
Dynamic.invokeMethod(tom, "setSalary", arguments);

which invokes the static method invokeMethod of class Dynamic at runtime to
search for a role of object tom that can execute expression setSalary(2000).

Other kinds of statements for dynamic classification use keywords to identify the
intended operational semantics. Their executions depend on the dynamic classification
mechanism. They are translated to expressions that invoke proper static methods of class
Dynamic. For instance, class RoleProcessor translates expression o1 child(D,
l) to expression Dynamic.child(o1, D, l). The static method child of class
Dynamic accesses hash table dynamicLinks at runtime to find a child o2 that is
linked from parent o1 through a DCA 〈D, l, D'〉.

4.5 Class Dynamic
At runtime, class Dynamic uses hash tables DCAs and dynamicLinks to hold DCAs
declared in a program and parent-child links created during the program execution. It
defines static methods invoked by source code generated by class RoleProcessor.
Particularly, static methods dynamicField and invokeMethod of class Dynamic
access field or invoke method of a role, static methods addLink, removeAll,
removeSelf, and removeChild manage hash table dynamicLinks, and static
methods parent and child access the hash table dynamicLinks. We use method
invokeMethod to illustrate how class Dynamic supports dynamic classification.

The method invokeMethod(obj, methodName, arguments) of class
Dynamic starts a breadth-first search for a role, starting from the given object or role
obj, that defines a method methodName that can be invoked with arguments in array
arguments. The argument types are stored in an array argTypes. The breadth-first
search uses a hash set roleSet to keep object obj and its roles to be searched for.
During the search, if a role role defines a method meth whose name is methodName
and whose parameter types are supertypes of argument types, the method meth is placed
into hash set candidateMethods and role is placed into hash set
candidateRoles; otherwise, the child roles of role are placed into hash set
childRoles. After the roles in roleSet are examined, if set childRoles is not

A PROTOTYPICAL IMPLEMENTATION

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 119

empty, set childRoles is assigned to roleSet so that the breadth-first search can
examine roles at the next level. After the breadth-first search is completed, if set
candidateRoles contains only one role r and set candidateMethods contains
only one method m, the invokeMethod method invokes the Java reflection to execute
method m for object r.

5 CONCLUSION

A dynamic classification mechanism is proposed for the Java language. It supports
programmers to code dynamic classification, which allows objects and roles at runtime to
take on new roles and drop the roles. Thus, data members and functions of new roles can
be introduced to existing objects and roles dynamically. The proposed mechanism allows
a programmer to declare any class, standard or user-defined, as a dynamic parent and as a
dynamic child. Thus, standard classes can also be used to create and take roles. Roles are
implemented as objects, which are linked to objects or other roles through DCAs.

The prototypical implementation shows that the dynamic classification mechanism
can be added to the Java language without changing the Java virtual machine
specification. Dynamic classification declarations and expressions can be translated by
the extended Java compiler to Java source code. At runtime, a standard class Dynamic
can be used to support dynamic classification operations.

REFERENCES

[Albano00] A. Albano, G. Antognoni, and G. Ghelli. “View Operations on Objects with
Roles for a Statically Typed Database Language”. IEEE Transactions on Knowledge
and Data Engineering, Vol. 12, July/August 2000, 548-567.

[Arnold00] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language–
Third Edition. Addison-Wesley, Reading, Mass., 2000.

[Bachman77] C.W. Bachman and M. Daya. “The role concept in data models”. In
Proceedings of Third International Conference on Very Large Data Bases
(VLDB’77), pp. 464-476, Tokyo, Japan, October 1977.

[Bäumer00] D. Bäumer, D. Riehle, W. Siberski, and M. Wulf. “Chapter 2 Role Object”.
In book Pattern Languages of Program Design 4, editors N. Harrison, B. Foote, and
H. Rohnert, Addison-Wesley, Reading, Mass., 2000.

[Drossopoulou02] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini:
“More dynamic object reclassification: FickleII”. ACM Transactions on
Programming Languages and Systems, 24(2): 153-191, March 2002.

EXTENDING THE JAVA LANGUAGE WITH DYNAMIC CLASSIFICATION

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

[Fowler97] M. Fowler. “Dealing with Roles”. In Proceedings of the 4th Annual
Conference on the Pattern Languages of Programs, Monticello, Illinois, USA,
September 1997. http://www.martinfowler.com/apsupp/roles.pdf.

[Ghelli99] G. Ghelli and D. Palmerini. “Foundations for extensible objects with roles”. In
Proceedings of 6th Workshop on Foundations of Object-Oriented Languages (FOOL
6), San Antonio, Texas, 1999.

[Gottlob96] G. Gottlob, M. Schrefl, and B. Röck. “Extending object-oriented systems
with roles”. ACM Transactions on Information Systems, Vol. 14, July 1996, 268-296.

[Kristensen97] B.B. Kristensen. “Subject composition by roles”. In OOIS'97, Brisbane,
Australia, 1997.

[Li03] L. Li. A prototypical implementation of dynamic classification,
http://www.uwindsor.ca/liwu/.

[Lindholm99] T. Lindholm and F. Yellin. The Java Virtual Machine Specification,
Second Edition. Sun Microsystems, Inc., 1999.

[Richardson91] J. Richardson and P. Schwarz. Aspects: “Extending objects to support
multiple, independent roles”. In ACM SIGMOD Conference, pages 298-307, New
York, 1991.

[Rossie95] J. G. Rossie Jr. and D. P. Friedman. “An algebraic semantics of roles”. In
OOPSLA'95, pages 187-199, Austin, Texas, October 1995.

[Rossie96] J. G. Rossie Jr., D. P. Friedman, and M. Wand. “Modeling role-based
inheritance”. In ECOOP'96, pages 248-274, Linz, Austria, July 1996.

[Sciore89] E. Sciore. “Object specializations”. ACM Transactions on Information
Systems, Vol. 7, 1989(April), 103-122.

[VanHilst96] M. VanHilst and D. Notkin, “Using role components to implement
collaboration-based designs”. In OOPSLA'96, pp. 359-369, San Jose, CA, October
1996.

[Wieringa94] R. Wieringa, W. de Jonge, and P. Spruit. “Roles and dynamic subclasses: a
modal logic approach”. In ECOOP'94, pp. 32-59. 1994.

About the author
Dr. Liwu Li is an associate professor in School of Computer Science at
University of Windsor, Canada. His research interests include objectoriented
language design and implementation and software process design and
execution. He can be reached at liwu@uwindsor.ca.

http://www.martinfowler.com/apsupp/roles.pdf
http://www.uwindsor.ca/liwu/
mailto:liwu@uwindsor.ca

