
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 6

Special issue: ECOOP 2003 workshop on FTfJP

Cite this article as follows: Patrice Chalin: “JML Support for Primitive Arbitrary Precision Numeric
Types: Definition and Semantics”, in Journal of Object Technology, vol. 3, no. 6, Special issue:
ECOOP 2003 workshop on FTfJP, June 2004, pp. 57-79.
http://www.jot.fm/issues/issue_2004_06/article3

JML Support for Primitive Arbitrary
Precision Numeric Types: Definition and
Semantics

Patrice Chalin, Concordia University, Canada

Abstract
The Java Modeling Language (JML) is a notation for specifying and describing the
detailed design and implementation of Java modules. An important language design
goal of JML has been to preserve the semantics of Java to the extent possible. Thus, in
particular, Java numeric expressions have the same meaning in JML. We illustrate how
such a semantics fails to match the expectations of specification authors and readers
who generally think in terms of arbitrary precision arithmetic (rather than the fixed
precision provided by Java). As a result, an unusually high number of published JML
specifications are invalid or inconsistent, including cases from the security critical area
of smart card applications. We briefly examine JML’s ancestry and language design
principles; this helps to explain the origin of the semantic gap between user
expectations and the current meaning given to JML numeric expressions. With the
objective of better matching user expectations we introduce JMLb, a variant of JML
supporting primitive arbitrary precision numeric types as well as “math modes” to control
the semantics of arithmetic expressions. This is done in a manner that is consistent with
JML’s language design goals. A semantics of JMLb expressions is given by means of
an embedding into PVS. The problem presented here will arise in the design of most
interface specification languages that must deal with, e.g., mathematical integers in
specifications and their fix precision approximations in code. We examine how the
problem may manifest itself in other languages (such as Eiffel, Spark and the
UML/OCL-Java notation of the KeY project) and comment on the applicability of our
solution.

1 INTRODUCTION

The Java Modeling Language (JML) is a notation for specifying and describing the
detailed design and implementation of Java modules [LBR99]. It is a model-based
specification language offering, in particular, method specification by pre- and post-
condition, and class invariants to document required module behavior. An important
language design goal of JML has been to preserve the semantics of Java to the extent

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_06/article3

JML SUPPORT FOR PRIMITIVE ARBITRARY PRECISION NUMERIC TYPES: DEFINITION

AND SEMANTICS

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 6

possible. Thus, in particular, Java numeric expressions have the same meaning in when
they occur in JML specifications. We illustrate how such a semantics fails to match the
expectations of specification authors and readers who generally think in terms of arbitrary
precision arithmetic (rather than the fixed precision provided by Java). As a result, an
unusually high number of published JML specifications are invalid or inconsistent,
including cases from the security critical area of smart card applications [Chalin03].

In this article we briefly describe JML’s ancestry and language design principles
(Section 2). This will help to explain the origin of the semantic gap between user
expectations and the current meaning given to JML numeric expressions. With the
objective of better matching user expectations, we introduce JMLb (and its predecessor
JMLa), as variants of JML supporting primitive arbitrary precision numeric types as well
as “math modes” to control the semantics of arithmetic expressions (Sections 3 and 4).
This is done in a manner that is consistent with JML’s language design goals and
objectives [Chalin03]. A formal semantics of JMLb expressions is given (Section 5) as
well as an example of its application. We note that the problem presented here will arise
in the design of most interface specification languages which must deal with, e.g.,
mathematical integers in specifications and their fix precision approximations in code.
We examine how the problem may manifest itself in other languages (such as Eiffel,
Spark and the UML/OCL of KeY) and comment on the applicability of our solution.
Other related and future work are also discussed (Sections 6 and 7).

2 JML

Ancestry and language design principles

JML is a Behavioral Interface Specification Language (BISL). By definition, a BISL is
tightly coupled to a particular programming language since its purpose is to allow
developers to specify modules written in that programming language. A behavioral
interface specification is a description of a module consisting of two main parts
[Wing87]:

• an interface, that captures language specific elements that are exported by the
module, such as field and method signatures;

• a behavioral description (including other properties and constraints) of the
interface elements.

Prior to JML, the main BISLs were members of the Larch family of languages of which
two notable members are Larch/C++ [Leavens99] and LCL, the Larch/C interface
specification language [GH93]. A key characteristic of Larch is its two-tiered approach.
The shared tier contains specifications written in the Larch Shared Language (LSL).
These shared tier specifications, called traits, define multisorted first-order theories. The
interface tier contains specifications written in a Larch interface language. Each interface
language is specialized for use with a particular programming language, but all interface

VOL. 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 59

languages make use of LSL to express module behavior [GH93]. In a departure from the
Larch tradition, Leavens et. al. have defined JML as a single-tier BISL [LBR02].
Experience with Larch/C++ lead to the opinion that having to learn two—somewhat
disparate—languages (C++ and LSL) in order to be able to read and write specifications,
was too big a hurdle to overcome for most developers. The design intent has been to
make JML a superset of (sequential) Java. A key language design principle of JML has
been to preserve the semantics of Java to the extent possible: that is, if a phrase is valid in
Java and JML, then it should have the same meaning in both languages. Adherence to
this principle should greatly reduce the burden required to learn, understand and use JML.

As is often the case for language design principles, their benefits come at a cost. Java
was designed as a programming language, not a specification language. Although JML
builds upon Java by adding language constructs for the purpose of expressing
specifications, it remains that core Java phrase sets, like expressions, are (for the most
part) shared by both languages. This renders expression semantics more complex than,
for example, in Larch. Furthermore, as we shall see in the following section, developers
are in a different mindset when reading or writing specifications, particularly when it
comes to reasoning about integer arithmetic.

/*@ public normal_behavior
 @ requires y >= 0;
 @ ensures Math.abs(\result) <= y
 @ && \result * \result <= y
 @ && y < (Math.abs(\result) + 1)
 @ * (Math.abs(\result) + 1);
 @*/
public static int isqrt(int y)

Figure 1. JML specification of isqrt(int)

A semantic gap, motivating examples

Consider the specification in Figure 1 of an integer square root method, isqrt; it was
excerpted from the June 2002 edition of the main JML reference document [LBR02].
The specification requires that a caller invoke the method with a nonnegative argument y,
and in return, the method ensures that it will yield a value, r, such that: | r | ≤ y ∧ r2 ≤ y
< (| r | + 1)2. The current definition of JML states that the expressions in the requires
and ensures clauses of Figure 1 are to be interpreted using the semantics of Java. As a
consequence (and a simple Java prototype will justify this claim), a valid implementation
of isqrt would be permitted to return Integer.MIN_VALUE when y is 0. This
unexpected situation arises because Java integral types have a fixed precision and
because operators over these types obey rules of modular arithmetic—thus, for example

Integer.MIN_VALUE == Integer.MAX_VALUE + 1
Math.abs(Integer.MIN_VALUE) == Integer.MIN_VALUE
Integer.MIN_VALUE * Integer.MIN_VALUE == 0
(Integer.MIN_VALUE + 1) * (Integer.MIN_VALUE + 1) == 1

JML SUPPORT FOR PRIMITIVE ARBITRARY PRECISION NUMERIC TYPES: DEFINITION

AND SEMANTICS

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 6

/*@ spec_public */
private short intPart, decPart;

/*@ normal_behavior
 @ modifiable intPart, decPart;
 @ ensures intPart == -\old(intPart) &&
 @ decPart == -\old(decPart) ...;
 @*/
public Decimal oppose()

Figure 2. Decimal class specification excerpt

As another example, consider the specification given in Figure 2 which was excerpted
from a paper on the formal verification of an electronic purse applet [BvdBJ02]. We
show part of the Decimal class specification: an instance of Decimal represents a fixed-
point number with three digits of precision after the decimal point. Such a fixed-point
number is implemented by two short fields: intPart for the integer part and decPart
denoting the number of thousandths (e.g. 3 and 142, respectively, for the number 3.142).
Note that the specification of oppose is inconsistent: i.e. there is a situation that satisfies
its precondition (which is trivial since it is true) for which the postcondition is not
satisfiable. This situation arises when \old(intPart)—the value of intPart in the
pre-state, i.e. before oppose is called—is equal to Short.MIN_VALUE, in which case
the first conjunct of the ensures clause would be evaluated as follows:

• intPart == -\old(intPart)
• intPart == -(–32768

short
)

substitution of the value of \old(intPart), Short.MIN_VALUE.
• intPart == -(–32768

int
)

numeric promotion from short to int (due to unary minus semantics).
• intPart == 32768

int

application of unary minus.
• (int)intPart == 32768

int

numeric promotion of intPart from short to int (due to ==).
There is no value that intPart can have that, after a widening primitive conversion to
int, would make it equal to 32768 since Short.MAX_VALUE is 32767.

What has gone wrong? These JML specifications (and others) demonstrate that
specifiers most often ignore the finiteness of numeric types. (Incidentally, this is also true
of Java programmers [BS04].) Stated positively, specifiers generally think in terms of
arbitrary precision arithmetic when they read and write specifications. A survey,
including the two cases just described, is given in [Chalin03] of invalid and inconsistent
JML specifications caused by this problem. Hence, there is a semantic gap between user
expectations and the current language design and semantics of JML numeric types. As a
way of leading up to our proposed means of bridging the semantic gap, we explore next
how the specification of isqrt might be “fixed” within the current semantics of JML.

VOL. 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 61

Attempting to mend the gap

The isqrt specification can easily be corrected so that Integer.MIN_VALUE is not a
valid result by ensuring that arithmetic overflow does not occur while interpreting the
ensures clause expression. A strengthened specification is given in Figure 3—
differences relative to the previous specification are underlined. (It should be noted that
one of our goals here is to preserve the overall form of the ensures clause predicate while
exploring means of adapting or adorning the predicate so that its meaning matches our
expectations.) Explicit type widening ensures that all operators will be applied to long
arguments.

 /*@ public normal_behavior
 @ requires y >= 0;
 @ ensures Math.abs((long)\result) <= y
 @ && (long)\result * \result <= y
 @ && y < (Math.abs((long)\result)+1)
 @ * (Math.abs((long)\result)+1);
 @*/
 public static int isqrt(int y)

Figure 3. JML specification of isqrt(int) with cast to long

Although explicit type casting solves the problem in this particular case, it would be
ineffective if the argument and return types of isqrt were changed from int to long.
The specification of this new isqrt(long) method can none-the-less be corrected by
making use of the only available mechanism in JML to express arbitrary precision
arithmetic, namely, the JMLInfiniteInteger model class. The resulting specification
of isqrt(long) is given Figure 4. Notice how we might have gained accuracy, but we
loose significantly in clarity. The intent of the specification is obviously lost due to its
verbosity, and it becomes clear why JML developers might avoid using
JMLInfiniteInteger for something as common as expressions involving arithmetic.

/*@ public normal_behavior
 @ requires y >= 0;
 @ ensures
 @ (new JMLInfiniteInteger(\result)).abs().compareTo(
 @ new JMLInfiniteInteger(y)) <= 0
 @ && (new JMLInfiniteInteger(\result)).multiply(
 @ new JMLInfiniteInteger(\result)).compareTo(
 @ new JMLInfiniteInteger(y)) <= 0
 @ && (new JMLInfiniteInteger(y).compareTo(
 @ (new JMLInfiniteInteger(\result)).abs().
 @ add(JMLInfiniteInteger.ONE).
 @ multiply(
 @ (new JMLInfiniteInteger(\result)).abs().
 @ add(JMLInfiniteInteger.ONE))) < 0;
 @*/
public static int isqrt(int y)

Figure 4. Specification of isqrt(long) using JMLInfiniteInteger

JML SUPPORT FOR PRIMITIVE ARBITRARY PRECISION NUMERIC TYPES: DEFINITION

AND SEMANTICS

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 6

We come to the conclusion that there is no general and practical language
mechanism in JML that would allow us to mend the semantic gap. Hence, in the next two
sections we explore JML language variants named JMLa and JMLb. They represent our
approaches to closing the semantic gap while, at the same time, balancing JML’s
language design goals. By presenting an intermediate step (JMLa) towards our final
solution (JMLb) we can better convey the motivation behind our choice of language
features.

3 JMLA: PRIMITIVE ARBITRARY PRECISION NUMERIC TYPES

Shortening the semantic gap

The overly verbose specification of isqrt(long) defined using the
JMLInfiniteInteger reference type makes it obvious that, just as Java has primitive
fixed precision numeric value types, JML should have primitive arbitrary precision
numeric value types. To this end we introduce in JMLa the primitive numeric types
\bigint and \real representing arbitrary precision integers and floating point
numbers, respectively. Like other JML keywords that can occur in expressions, these start
with a slash character so as to prevent name clashes in specifications for existing Java
code that made use of identifiers with the names bigint or real.

External to the language we also define a model class named
org.jmlspecs.lang.JMLMath that, in particular, provides methods like those of
java.lang.Math but that are defined over \bigint’s and \real’s. Like in Java, all
specifications implicitly import org.jmlspecs.lang.*.

A JMLa specification for isqrt(long) is given in Figure 5. Note how it preserves
the clarity and the form of the original specification while achieving the required degree
of accuracy.

/*@ public normal_behavior
 @ requires y >= 0;
 @ ensures JMLMath.abs(\result) <= y
 @ && (\bigint)\result * \result <= y
 @ && y < (JMLMath.abs(\result) + 1)
 @ * (JMLMath.abs(\result) + 1);
 @*/
public static long isqrt(long y)

Figure 5. JML specification of isqrt(long) with casts to \bigint

Closing the semantic gap

Most specifiers think in terms of arbitrary precision arithmetic, yet the semantics of
expressions in Java and JML are such that fixed precision arithmetic is the default
interpretation. Introducing new primitive arbitrary precision types to the JML language is

VOL. 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 63

one step towards narrowing this gap, but it does not close it. Alternatives for closing the
gap include:

• Adapting the Java language to support a primitive arbitrary precision integral
type, as is done in languages like ML and Haskell. Such a new language feature
would naturally become a part of JML. Of course, offering programmatic support
for reals is not possible.

• Adding distinct operator names (e.g. \oplus or ⊕) to distinguish between
operations over fixed vs. arbitrary precision numeric types. In specifications, Java
operators would refer to operations over \bigint and \real whereas the special
operators would refer to Java’s fixed precision arithmetic. Although this solution
is common in Larch, it would go against JML’s main language design goals.

• Adding implicit promotion to \bigint for integral expressions. (Of the examples
that we have surveyed, we have yet to justify the need for implicit promotion to
\real.)

Among these alternatives the last would appear to be the most feasible and the one that
clashes the least with the language design goals of JML and hence it is chosen for JMLa.

Informal semantics

JMLa introduces the primitive types \bigint and \real, and appropriately places them
as new “top” elements of the Java numeric type hierarchy as illustrated in Figure 6. Type
numeric widening and narrowing are defined as a natural extension of the rules of Java.

Figure 6. JMLa primitive numeric type hierarchy

With respect to the semantics of integral arithmetic expressions, in JMLa we ensure that
numeric operations that can cause overflow are performed over \bigint by default. We
call the operators that can result in overflow unsafe operators; they are: unary -, binary +,
-, * and /. Early in our design of JMLa, expression semantics followed a simple rule: all
unsafe operators unconditionally promoted their integral operands to \bigint before
performing the operation. This turned out to be impractical since Java programs contain
many instances of constant expressions involving unsafe operators, the most common of
which is -1. By the simple semantic rule, -1 would be implicitly promoted to \bigint
and if this expression was on the right-hand side of an assignment or the argument to a

\real

double

float

\bigint

long

int

short char

byte

W
idening

N
arrow

ing

JML SUPPORT FOR PRIMITIVE ARBITRARY PRECISION NUMERIC TYPES: DEFINITION

AND SEMANTICS

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 6

method call, then it would most likely have to be explicitly cast back a fixed precision
type. Such explicit casts are unnecessary because it is easy to determine statically
whether the evaluation of a constant expression will result in overflow or not. Thus we
amended the rule to preserve Java semantics if: the operands are constant expressions and
operator evaluation does not result in overflow.

JMLa Expression Equivalent JMLa Expression
(all conversions made explicit)

Result
Type Same semantics as in Java?

+i +i int Yes, since unary + is safe.
-i -(\bigint)i \bigint No, unary – is unsafe.
-5 -5 int Yes, since –5 is an int value.

-
Integer.MIN_VALUE

-
(\bigint)Integer.MIN_VALUE\bigint

No, since the constant
expression value is not in the
range of int.

i + j (\bigint)i + (\bigint)j \bigint No, since binary + is unsafe.
Integer.MIN_VALUE

- 1
(\bigint)Integer.MIN_VALUE

- (\bigint)1 \bigint No, since the expression value
is not in the range of int.

2 + bi (\bigint)2 + bi \bigint Almost: Java-like type
promotion

2 + (int)bi (int)2 + (int)bi int Yes.

i * f (float)i * f float Yes, no implicit promotion to
\real.

3 * 5 –
Short.MAX_VALUE

3 * 5 –
(int)Short.MAX_VALUE int Yes (const. expr. value is an

int).

d / r (\real)d / r \real Almost: Java-like type
promotion

(\bigint)d / 2 (\bigint)d / (\bigint)2 \bigint Almost: Java-like type
promotion

Figure 7. Sample JMLa expressions
(assume int i,j; \bigint bi; float f; double d; \real r)

Examples of JMLa expressions are given in Figure 7. Notice how –5 has type int
whereas -Integer.MIN_VALUE has type \bigint because evaluation of the latter
constant expression in Java would result in an overflow. Other JMLa languages features
were also defined [Chalin03] but since they are not a part of JMLb they are not discussed
here.

4 JMLB: MATH MODES

Better balance of language design goals

In all cases that we have encountered of invalid or inconsistent JML specifications (due
to fixed precision arithmetic), the cases recover their validity and consistency under
JMLa with either no syntactic changes or minor syntactic changes to the specifications
[Chalin03]. Thus, the semantic gap has been closed, but this is achieved at the cost of
contravening one of the basic design goals of JML, namely, that expressions that are
valid in Java and JML should have the same meaning. At a minimum, there should be a

VOL. 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 65

visual cue for specification readers to indicate that the semantics of numeric expressions
are not like in Java. It is with this idea that we introduced the notion of arithmetic modes
in JMLb. The default mode in JMLb coincides with Java semantics (like in JML). To
indicate that JMLa semantics are in effect one must explicitly provide a modifier either to
a class or a method declaration. We believe that this allows JMLb to achieve a better
balance of the JML language design goals with a small extra cost (as compared to JMLa).

Math modes

In JMLb, there are three integral arithmetic modes, or math modes for short. The
semantics of expressions for each mode is as follows:

• Java math corresponds to Java semantics.
• Bigint math corresponds to the JMLa implicit promotion semantics.
• Safe math is like Java math except that arithmetic overflows are signaled by

means of exceptions (like C# checked mode).
To set the math mode for all specification expressions in a class one annotates the class
definition with one of the following modifiers: spec_java_math, spec_bigint_math
and spec_safe_math. These modifiers can also be applied to individual method
definitions (examples will follow shortly). The scope of a modifier is the entire
declaration to which it is applied. For finer grained control JMLb has operators that limit
the scope of a mode to a given expression, E: e.g. \java_math(E),
\bigint_math(E), and \safe_math(E).

A sample JMLb specification is given in Figure 8. In this specification, the class
modifier spec_bigint_math informs us that all specification expressions in the class
are to be interpreted in bigint math mode by default. The first method specification is a
slightly modified version of the specification of isqrt given in Figure 1 in which we
have replaced the occurrences of Math by JMLMath. Notice that under JMLb, the
specification of isqrt is valid since the expressions are interpreted over \bigint rather
than int. The second specification is of an increment method that demonstrates the use
of a math mode modifier, as applied to a method declaration, as well as a math mode
operator. In this case, we make use of \java_math to specify that i+1 should be
interpreted as in Java so that, e.g., i+1 will be equal to Integer.MIN_VALUE when i is
equal to Integer.MAX_VALUE (as indicated in the given specification example). The
final method specification illustrates the use of \bigint in a model method, thus
defining inc as equivalent to the successor function over the infinite set of mathematical
integers.

When unspecified, the default mode is Java math, but to ensure that JML users are
aware of the possible consequences of this default, JML tools will issue a warning if the
math mode is not explicitly stated. In most cases, JML authors will want to choose
spec_bigint_math.

JMLb also provides the modifiers code_java_math, code_bigint_math and
code_safe_math that allow the semantics of arithmetic expressions to be changed in
Java code. Of course, for this to be effective one must use special compilers such as the

JML SUPPORT FOR PRIMITIVE ARBITRARY PRECISION NUMERIC TYPES: DEFINITION

AND SEMANTICS

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 6

MultiJava or the JML Run-time Assertion Checker (RAC) compilers [Burdy+03]. We
believed that this can be an convenient means of providing arbitrary precision arithmetic
(for bigint math) or run-time overflow detection (for safe math). The latter feature is built
in to the C# language and is called checked mode. Like in JMLb, the default mode in C#
is unchecked. These code math modes are not discussed any further in this article.

public /*@spec_bigint_math@*/ class JMLbSample
{
 /*@ public normal_behavior
 @ requires y >= 0;
 @ assignable \nothing;
 @ ensures JMLMath.abs(\result) <= y &&
 @ \result * \result <= y &&
 @ y < (JMLMath.abs(\result) + 1)
 @ * (JMLMath.abs(\result) + 1);
 @*/
 public static int isqrt(int y) {
 return (int) Math.sqrt(y);
 }

 /*@ public normal_behavior
 @ assignable \nothing;
 @ ensures \result == \java_math(i + 1);
 @ for_example
 @ public normal_example
 @ requires i == Integer.MAX_VALUE;
 @ assignable \nothing;
 @ ensures \result == Integer.MIN_VALUE;
 @*/
 /*@spec_safe_math@*/
 public static int increment_and_wrap(int i) {
 return i+1;
 }

 /*@ public normal_behavior
 @ assignable \nothing;
 @ ensures \result == i + 1;
 @*//*@
 @ public pure model static \bigint inc(\bigint i) {
 @ return i+1;
 @ }
 @*/
}

Figure 8. Sample JMLb specification

VOL. 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 67

Advantages over JML

Some of the key advantages of JMLb over JML include:
• JMLb semantics more closely match user expectations. We demonstrate in

[Chalin03] how all of the invalid or inconsistent JML specifications given in that
article recover their validity and consistency when interpreted under JMLa (i.e.
JMLb with the spec_bigint_math modifier applied to each class) with little or
no changes to the specifications.

• JMLb can be used to write simpler, and clearer specifications (as compared, e.g.,
to use of JMLInfiniteInteger).

• The meaning of JMLb specifications in bigint math mode can be independent of
the particular choice of numeric type of fields and variables—as it should be
since, e.g., method specifications are meant to express essential method behavior,
which often is independent of field and variable types. This is not the case in Java
and JML; e.g. “i == E” may be unsatisfiable if the identifier i is declared to be
of type short.

• ESC/Java [Flanagan+02] will be able to detect more errors under JMLb semantics
than it currently can for JML (in particular due to the previous point).

• Verification proofs will be greatly simplified as we recover the familiar laws of
arithmetic when operating over \bigint and \real (e.g. associativity,
commutativity and closure of operators).

These points are particularly important as we witness the increased use of JML,
especially in security critical areas like smart cards. Of course, these benefits come at the
cost of a slightly more complex semantics and an increased departure from Java
semantics. We believe though, that the benefits of JMLb outweigh its disadvantages.

5 JMLB SEMANTICS

The LOOP tool, developed at the University of Nijmegen, provides a semantics of Java
and JML by means of a shallow embedding into PVS [vdBJ01, JP03]. PVS, short for
Prototype Verification System, is the name given to a powerful theorem prover and to the
specification language that it supports [PVS]. Following the LOOP approach, this section
also presents a formalization of JMLb semantics by means of an embedding into PVS.
We focus only on those aspects of JMLb that differ from JML—namely the semantics of
arithmetic expressions under the various math modes—while ignoring important issues,
such as abnormal termination in expressions, which are already effectively handled in
LOOP. The semantics given here can be regarded as complementary to the LOOP
semantics, eventually to be integrated with it (more will be said of this in the conclusion).

JML SUPPORT FOR PRIMITIVE ARBITRARY PRECISION NUMERIC TYPES: DEFINITION

AND SEMANTICS

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 6

Abstract syntax and semantic objects

The semantics of JMLb expressions is defined by means of an “inference system” in a
style referred to as natural semantics [Winskel93]. The inference rules allow us to
establish the validity of elaboration predicates of the form

ρ Η xa A⎯→⎯

where A is generally the name of an abstract syntax phrase class. Such a predicate asserts
that the syntactic object a corresponds to the semantic object x under the context ρ; we
will also say “a elaborates to x under ρ.” For the cases covered here, the context will be
an environment containing the declarations under which elaboration is to be performed, a
will be a JMLb expression and x a PVS expression qualified with its type.

 e ∈ EXPR ::= cτ | ι | op(e1, …, ek) | (τ) e | \old(e) | e.ι | e.ι (e1, …, ek) | (q τ ι ; e)
 | \java_math(e) | \bigint_math(e) | \safe_math(e) | …
 τ ∈ TYPENM ::= ι | …
op ∈ OPNM
 q ∈ QUANTNM ::= \forall | \exists

Figure 9. Abstract syntax of JMLa expressions

The abstract syntax for expressions relevant to our presentation is given in Figure 9. The
defined cases are:

• An integral literal constant of type τ ∈ {int, long}.
• An identifier representing a logical variable (including \result, method

parameters and quantifier variables). Since our focus in this article is on the
particularities of JMLb semantics of expressions over numeric types, we shall
make the simplifying assumption that all class and instance members are
expressed in the form e.ι so as to be distinguishable from the occurrence of a
logical variable.

• An operator applied to one or more arguments. Operators include those of Java
(e.g. +, -, *) and JML (e.g. ==>, <==>).

• A type cast expression.
• A pre-state expression.
• A field access expression.
• A method invocation expression. (Recall that methods in JML expressions must

be “pure” [LBR02].)
• A quantified expression.
• Math mode expressions.

JMLb expressions are translated into the “semantic objects” of PVS expressions, whose
annotated abstract syntax is

ε ∈ PVSEXPR ::= c : τ | op(ε1, …, εk) : τ | q (ι : τ) : ε

VOL. 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 69

Each PVS expression is annotated with its type. This allows us to ensure that, in
particular, overloaded operators can be disambiguated. The cases of PVSEXPR define:
constants, operators (including logical connectives and equality), quantified formulas
(where q is either FORALL or EXISTS). Elaboration of expressions is done in the context of
an environment, ρ ∈ ENV that can be thought of as a mapping from identifiers into their
attributes. The following identifiers have a special meaning:

• \result is the JML logical variable that can be used in ensures clauses to denote
the value returned by a method;

• \mathMode denotes the “currently active” math mode;
• \state denotes the evaluation state context and is either bound to pre or post.

By default, requires clause expressions are evaluated in pre and ensures clause
expressions in post.

The updated environment denoted by ρ ⊕ { ι � α } is the same as ρ except that it maps ι
to α. Note that in the initial JMLb environment ρo, \mathMode is set to java.

Primitive numeric types in PVS

Before presenting the elaboration rules, we will explain how JMLb primitive numeric
types are modeled in PVS. The JMLb arbitrary precision types \bigint and \real are
modeled by the standard PVS types integer and real. For convenience, we have also
defined a synonym for integer named bigint. We have created simple theories, all of
the same form, for each of the bounded precision integral types. As an example, an
excerpt of the theory for int is given in Figure 10. Notice how the int type is simply
defined as the subtype of integer that contains values in the range min to max
inclusive. A key function in this theory is narrow which effectively defines narrowing
primitive conversion to int. All arithmetic operators are defined using their integer
counterparts followed by an application of narrow. Thus, addition of int’s is defined as
the addition of their values interpreted as integer’s followed by a narrowing of the
result to int: i.e. add(i,j) = narrow((i:int + j:int):integer):int. Bitwise
operators are tricky to handle in PVS hence, for the most part, we use the bit vector
library that is part of the standard distribution of PVS.

JML SUPPORT FOR PRIMITIVE ARBITRARY PRECISION NUMERIC TYPES: DEFINITION

AND SEMANTICS

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 6

int: THEORY
 BEGIN
 IMPORTING number_theory@mod_nt, div@div,
 div@div_alt, div@rem
 ...
 twoPn: posint = 4294967296
 max : nat = 2147483647
 min : negint = -2147483648

 int: TYPE+ = {i: integer | min <= i AND i <= max}
 CONTAINING 0;

 % Narrowing primitive conversion to int
 narrow(i: integer): int =
 LET b:nat = mod(i, twoPn) IN
 IF b <= max THEN b ELSE b - twoPn ENDIF

 neg(i:int) : int = narrow(-i)
 add(i,j:int): int = narrow(i + j)
 sub(i,j:int): int = narrow(i - j)
 mul(i,j:int): int = narrow(i * j)

 % Division rounds towards zero (JLS2.0, Section 15.17.2):
 %
 div(i:int, j:{j:int|j /= 0}): int = narrow(div.div(i,j))

 % Remainder satisfies (i/j)*j + (i%j) == i for all
 % values except j = 0, including i = max and j = -1
 % (JLS2.0, Section 15.17.3).
 %
 rem(i:int, j:{j:int|j/=0}): int = narrow(rem.rem(i,j))

 div_rem: LEMMA FORALL (i,j:int):
 j /= 0 => div(i,j)*j + rem(i,j) = i
 ...

 bit_neg(i:int): int = -i – 1
 ...
 END int

Figure 10. PVS theory for int

Elaboration rules

Elaboration rules for JMLb expressions are given in Figure 11. For each syntactic case of
EXPR we have combined the type and expression elaborations into a single rule. Aside
from the backslash prefixing the JMLb type names \bigint and \real, JMLb and PVS
type names coincide, hence we will make no distinction between them, using the same

VOL. 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 71

type name τ in both the abstract syntax and PVS expressions. The given semantics do not
cover rules for constant expressions, and (as was mentioned earlier) it ignores issues of
abnormal termination.

Figure 11. JMLb expression semantics, selected rules

JML SUPPORT FOR PRIMITIVE ARBITRARY PRECISION NUMERIC TYPES: DEFINITION

AND SEMANTICS

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 6

• The rules for literals [Literal] and logical variables [Logical Var] illustrate that

they are translated almost literally. Thus, 3 and 5L elaborate to 3:int and
5:long respectively. Similarly, provided that a logical variable has been declared
in scope, it elaborates to the same name qualified with its declared type (of course
\result would have to be mapped to a special PVS name). Method parameters,
quantifier variables and \result are modeled as logical variables.

Operator(s)

op
Argument Type(s)

ArgTypeop

Argument
Conversion

convop

Result
Type

resultTypeop

PVS Function(s)
φop

+ (unary) Numeric unp to τ τ id: τ → τ
- (unary) Numeric unp to τ τ τ.neg

~ Integral unp to τ τ τ.bit_neg
! boolean none boolean NOT

*, /, % Numeric, Numeric bnp to (τ,τ) τ τ.mul, τ.div, τ.rem
+, - Numeric, Numeric bnp to (τ,τ) τ τ.add, τ.sub

<<, >>,
>>> Integral, Integral arg1:unp to τ

arg2: unp τ τ.lshift, τ.rshift,
τ.rshift_u

<, <=, >,
>= Numeric, Numeric bnp boolean <, <=, >, >=

Numeric, Numeric bnp boolean ==, /=
==, != boolean,

boolean none boolean ==, /=

boolean,
boolean none boolean AND, XOR, OR

&, ^, |
Integral, Integral bnp to (τ,τ) τ τ.bit_and, τ.bit_xor,

τ.bit_or

&&, || boolean,
boolean none boolean AND, OR

==> boolean,
boolean none boolean ==>

<==>,
<=!=>

boolean,
boolean none boolean ==, /=

Figure 12. Semantics of selected JMLb operators

• There are two elaboration rules for expressions involving operators. [Op] applies
to all unsafe operators (these are listed in Section 3) while in bigint math mode.
The [OpJava] rule applies to operators that are not unsafe, or to any operator
while in Java or safe math mode. To apply either of these rules one must make use
of the information provided in Figure 12. Let op be an operator that appears in
column 1 of the table, then the remaining columns define: the required argument
type(s) (ArgTypeop), the kind of argument conversion to be applied (convop), the
resulting type of the expression (resultTypeop) and finally, the PVS function
corresponding to the operator op (φop). In the argument type column: “numeric”
includes Java numeric types as well as \bigint and \real; “integral” includes
Java integral types as well as \bigint. The argument conversions that can be

VOL. 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 73

applied correspond to unary numeric promotion or binary numeric promotion.
These promotion functions come in two variants (see Figure 13): those
corresponding to implicit promotion to arbitrary precision types (JML.*) and
those that imitate the standard Java promotion rules (Java.*).

• The math mode operators merely set the active mode in the environment under
which their arguments are interpreted.

• Type casts are processed in two cases depending on the nature of the cast: i.e.
whether it corresponds to a widening [Widen] or narrowing primitive conversion
[Narrow]. Type widening requires no special operator in PVS. On the other hand,
narrowing to type τ requires the application of the narrow function defined in the
theory of τ.

• Interpretation of a pre-state expression is simply achieved by changing the
elaboration context with respect to the current state variable (\state). For the
given rules, this currently has an impact only on field member access.

• Quantified expressions are translated almost directly into PVS. The JML
quantifiers \forall and \exists are named FORALL and EXISTS in PVS.

• Field access makes use of the function val which is defined over the state held in
ρ. Given a reference r of type Ref[τ], and a state s, then val(s,r) will yield the
value of type τ contained in r.

• Member access is restricted to pure methods—i.e. in particular, methods that are
guaranteed not to have side-effects.

JML.unp(τ) =

 if τ ∈ { float, double, \real }
then \real
else \bigint end

JML.bnp(τ1, τ2) = if τ1 or τ2 is one of
 { float, double, \real }
 then (\real, \real)
else (\bigint, \bigint) end

Java.unp(τ) = if τ ∈ { byte, short, char }
then int else τ end

Java.bnp(τ1, τ2) = if \real ∈ {τ1, τ2} then (\real,
\real)
else-if \bigint ∈ {τ1, τ2} then (\bigint,
\bigint)
else-if double ∈ {τ1, τ2} then (double, double)
else-if float ∈ {τ1, τ2} then (float, float)
else-if long ∈ {τ1, τ2} then (long, long)
else (int , int) end

Figure 13. JMLb type conversion functions

Example

As an example of the application of the elaboration rules we will use the JMLb isqrt
specification given in Figure 8. The resulting PVS translation is shown in Figure 14.
Notice how the PVS expressions closely resemble their JMLb counterparts. As a partial
indication of the suitability of the semantic translation, we have been successful in
proving the consistency of the isqrt specification (making use of PVS abs for
JMLMath.abs).

JML SUPPORT FOR PRIMITIVE ARBITRARY PRECISION NUMERIC TYPES: DEFINITION

AND SEMANTICS

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 6

IMPORTING int, ...

isqrt_requires(y: int): bool = y >= 0;
isqrt_ensures(y, result: int): bool =
 JMLMath.abs(result) <= y AND result * result <= y AND
 y < (JMLMath.abs(result)+1) * (JMLMath.abs(result)+1);

isqrt_consistent: LEMMA FORALL (y:int):
 EXISTS (result:int):
 isqrt_requires(y) => isqrt_ensures(y,result)

Figure 14. PVS definition of isqrt

6 RELATED WORK

Primitive arbitrary precision numeric types

Several computer languages and tools provide basic language support for arbitrary
precision integers including: specification languages, such as B, OBJ, VDM, and Z
[Bowen03]; BISLs such as Larch, and Extended ML (EML); Functional languages like
ML, Haskell, and Lisp; proof tools like PVS and symbolic mathematics systems such as
Mathematica and Maple. Basic support for real numbers is most common in general
design specification languages and proof tools and less common in other languages.
Symbolic mathematics packages often provide arbitrary precision rational numbers.

Eiffel

Eiffel, well know for its promotion of design by contract, also makes use of pre- and
post-conditions in “method” specifications [Meyer92]. Like JML, Eiffel does not have
support for arbitrary precision integers (as part of its kernel), but it is subject to similar
problems due to the use of fixed precision arithmetic types in specifications. As an
example, consider the following specification for the abs function as taken from any one
of the kernel classes INTEGER_8, INTEGER_16, INTEGER, or INTEGER_64:

abs: INTEGER_16 is
 ensure
 non_negative: Result >= 0
 same_absolute_value: (Result = item) or (Result = -item)

The non_negative clause cannot be satisfied when applied to
INTEGER_16.Min_value. Due to Eiffel’s type system and language semantics with
respect to numeric conversions and method/operator resolution, it is unclear how the
solutions presented here could be generalized to Eiffel.

VOL. 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 75

Spark

Spark is a carefully chosen subset of Ada suitable for use in the development of highly
reliable software [Barnes03]. Tool support includes the Spark Examiner which can
perform extended static checking of Spark code annotated with assertions (e.g.
subprogram pre- and post-conditions, loop invariants).

Although integral types are of fixed precision in Spark (and Ada), Spark does not
suffer from the same problems as JML because integral arithmetic in specification
expressions is interpreted over the arbitrary precision integers. Thus, the following Spark
function specification

function Negate(X: Integer)
--# returns –X;

would result in the generation of the verification condition Integer’First <= –X <=
Integer’Last which is unprovable when X is Integer’First. The same result
would be obtained in spec_bigint_math mode in JMLb—in fact, Spark specification
expression semantics corresponds to JMLb spec_bigint_math mode. The main
difference is that there is no type corresponding to the mathematical integers in Spark.
Arithmetic in Ada programs is checked: i.e. overflows are reported by means of
exceptions. Hence, Ada code is interpreted in the equivalent of JMLb’s code safe math
mode. Spark does not currently support specification and reasoning about exceptions.

UML/OCL and Java in KeY

The KeY project (http://www.key-project.org) offers tool support for the specification
and verification of Java Card programs. Specifications are expressed in UML/OCL and
verification is carried out in Dynamic Logic [Ahrendt+04]. For the purpose of program
verification in KeY, Java is extended with four primitive arbitrary precision types (called
arithmetical types): arithByte, arithShort, arithInt and arithLong. Arithmetic
operators are defined (for each arithmetical type) with a semantics identical to their Java
counterparts except in those situations where overflow would occur; in these cases, the
semantics of the operators over the arithmetical types is left unspecified. It should be
noted that this Java language extension is only used during the verification process (and
hence, need not be supported by, say, a specially adapted Java compiler).

The KeY approach to specification and verification (with respect to integral
arithmetic) is the following [BS04, Section 3.5]:

1. Specifications are written in UML/OCL using the OCL type Integer which
corresponds to the mathematical integers.

2. Implementations of operations (methods) specified using the Integer type must
be declared with one of the KeY arithmetical types.

3. Verification is then performed and if successful, then the semantics of KeY
guarantee that the implementation will preserve its validity if all arithmetical
types are replaced by their corresponding Java types.

JML SUPPORT FOR PRIMITIVE ARBITRARY PRECISION NUMERIC TYPES: DEFINITION

AND SEMANTICS

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 6

The KeY approach is similar to Larch in that it appears to have two tiers (see Section 2).
The shared or mathematical tier is provided by UML/OCL. As a consequence, the
semantic gap that was present in JML is absent from KeY because specification
statements are expressed in UML/OCL using the mathematical integers. On the other
hand, there is no clearly identified interface specification language in KeY. This can give
rise to problems: for example, consider the following UML/OCL method specification:

context C::negate(x: Integer) : Integer
post result = -x

From this specification we can deduce that acceptable implementations will consist of a
class named C exporting a method named negate, but the signature of negate is not
fixed; any of the following (among others) might be acceptable: byte negate(byte) or
int negate(int) or even int negate(byte). No such ambiguity is possible in JML
since the method signature is fixed in the “interface” part of the specification. We believe
that this might explain, in part, why the KeY solution (e.g. adding for new primitive types
to Java) is more complex than the approach adopted in JMLb (in which we added only
one new integral type).

7 CONCLUSIONS AND FUTURE WORK

We have illustrated a semantic gap between user expectations of the meaning of
expressions over numeric types and the current JML language definition. Due to this gap,
several published JML specifications are invalid or inconsistent—we have presented two
such problematic specifications. To better meet user expectations, we have defined a
variant of JML called JMLb that has support for primitive arbitrary precision numeric
types \bigint and \real. JMLb also introduces arithmetic modes and allows specifiers
to select the mode that is most appropriate for the specification at hand, generally though,
it will be spec_bigint_math mode. A semantics of JMLb expressions is given and its
application is illustrated by means of a simple example.

Members of Concordia’s Dependable Software Research Group (DSRG) have
completed the implementation of JMLb in the JML checker and this has allowed us to
detect or confirm over two dozen inconsistent or erroneous JML specifications. Work is
also progressing towards inclusion of JMLb support (both spec and code math modes) in
jmlc, the JML runtime assertion checker compiler (RACC) as well as support for the
code math modes in the MultiJava compiler.

Cees-Bart Breunesse and Joe Kiniry from the University of Nijmegen have nearly
completed the integration of JMLb in the LOOP tool and ESC/Java2, respectively.
Hence, it is now possible to use the LOOP tool to perform verifications of JML annotated
Java modules under JMLb semantics. The main task that remains to be done for
ESC/Java2 is finding a suitable replacement for the Simplify theorem prover which
inadequately handles arbitrary precision integral arithmetic.

VOL. 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 77

8 ACKNOWLEDGMENTS

We thank the anonymous referees whose detailed comments that have contributed to
improving this article. We also thank members of the JML community for discussions on
JMLb, particularly Erik Poll and Joe Kiniry. Thanks to Frederic Rioux for his
contribution to the implementation of JMLb support in the JML checker.

9 REFERENCES

[Ahrendt+04] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel,
Martin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski,
Andreas Roth, Steffen Schlager, and Peter H. Schmitt. “The KeY Tool”. In
Software and Systems Modeling, 2004, to appear.

[Barnes03] John Barnes. High Integrity Software: The Spark Approach to Safety and
Security. Addison-Wesley 2003.

[BS04] Bernhard Beckert, Steffen Schlager. “Software Verification with Integrated
Data Type Refinement for Integer Arithmetic”. In Fourth International
Conference on Integrated Formal Methods, Proceedings. LNCS 2083.
Springer-Verlag, 2004.

[Bowen03] Jonathan Bowen. WWW Virtual Library: Formal Methods,
http://www.afm.sbu.ac.uk. February 2003.

[Burdy+03] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. “An overview of JML
tools and applications”. In Eighth International Workshop on Formal
Methods for Industrial Critical Systems (FMICS '03), pp. 73-89. Volume 80
of Electronic Notes in Theoretical Computer Science,
(http://www.elsevier.nl/locate/entcs) Elsevier, June, 2003.

[BvdBJ02] C.-B. Breunesse, J. van den Berg, and B. Jacobs. „Specifying and verifying a
decimal representation in Java for smart cards”. In AMAST'2002, LNCS, pp.
304-318. Springer-Verlag, 2002. The Decimal class specification is available
at www.cs.kun.nl/indexes/~ceesb/decimal/Decimal.java.

[Chalin02] Patrice Chalin. “Back to Basics: Language Support and Semantics of Basic
Infinite Integer Types in JML and Larch”.
(http://www.cs.concordia.ca/~faculty/chalin/papers/TR-2002-003.pdf)
Technical Report 2002-003.3, Computer Science Department, Concordia
University, October 2002, revised March, May 2003.

[Chalin03] Patrice Chalin. “Improving JML: For a Safer and More Effective Language”.
In Stefania Gnesi, Keijiro Araki, and Dino Mandrioli (Eds.), FME 2003
(http://matrix.iei.pi.cnr.it/FMT/FME), International Symposium of Formal

http://www.afm.sbu.ac.uk
http://www.elsevier.nl/locate/entcs
http://www.cs.kun.nl/indexes/~ceesb/decimal/Decimal.java
http://www.cs.concordia.ca/~faculty/chalin/papers/TR-2002-003.pdf
http://matrix.iei.pi.cnr.it/FMT/FME

JML SUPPORT FOR PRIMITIVE ARBITRARY PRECISION NUMERIC TYPES: DEFINITION

AND SEMANTICS

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 6

Methods Europe, Pisa, Italy, Sept. 8-14, 2003, Proceedings. LNCS 2805
Springer-Verlag 2003. http://www.fmeurope.org/

[Flanagan+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. “Extended static checking for Java”. In of
Conference on Programming Language Design and Implementation (PLDI-
02), volume 37, 5 of ACM SIGPLAN, pages 234–245, June 17–19 2002.

[GH93] John V. Guttag and James J. Horning, editors. “Larch: Languages and Tools
for Formal Specification”. Texts and Monographs in Computer Science.
Springer-Verlag, 1993. With Stephen J. Garland, Kevin D. Jones, Andres
Modet, and Jeannette M. Wing.

[JP03] Bart Jacobs and Erik Poll. Java Program Verification at Nijmegen:
Developments and Perspective. In Proceedings of the International
Symposium on Software Security (ISSS) 2003, to appear. Also, University of
Nijmegen Technical Report NIII-R0316.
http://www.cs.kun.nl/~erikpoll/publications/loop_history.html

[LBR02] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. “Preliminary Design of
JML: A Behavioral Interface Specification Language for Java”. Department
of Computer Science, Iowa State University, TR #98-06t, December 2002.
http://www.cs.iastate.edu/~leavens/JML/prelimdesign/prelimdesign_toc.html

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. “JML: A notation for
detailed design”. In Behavioral Specifications of Business and Systems, pages
175-188. Kluwer, 1999.

[Leavens99] Gary T. Leavens. Larch/C++ Reference Manual, Iowa State University,
Version 5.41, April 1999.

[Meyer92] Bertrand Meyer. Eiffel: The Language. Object-Oriented Series. Prentice Hall,
New York, N.Y., 1992.

[PVS] The PVS Specification and Verification System. http://pvs.csl.sri.com.

[vdBJ01] Joachim van den Berg and Bart Jacobs. The LOOP compiler for Java and
JML. In Tools and Algorithms for the Construction and Analysis of Software
(TACAS), LNCS 2031, pages 299-312. Springer, 2001.
http://www.cs.kun.nl/~bart/PAPERS/tacas01.ps.Z.

[Wing87] Jeannette M. Wing. “Writing Larch interface language specifications”. ACM
Transactions on Programming Languages and Systems, 9(1):1–24, January
1987.

[Winskel93] Glynn Winskel. The Formal Semantics of Programming Languages: An
Introduction. Foundations of Computing Series. MIT Press, 1993.

http://www.fmeurope.org/
http://www.cs.kun.nl/~erikpoll/publications/loop_history.html
http://www.cs.iastate.edu/~leavens/JML/prelimdesign/prelimdesign_toc.html
http://pvs.csl.sri.com
http://www.cs.kun.nl/~bart/PAPERS/tacas01.ps.Z
http://www.cs.kun.nl/~erikpoll/publications/loop_history.html

VOL. 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 79

About the author
Patrice Chalin is an Assistant Professor in the Department of Computer Science and
Software Engineering of Concordia University. He is head of the Dependable Software
Research Group (DSRG), conducting research on the language design, semantics and tool
support for specification and programming languages. He can be reached at
chalin@cs.concordia.ca. See also http://www.cs.concordia.ca/~chalin.

http://www.cs.concordia.ca/~chalin
mailto:chalin@cs.concordia.ca

