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Violations of atomicity are possible sources of errors in parallel programs. A violation
occurs if the effect of a method depends on the execution of concurrent threads that
operate on the same shared data. Such unwanted thread interference can occur even
if access to shared data is ordered through synchronization, hence common techniques
for data race detection are not able to find such errors.
We have developed a static analysis that infers atomicity constraints and identifies
potential violations. The analysis is based on an abstract model of threads and data.
A symbolic execution tracks object locking and access and provides information that
is finally used to determine potential violations of atomicity. We provide a detailed
evaluation of our algorithm for several Java programs. Although the algorithm does
not guarantee to find all violations of atomicity, our experience shows that the method
is efficient and effective in determining several known synchronization problems in a
number of applications and the Java library. The problem of overreporting that is
commonly encountered due to conservatism in static analyses is moderate.

1 INTRODUCTION

The use of locks and access to shared data in parallel programs entail the risk of
errors that are not known in sequential programming and one possible source of
such errors are violations of atomicity. A violation occurs if the effect of a method
depends on the progress of concurrent threads that operate on the same shared data.
Such a scenario is possible even if shared data are protected through synchronization
and access is ordered (i.e., there is no data race).

Atomicity is commonly understood as a property of statements and methods.
Hence the search for violations of atomicity typically investigates the structure of
statements and the interleaving of threads. Flanagan and Qadeer [5, 4], e.g., have
developed a type system that verifies the atomicity of methods. The type checker
associates atomicities with statements and combines these atomicities based on Lip-
ton’s theory of left and right movers [8] to obtain atomicity information for state-
ment groups and methods. This approach requires explicit information about the
synchronization discipline and lock protection of shared variables that are typically
provided by program annotations.
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The goal of this work is to provide a fully automated whole program analysis that
detects methods that may not execute atomically and identifies the data structures
and calling contexts that lead to the violation. We assume that programs are free
from data races and that access to shared data is ordered through monitor-style
synchronization.

A common observation in programs that exhibit high-level data races or atomic-
ity violations is that shared data is accessed with incoherent synchronization: Con-
sider the example of a bank account in Program 1: method update is invoked by
several concurrent Update threads. The shared variable balance is accessed under
common lock protection and hence there is no data race. The structure of locking
specifies that the lock associated with the Account instance protects either a read
or a write of field balance. Method update applies this synchronization discipline,
however it performs a read and a write and hence is not atomic.

Program 1: Class Account with non-atomic update method.

class Account {
int balance;

synchronized int read() {
return balance;

}

void update(int a) {
int tmp = read();
synchronized(this) {

balance = tmp + a;
}

}
}

class Update extends Thread {
static Account acc;

static void main(String args[]) {
a = new Account();
new Update().start();
new Update().start();

}

void run() {
acc.update(123);

}
}

The example illustrates a common pattern of software defects where a thread first
queries the state of some shared data structure and then relies on this information
during the further execution while being oblivious to the fact that other concurrent
threads could have changed the data structure in the meantime. Such faults are
subsumed under the term atomicity violations.
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Our analysis is based on an abstract model of threads and data. A symbolic
execution tracks object locking and access, and provides information about the syn-
chronization discipline that is finally used to determine synchronization defects.
This algorithm is neither sound, i.e., there can be underreporting, nor complete,
i.e., there can be overreporting. However, the algorithm detects all cases where one
thread reads a shared variable under lock protection that may consequently be mod-
ified by concurrent threads (hence the result of the read might become stale). Our
experience shows that this scenario covers most cases of atomicity violations that
have been reported earlier [5, 4, 14] and that overreporting is moderate (Section 4).

2 METHOD CONSISTENCY

Similar to view consistency [1], method consistency specifies an access discipline
for shared variables. Method consistency accommodates the method scope as con-
sistency criterion, i.e., a violation of method consistency indicates a violation of
atomicity at the method level. In some cases, such violations are undesirable and
represent software faults. The rationale of method consistency is to conjecture
atomic treatment for a set of shared variables that are accessed in the (dynamic)
scope of a method (method view). The execution of a method is atomic if there are
no concurrent updates of variables in its method view.

Definition (lock view). A lock view is a set of 〈variable, access〉 pairs that model
the accessed variables and the kind of access performed by a thread t in the dynamic
scope of a lock. access specifies if the variable is read (r), or updated (u), i.e., written
or read and written. There is one entry per variable. The set of lock views of a
thread t is specified as Lt = {l0, ...ln}.

Example (lock view). In Program 1, lock views correspond to the fields accessed
inside the synchronized method read and the synchronized block in method update:
LUpdate = {lread, l<syncblock>} = {{〈balance, r〉}, {〈balance, u〉}}.

Definition (method view). A method view models the conjecture about sets
of variables that should be treated atomically. There is one method view mi for
each method i. A method view contains two entries per accessed variable, namely
a read and an update entry (there are always both entries, irrespective the kind
of access performed by the method). The set of method views of a thread t is
Mt = {m0, ...,mn}.
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Figure 1: Illustration of method consistency.

Example (method view). In the example, the method views
for the Update threads are1 MUpdate = {mrun, mupdate} where
mrun = {〈balance, r〉, 〈balance, u〉, 〈acc, r〉, 〈acc, u〉} and mupdate =
{〈balance, r〉, 〈balance, u〉}.

Definition (method consistency). We need two concepts to define method con-
sistency:

• View overlap. Two views vi and vj overlap if their intersection is not empty,
i.e., vi ∩ vj 6= ∅.

• Chain property. A set of views {v0, . . . , vn} forms a chain with respect to a
view v, if the set contains only a single element or for all pairs of non-empty
views wi = v ∩ vi, wj = v ∩ vj, where at least one vi,j originates from a thread
that is concurrent to the originating thread of v, holds (wi ⊆ wj)∨ (wj ⊆ wi).

Method consistency is given if, for all method views, the overlapping lock views form
a chain. The concept of overlap serves to filter out irrelevant variables. The chain
property detects lock usage scenarios that are susceptible to atomicity violations:
E.g., a lock protects reads or updates of one variable or a lock protects different but
overlapping sets of variables (see high-level data races [1]). If method consistency is
violated, a potential violation of atomicity is detected.

Figure 1 illustrates the definition of method consistency using a method view v,
lock views w0, w1, w2, and a number of events that stand for runtime occurrences of
read and write access to shared objects. In part (a) of the figure the lock views form
a chain, i.e., they are nested. Part (b) shows a scenario where the lock views do not
form a chain (w1 and w2 are not nested), hence method consistency is violated.

1We omit the method view for read because this method does not execute subordinate locking
and does not call java.lang.Object::wait; provided that shared data access is synchronized
through monitors, this method is not a candidate for an atomicity violation (details in Section 3.3).
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Figure 2: Method views and lock views for Program 1.

Example (method consistency). In Program 1, there are concurrent threads
tUpdate with a method view mupdate = {〈balance, r〉, 〈balance, u〉}}. All lock views
in LUpdate = {lread, l<syncblock>} overlap with mrun and mupdate but do not form a
chain; hence method consistency is violated for methods run and update. Figure 2
illustrates this situation.

Program 2: Class Account with atomic update method.

class Account {
int balance;

synchronized int read() {
return balance;

}

synchronized void update(int a) {
int tmp = read();
balance = tmp + a;

}
}

Program 2 shows the corrected implementation of class Account where method
update is atomic. If this implementation is used in the context of the Update threads
in Program 1, method consistency exists: There is a single lock view in this pro-
gram corresponding to method update, i.e., LUpdate = {lupdate} = {{〈balance, u〉}};
method read is only called in the scope of update, hence locking is reentrant in this
invocation context of read and the analysis does not register a lock view for method
read. The single lock view in LUpdate overlaps with the method view mupdate and,
as there is only a single lock view, trivially forms a chain. Figure 3 illustrates this
situation.

While method consistency is a property defined on a program execution (method
and lock views contain field accesses), we describe in Section 3 how potential viola-
tions of method consistency can be determined by a static analysis.
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Figure 3: Method views and lock views for Program 1 with modified Account class
(Program 2).

3 STATIC ANALYSIS

The static detection of atomicity violations is based on a whole program analysis
that is done in three steps. First, an abstract model of threads and heap data
is computed (Section 3.1). Then a symbolic execution of abstract threads infers
information about locking and object access (Section 3.2). The two initial steps
correspond to a more general analysis framework for multi-threaded Java programs
that we describe in [13]; [13] reports how this general analysis framework is used
for static data race detection. The target of the paper at hand is the detection of
atomicity violations, which is done in the third step of the overall procedure: claims
of atomicity are established and validated or refuted (Section 3.3).

3.1 Modeling threads and data

In multi-threaded Java programs threads correspond to the execution of the
main method and the run methods of objects that implement the interface
java.lang.Runnable. A compiler can determine abstract threads based on the allo-
cation sites of java.lang.Thread objects; the call graph of such threads is rooted at
the run method of the thread object or an associated java.lang.Runnable object.
In many cases, a compiler cannot determine the actual number of runtime instances
that originate at a thread allocation site; in this case, conservative assumptions are
made and multiple concurrent runtime threads are assumed.

Java employs a simple memory model: Objects are allocated on a global heap
and object access is possible only through references issued at object creation time.
This model facilitates the approximation of the runtime object structure in a heap
shape graph (HSG) [9] at compile time. Nodes in the HSG denote abstract objects
and represent a class, an individual runtime instance, or several instances that are
aliased. Edges represent points-to relations introduced through reference fields. The
result of the shape analysis is the HSG which is a set of graphs rooted at class or
thread nodes. The HSG models all data that are accessible to different threads and
hence are candidates for unwanted thread interference. The data model of the HSG
is flow-insensitive, i.e., it approximates the runtime situation at any program point;
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flow-insensitivity facilitates the analysis of multi-threaded programs.

3.2 Symbolic execution

This section gives a brief overview on the symbolic execution that computes approx-
imations of method views and lock views (Section 2) at compile-time. Details and
optimizations are discussed in [13].

The symbolic execution analyzes individual instructions along the call structure
of an abstract thread; each abstract thread is treated separately. The analysis is
context-sensitive, i.e., before the analysis branches into a method invocation, the
object context in which the called method operates is determined: For each local
reference variable in the callee, the abstract object to which it refers to is determined.
Hence object access during the symbolic execution can be matched with its abstract
target, i.e., a node in the HSG. A single traversal of loops and recursion is sufficient
to track access to abstract objects because each iteration would access the same set
of abstract objects.

The structure of locking in Java allows the compiler to track abstract objects
that are locked along the execution path on a stack. At object access sites, e.g., get-
field, putfield bytecodes, information about the locked abstract objects, the accessed
abstract object, and the accessed field are available. Hence views can be recorded
similarly to the runtime procedure in [1]. In contrast to (runtime) views, the static
analysis computes abstract views with respect to locked abstract objects; in particu-
lar, it is sufficient to record only access to objects that are potentially shared. In our
current implementation, The same field in different abstract objects is considered as
the same variable (field-based analysis [15]). A more precise variable disambiguation
would be possible, however there are several reasons that justify the simpler variant
we present here:

• The abstraction errs on the conservative side because access events that may
target the same instance at runtime target the same variable abstraction in
the static analysis (one abstract object per class).

• In the programs at hand, most of the shared abstract objects are accessed by
the same code in equivalent contexts, i.e., the lock and method views would be
the same for different instances. Hence the overreporting introduced through
the omission of the heap context information is minor.

• The implementation of the consistency checker and the reporting are simpli-
fied.

The analysis does not register lock views for lock operations that are found to be
reentrant, i.e., an acquire operation on a lock that is already taken is ignored.
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3.3 Detecting atomicity violations

Figure 4 shows the algorithm that determines potential violations of method consis-
tency. The procedure is based on abstract views and checks the criteria described in
Section 2 (overlap, chain). Input to the algorithm are sets of method views and lock
views M and L that have been determined during the symbolic execution; access
to final, volatile, and read-only fields is omitted from the views. The result of the
algorithm is the set of violation reports R. The auxiliary functions meth, class ,
and thread take a view as argument and return the method (if view corresponds to
a method), the class (views are partitioned according the affiliation of fields with
classes, see below), and the thread that exhibits the view.

The algorithm operates along three phases:

1. Views are reduced and partitioned to limit the scope of search for subsequent
phases: Fields that are shared read-only (heuristic used here: fields that are
only assigned through this in the constructor) cannot bear interference in
the form of atomicity violations. In addition, views of methods that do not
execute synchronization actions in their dynamic scope are pruned from M
because they are atomic, provided that the program is free from data races.
Method partition views partitions views according to the affiliation of fields
with classes. This means that the overlap and chain properties are determined
only among field variables that belong to the same class. This strategy is jus-
tified because object-oriented design typically imposes consistency constraints
on variables of the same class; moreover, spurious reports due to a violations
of the chain property for unrelated variables are omitted. We have not encoun-
tered a real synchronization defect that is overlooked due to this partitioning
of views.

2. Method consistency is assessed among the method and lock views according
to the overlap and chain criteria. Method overlap(u, L) returns a set of views
form L that overlap with the view u. Method check chain returns a set of
potentially interfering lock views ilv ⊆ L that violate the chain property with
respect to a method view u.

3. The reporting is aggregated in the third phase of the algorithm. Assume some
method m is found to violate method consistency; naturally, all callers of m
will also violate method consistency. Hence, for a specific violation; only the
lowermost method in the caller hierarchy is reported.

A report of a potential violation of method consistency specifies the following infor-
mation:

• meth: the method that exhibits the critical method view u.

• fields : the field in the critical method view u.
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M = 〈all method views〉;
L = 〈all lock views〉;
R = ∅;

method consistency analysis()

/∗ phase 1: narrow views ∗/
readonly fields = {f : 6 ∃u ∈ L : 〈f, u〉 ∈ u};
∀u ∈ L ∪ M :

if (〈f, 〉 ∈ u ∧ f ∈ readonly fields)
u = u− {〈f, u〉, 〈f, r〉};

∀u ∈ M :
if (meth(u) does not have subordinate locking)

M = M − {u};
partition views();

/∗ phase 2: assess method consistency ∗/
∀u ∈ M :

olv = overlap(u, L);
ilv = check chain(olv , thread(u));
if (ilv 6= ∅)

R = R ∪ {new Report(meth(u), class(u), u, ilv)};

/∗ phase 3: aggregate reporting ∗/
∀r ∈ R:

if (∃s ∈ R − {r} : s.fields = r.fields ∧
s.meth is above r.meth in the caller hierarchy)

R = R − {s};

Figure 4: Algorithm for determining violations of method consistency.
.
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• class : the class to which the fields in the method view u belong to.

• olv : set of lock views {l0, ...ln} that overlap with the method view of m but
do not form a chain.

Method consistency is designed as an extension of view consistency [1]. For lan-
guages like Java, where synchronization is used frequently at method boundaries,
violations of view consistency imply violations of method consistency. Wang and
Stoller [14] note that view consistency and the absence of atomicity violations are
incomparable. The same holds true for method consistency: Our procedure to de-
termine violations of atomicity at the method level is unsound and incomplete [3].

An example for the unsoundness of our algorithm, i.e., an atomicity violation
that is not detected, is given in Program 3. Although there is only a single lock
view linc that overlaps with the method view mrun (see Figure 5), and hence the
chain property is trivially satisfied, the sequence of updates in the run method is
not atomic and does not necessarily double the counter value.

Program 3: Example of underreporting.

class Counter {
int i;

synchronized int inc(int a) {
i += a;
return i;

}
}

class Main extends Thread {
static Counter c;

static void main(String args[]) {
c = new Counter();
new Main().start();
new Main().start();

}

void run() {
int i = c.inc(0);
c.inc(i);

}
}

Program 4 illustrates an example for the incompleteness of our algorithm, i.e., a
report that does not correspond to a violation of atomicity: The lock views linit and
lget do not form a chain (lock protects reads or updates), hence method consistency
is violated (see Figure 6). However, the initialization of the map happens only once
and the effect of method run is the same regardless of the thread interleaving. The
general reason for this imprecision is that our analysis assumes that all control flow
paths are feasible for all threads (which is does not hold for the example at hand).
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Figure 5: Method view and lock view for Program 3.

So far, the conceptual capabilities of method consistency have been discussed.
Additional imprecision is added through the fact that static analysis relies in many
cases on a conservative approximation of the runtime situation. Abstract views
might subsume a larger number of variables than actual runtime views due to in-
feasible control-flows or the inability of the static analysis to differentiate access to
field variables of different instances. The approximation of the static analysis to
distinguish different object instances and to determine thread interference and data
sharing can lead to reports that do not correspond to real violations of atomicity –
hence a potential source of overreporting.

4 EXPERIENCE

We have implemented the static analysis in a way-ahead Java compiler and use the
GNU Java library [6] (version 2.96).

First, we verify if our analysis is able to detect known violations of atomicity
that correspond to synchronization defects. Our system determines atomicity vio-
lations that correspond to the scenarios of the Account, java.lang.StringBuffer,
and java.io.PrintWriter classes in [4]. Moreover, non atomicity in the
use of iterators for common collection classes like java.util.Vector and
java.util.Hashtable that are discussed in [14] are detected. These classes
provide explicit means to determine actual violations of atomicity at runtime
(java.util.ConcurrentModificationException). We have also successfully
checked several scenarios with high-level data races, e.g., the Coordinate exam-
ple in [1].

Second, we look at several benchmark and application programs and determine
potential violations of atomicity at the application scope: philo is a simple dining
philosopher application, elevator a real-time discrete event simulation; mtrt is a
multi-threaded raytracer [11], tsp a traveling salesman application, hedc a web meta-
crawler [12], specjbb [10] an e-commerce benchmark, and jigsaw an open source web-
server (version 1.0alpha5) [16]. All other programs stem from the multi-threaded
Java Grande Benchmark suite [7].

I/O facilities are often shared among threads and interaction sequences of in-
dividual threads are usually not atomic. We omit this common case and do not
report violations of method consistency related to I/O library classes. Moreover,
our current implementation does not account for array access and hence atomicity
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Program 4: Example of overreporting.

class Map {
Object[] keys, values;
boolean volatile init_done = false;

void init() {
if (!init_done)

synchronized (this) {
if (!init_done) {

init_done = true;
// update keys and values

}
}

}

synchronized Object get(...) {
// read keys and values
return ...;

}
}

class MapClient extends Thread {
static Map m;

static void main(String args[]) {
m = new Map();
new MapClient().start();
new MapClient().start();

}

void run() {
m.init(); // lazy initialization
o = m.get(...);
...

}
}

violations that are due to thread interference on shared arrays are not reported.

Our implementation partitions views according to the affiliation of fields with
classes. This means that the overlap and chain properties are determined only among
field variables that belong to the same class. This strategy is justified because object-
oriented design typically imposes consistency constraints on variables of the same
class; moreover, violations of the chain property for unrelated variables are omitted.
We have not encountered a real synchronization defect that is overlooked due to the
partitioning of views.

Access that occurs during object initialization cannot participate in inter-thread
interference that leads to violations of atomicity. Hence we chose that views should
not account for access through this in the scope of a constructor and for access in
the scope of initializer methods. This convention is practical to reduce the number
of spurious reports but entails the potential of underreporting. A conservative and
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Figure 6: Method view and lock views for Program 4.

more precise algorithm to exclude access statements from critical interference is given
in [13]; this analysis would remove the aforementioned source of underreporting.

The first columns in Table 1 show the size of the programs (lines of application
code), the execution times of the symbolic execution (symexe) and method con-
sistency checking (cons), and the memory requirements of the static analysis on a
Pentium 4 (1.4 GHz) PC. Overall, the analysis is practical for the reported programs.
The duration of the symbolic execution depends on the precision of type and alias
information to narrow polymorphism. Programs like jigsaw and specjbb use dynamic
class loading and instancing, which is modeled conservatively in the compiler and
hence leads to imprecision. hedc, where conservative assumptions must be made
due to a large recursion in the callgraph, is also negatively affected by conservative
assumptions.

program size symexe cons mem reports methods
[LOC] [s] [s] [MB] app lib app lib

philo 81 0.3 0.1 1 0 0 0/4 0/24
elevator 528 0.4 0.2 3 0–0–1–0 0–1–0–0 2/16 2/32
mtrt 11298 1.5 1.1 5 0 0–3–0–0 0/43 3/207
tsp 706 0.4 0.2 1 0–1–0–0 0 1/14 0/27
hedc 27952 140.8 19.9 58 0–2–3–0 3–5–2–0 10/141 3/366
specjbb 31903 62.1 23.9 30 0–17–3–0 1–3–0–0 19/472 4/317
jigsaw 31596 357.0 18.4 34 0–19–2–2 1–3–0–0 16/474 3/276
mol 1402 0.4 0.3 2 0–1–0–0 0–2–0–0 6/28 0/24
ray 1972 0.5 0.3 3 0–1–0–0 0–2–0–0 3/45 0/26
monte 3674 0.6 0.3 3 0 0–1–0–0 2/71 0/38
crypt 1241 0.1 0.1 2 0 0 0/10 0/1
lufact 1627 0.1 0.1 2 0 0 0/15 0/1
series 967 0.1 0.1 2 0 0 0/10 0/1
sor 876 0.1 0.1 3 0 0 0/7 0/1
sparse 868 0.1 0.1 2 0 0 0/8 0/1

Table 1: Program and analysis characteristics and reports of atomicity violations.

Column reports in Table 1 specifies the number of method views that are found
to be inconsistent with lock views. We report only the smallest method views that
still exhibit violations; method views that are supersets of those reported would
exhibit the same violations but would make it more difficult to identify the cause of
the report. If interference is due to field variables that belong to the library classes,
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numbers are reported in category lib, otherwise in category app. For each entry in
column reports, we partition the reports into false/spurious/benign/harmful:

False reports are due to the imprecision of the static analysis (e.g., if data is not
shared but actually thread-local).

Spurious reports specify that violations of atomicity do not occur at runtime in the
given usage context of a data structure due to higher level synchronization
(e.g., through a protected encapsulating object or thread start/join; see also
Program 4).

Benign reports refer to situations where an atomicity violation at the method level
is possible. Such situations are not uncommon and do not necessarily represent
a synchronization fault. This is especially true for methods that are invoked
at a high level in the caller hierarchy of a multi-threaded application with
shared data. An exemplary situation where non-atomicity is desirable are
methods that call java.lang.Object::wait: The execution of this method
suspends the current thread, expecting that other threads change a shared
(condition) variable and signal the state change such the current thread can
continue execution. More general, any explicit inter-thread communication
through shared variables will lead to a violation of atomicity.

Harmful reports mean that a violation of atomicity may occur that may lead to
unintended runtime behavior.

The individual assessment of reports can be difficult and requires precise information
about the synchronization discipline of the affected shared data structure, hence we
use the classification schema as a guidance.

Column methods in Table 1 specifies the number of methods reported by the
checker and the overall number of methods for which a view is registered. The
reports contain only methods that (1) access variables in at least one subordinate
lock view (view v0 is subordinate to v1 if v0 occurs in the scope of v1), and (2)
that are at the lowest levels of the caller hierarchy. Aspect (1) suppresses reports of
method that do not use synchronization during their execution but exhibit a method
view that is conflicting with lock views. For those methods, we report their callers
(one of those will make use of synchronization because we assume that there are no
data races). Aspect (2) excludes the reporting of all callers of a method for which
we determined a potential violation of atomicity (a method that calls a non-atomic
method is not atomic either). If a method belongs to a library class, it is reported
in category lib, else app.

Most of the smaller programs share data in arrays, hence there are few or no
classes that we consider for reporting. In elevator, there is one benign report for
a shared data structure that represents the state of the simulated system and is
repeatedly accessed by the top-level methods of the simulator threads. A spurious
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report concerns an instance of class java.util.Vector that is however used such
that no concurrent modification can occur.

mtrt exhibits three spurious reports that concern java.util.Vector and
java.util.Hashtable data structures used in the library; these data structures
are initialized once and then read (the scenario is similar to Program 4). tsp has
one spurious report due to a lock scope that violates the chain property but actually
executes without concurrency during the initialization of the program.

In hedc, three reports are false and correspond to execution scenarios that the
compiler conservatively assumed due to imprecise type information. Similar to mtrt,
several reports are spurious on shared collection classes where initialization and
subsequent shared read are ordered. Some reports are benign, e.g., for variables that
are used to communicate information between worker and controller thread; another
benign report addresses methods that perform subsequent access to a shared thread
pool.

In specjbb, 10 reports correspond to instances that represent database records,
where fields are accessed independently and atomicity is only necessary at the level
of individual fields, or explicitly ensured by the transaction logic that is implemented
at the application level. Depending on the correctness criteria at the application
level, these reports can be classified as spurious or benign. Three reports are benign
and concern shared data containers that hold database records.

We discuss two interesting reports for jigsaw. The first report addresses class
w3c.jigsaw.http.ClientState that represents an element of a linked list of client
connections. Its fields prev and next link the structure and are accessed indepen-
dently from fields idle and client (lock views are disjoint). All fields are cleared
when a connection is removed from the pool and hence the fields are combined
to a method view, leading to a report that does not reflect a problem in the pro-
gram. The second report concerns class w3c.tools.store.ResourceStoreManager
in Program 5. Method shutdown intends to remove all entries from the store (map
referenced through field entries) and prevent further insertions by setting the
latch closed. Atomicity is violated for method loadResourceStore (the sequence
checkClosed and lookupEntry is not atomic). An unfortunate schedule can lead to
the situation that entries are added to a resource manager after method shutdown

has executed.

The programs mol and ray share part of the code and both report violation for
lock views with disjoint variable sets on class jgfutil.JGFTimer. There is indeed a
notion of consistency among the variables that could be violated if methods would
be interleaved in a particular sequence. There is however an explicit runtime check
that detects this situation and issues a warning.

So far, views are restricted to shared variables. We have experimented with a
further restriction: reads are only entered into lock views if the value is exposed
outside the lock scope or method (i.e, the value is returned from a synchronized
method or assigned to a stack escaping object). This modification reduces the
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Program 5: Violation of atomicity in class
w3c.tools.store.ResourceStoreManager of the jigsaw application.

class ResourceStoreManager {

boolean closed = false;
Map entries = new HashMap();

synchronized void checkClosed() {
if (closed)

throw new RuntimeException();
}

ResourceStore loadResourceStore(...) {
checkClosed();
StoreEntry se = lookupEntry(...);
return se.getStore();

}

synchronized Entry lookupEntry(...) {
Entry e = (Entry) entries.get(...);
if (e == null) {

e = new Entry();
entries.put(..., e);

}
return e;

}

synchronized void shutdown() {
while (...) {

// remove all entries
}
closed = true;

}
}

number of reports by around 30-50%, however some cases of high-level data races
are not recognized any more.

5 RELATED WORK

Method consistency is motivated by previous work of Artho et. al. [1], which analyzes
the structure of locking in a program and infers consistency constraints for sets of
shared variables (view consistency). Violations of their consistency model correspond
to potential synchronization defects called high-level data races. The notion of high-
level data races is similar to violations of atomicity although both concepts are
incomparable and several important scenarios of atomicity violations are not covered
by the definition of high-level data races [14].

Burrows and Leino [2] identify local variables that hold copies of shared data;
a potential error occurs if during the program execution, the local copy becomes
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inconsistent with the original shared variable but is still assumed to hold the up-
to-date value. The kind of errors that are detected (stale-value errors) resemble
violations of method consistency. Their analysis is complementary to our work,
because it detects errors that are not found by our work (our procedure does not
inspect uses of local variables; also the error in Program 3 would be found by the
stale-value analysis), and vice versa (the error in Program 5 would not be found by
the stale-value analysis).

Flanagan and Qadeer [5, 4] follow a different approach to detect potential vi-
olations of atomicity and focus on the structure of statements and the possible
interleavings of statements through multi-threading. They have developed a type
system that verifies atomicity. Unlike our technique that regards methods as the
unit of atomic execution, Flanagan and Qadeer conjecture atomicity only for syn-
chronized methods and blocks (the error in Program 5 would not be found). In their
work, the type checker associates atomicities at the level of statements and com-
bines these atomicities based on Lipton’s theory of left and right movers [8] to obtain
atomicity information for statement groups and methods. This approach is modu-
lar and requires explicit information about the synchronization discipline and lock
protection of shared variables. This information is provided through annotations,
hence Flanagan and Qadeer’s technique is not fully automated.

Wang and Stoller [14] propose a dynamic technique to detect atomicity violations
that is based on [5, 4] but improves on the precision. The key observation is that
there can be groups of transactions that the reduction-based algorithm in [4] reports
as non-atomic that still behave atomically in all schedules and hence should not be
reported. Instead of individual transactions, the algorithm of Wang and Stoller
groups transactions and searches for specific unserializable access patterns in groups
of transactions.

6 FUTURE WORK

Our current implementation has some limitations that could be addressed in future
work:

Currently, interference and hence violations of atomicity are only detected
for methods that operate on shared objects, not arrays however. Array ac-
cess could be registered in the method views and lock views, similarly to ob-
ject access. While we have observed for object access that it is sufficient to
register the mere fields without information about the accessed instance (Sec-
tion 3.2), array access would need to distinguish different target arrays, and
possibly access to disjoint parts of the same array; otherwise, spurious over-
lap between lock views and method views could lead to significant overreport-
ing. The symbolic execution is a good platform to distinguish access to differ-
ent arrays (and also objects) that are not aliased according to our heap shape
model.
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Our method conjectures atomicity at the level of methods and basically any
method that performs a lock or wait operation is considered as a candidate for which
an atomicity violation may be reported. This simple and very general rule is the
major source of overreporting and hence if regions with mandatory atomic execution
were specified explicitly in the code, the focus of checking could be narrowed and
overreporting could be mostly avoided. Note that – even if atomicity constraints are
specified – our method would not be sound due to the potential of underreporting
(see Program 3).

The identification of shared data, which are the sources of interference that may
lead to atomicity violations, requires the whole program. Future work could adapt
our approach of method consistency to the modular checking of data types that
pretend to have transaction semantics, i.e., guarantees for atomic execution, at their
public interface. A challenging aspect for such a modular analysis is to distinguish
between objects that are only accessed behind such an interface, i.e., that belong to
the representation of the data type, and other objects that are not.

7 CONCLUSIONS

Violations of atomicity at the level of methods are common in parallel programs; in
some cases however, such violations are undesired and considered as synchronization
faults. This work presents a practical automated approach to detect such violations
through an efficient whole program analysis. Unlike other research that determines
atomicity from the equivalence of thread schedules at the level of individual state-
ment interleavings [4, 14], our technique assesses atomicity through the observation
of interference on shared data. Our procedures uses the notion of method consis-
tency that is inferred from the usage of locks and access to shared data. Violations
of method consistency match common cases of critical atomicity violations. Hence,
method consistency is useful to identify a certain class of synchronization defects.

The common use of concurrent programming languages makes static tools for the
automated detection of synchronization defects increasingly important. The focus of
our static analysis on objects that are potentially shared makes the analysis efficient
and precise. The narrowing of the consistency notion to variables of the same class
and the compaction of method reports along the caller hierarchy result in a moderate
number of reports for the programs we assessed. Most reports do not reflect actual
program defects. However, some of those reports that do not reflect a fault in the
context of the analyzed program shed light on a synchronization discipline that could
be insufficient if the affected data structure is reused in a different context.
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