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Abstract 
The Java Modeling Language (JML) is a notation for specifying and describing the 
detailed design and implementation of Java modules. An important language design 
goal of JML has been to preserve the semantics of Java to the extent possible. Thus, in 
particular, Java numeric expressions have the same meaning in JML. We illustrate how 
such a semantics fails to match the expectations of specification authors and readers 
who generally think in terms of arbitrary precision arithmetic (rather than the fixed 
precision provided by Java). As a result, an unusually high number of published JML 
specifications are invalid or inconsistent, including cases from the security critical area 
of smart card applications. We briefly examine JML’s ancestry and language design 
principles; this helps to explain the origin of the semantic gap between user 
expectations and the current meaning given to JML numeric expressions. With the 
objective of better matching user expectations we introduce JMLb, a variant of JML 
supporting primitive arbitrary precision numeric types as well as “math modes” to control 
the semantics of arithmetic expressions. This is done in a manner that is consistent with 
JML’s language design goals. A semantics of JMLb expressions is given by means of 
an embedding into PVS. The problem presented here will arise in the design of most 
interface specification languages that must deal with, e.g., mathematical integers in 
specifications and their fix precision approximations in code. We examine how the 
problem may manifest itself in other languages (such as Eiffel, Spark and the 
UML/OCL-Java notation of the KeY project) and comment on the applicability of our 
solution. 

1 INTRODUCTION 

The Java Modeling Language (JML) is a notation for specifying and describing the 
detailed design and implementation of Java modules [LBR99]. It is a model-based 
specification language offering, in particular, method specification by pre- and post-
condition, and class invariants to document required module behavior. An important 
language design goal of JML has been to preserve the semantics of Java to the extent 
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possible. Thus, in particular, Java numeric expressions have the same meaning in when 
they occur in JML specifications.  We illustrate how such a semantics fails to match the 
expectations of specification authors and readers who generally think in terms of arbitrary 
precision arithmetic (rather than the fixed precision provided by Java). As a result, an 
unusually high number of published JML specifications are invalid or inconsistent, 
including cases from the security critical area of smart card applications [Chalin03]. 

In this article we briefly describe JML’s ancestry and language design principles 
(Section 2). This will help to explain the origin of the semantic gap between user 
expectations and the current meaning given to JML numeric expressions. With the 
objective of better matching user expectations, we introduce JMLb (and its predecessor 
JMLa), as variants of JML supporting primitive arbitrary precision numeric types as well 
as “math modes” to control the semantics of arithmetic expressions (Sections 3 and 4). 
This is done in a manner that is consistent with JML’s language design goals and 
objectives [Chalin03]. A formal semantics of JMLb expressions is given (Section 5) as 
well as an example of its application. We note that the problem presented here will arise 
in the design of most interface specification languages which must deal with, e.g., 
mathematical integers in specifications and their fix precision approximations in code. 
We examine how the problem may manifest itself in other languages (such as Eiffel, 
Spark and the UML/OCL of KeY) and comment on the applicability of our solution. 
Other related and future work are also discussed (Sections 6 and 7). 

2 JML 

Ancestry and language design principles 

JML is a Behavioral Interface Specification Language (BISL). By definition, a BISL is 
tightly coupled to a particular programming language since its purpose is to allow 
developers to specify modules written in that programming language. A behavioral 
interface specification is a description of a module consisting of two main parts 
[Wing87]: 

• an interface, that captures language specific elements that are exported by the 
module, such as field and method signatures; 

• a behavioral description (including other properties and constraints) of the 
interface elements. 

Prior to JML, the main BISLs were members of the Larch family of languages of which 
two notable members are Larch/C++ [Leavens99] and LCL, the Larch/C interface 
specification language [GH93]. A key characteristic of Larch is its two-tiered approach. 
The shared tier contains specifications written in the Larch Shared Language (LSL). 
These shared tier specifications, called traits, define multisorted first-order theories. The 
interface tier contains specifications written in a Larch interface language. Each interface 
language is specialized for use with a particular programming language, but all interface 
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languages make use of LSL to express module behavior [GH93]. In a departure from the 
Larch tradition, Leavens et. al. have defined JML as a single-tier BISL [LBR02]. 
Experience with Larch/C++ lead to the opinion that having to learn two—somewhat 
disparate—languages (C++ and LSL) in order to be able to read and write specifications, 
was too big a hurdle to overcome for most developers.  The design intent has been to 
make JML a superset of (sequential) Java. A key language design principle of JML has 
been to preserve the semantics of Java to the extent possible: that is, if a phrase is valid in 
Java and JML, then it should have the same meaning in both languages.  Adherence to 
this principle should greatly reduce the burden required to learn, understand and use JML. 

As is often the case for language design principles, their benefits come at a cost. Java 
was designed as a programming language, not a specification language. Although JML 
builds upon Java by adding language constructs for the purpose of expressing 
specifications, it remains that core Java phrase sets, like expressions, are (for the most 
part) shared by both languages. This renders expression semantics more complex than, 
for example, in Larch.  Furthermore, as we shall see in the following section, developers 
are in a different mindset when reading or writing specifications, particularly when it 
comes to reasoning about integer arithmetic. 

/*@ public normal_behavior 
  @   requires y >= 0; 
  @   ensures Math.abs(\result) <= y 
  @        && \result * \result <= y 
  @        && y < (Math.abs(\result) + 1) 
  @                * (Math.abs(\result) + 1); 
  @*/ 
public static int isqrt(int y) 
 

Figure 1. JML specification of isqrt(int) 
 

A semantic gap, motivating examples 

Consider the specification in Figure 1 of an integer square root method, isqrt; it was 
excerpted from the June 2002 edition of the main JML reference document [LBR02].  
The specification requires that a caller invoke the method with a nonnegative argument y, 
and in return, the method ensures that it will yield a value, r, such that: | r |  ≤  y   ∧  r2 ≤ y  
< (| r | + 1)2. The current definition of JML states that the expressions in the requires 
and ensures clauses of Figure 1 are to be interpreted using the semantics of Java. As a 
consequence (and a simple Java prototype will justify this claim), a valid implementation 
of isqrt would be permitted to return Integer.MIN_VALUE when y is 0. This 
unexpected situation arises because Java integral types have a fixed precision and 
because operators over these types obey rules of modular arithmetic—thus, for example 

Integer.MIN_VALUE == Integer.MAX_VALUE + 1 
Math.abs(Integer.MIN_VALUE) == Integer.MIN_VALUE 
Integer.MIN_VALUE * Integer.MIN_VALUE == 0 
(Integer.MIN_VALUE + 1) * (Integer.MIN_VALUE + 1) == 1 
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/*@ spec_public */  
private short intPart, decPart; 
 
/*@ normal_behavior 
  @  modifiable intPart, decPart; 
  @  ensures    intPart == -\old(intPart) && 
  @             decPart == -\old(decPart) ...; 
  @*/ 
public Decimal oppose() 
 

Figure 2. Decimal class specification excerpt 
 

As another example, consider the specification given in Figure 2 which was excerpted 
from a paper on the formal verification of an electronic purse applet [BvdBJ02]. We 
show part of the Decimal class specification: an instance of Decimal represents a fixed-
point number with three digits of precision after the decimal point.  Such a fixed-point 
number is implemented by two short fields: intPart for the integer part and decPart 
denoting the number of thousandths (e.g. 3 and 142, respectively, for the number 3.142). 
Note that the specification of oppose is inconsistent: i.e. there is a situation that satisfies 
its precondition (which is trivial since it is true) for which the postcondition is not 
satisfiable.  This situation arises when \old(intPart)—the value of intPart in the 
pre-state, i.e. before oppose is called—is equal to Short.MIN_VALUE, in which case 
the first conjunct of the ensures clause would be evaluated as follows: 

• intPart == -\old(intPart) 
• intPart == -(–32768

short
) 

substitution of the value of \old(intPart), Short.MIN_VALUE. 
• intPart == -(–32768

int
) 

numeric promotion from short to int (due to unary minus semantics). 
• intPart == 32768

int
 

application of unary minus. 
• (int)intPart == 32768

int
 

numeric promotion of intPart from short to int (due to ==). 
There is no value that intPart can have that, after a widening primitive conversion to 
int, would make it equal to 32768 since Short.MAX_VALUE is 32767. 

What has gone wrong? These JML specifications (and others) demonstrate that 
specifiers most often ignore the finiteness of numeric types. (Incidentally, this is also true 
of Java programmers [BS04].) Stated positively, specifiers generally think in terms of 
arbitrary precision arithmetic when they read and write specifications. A survey, 
including the two cases just described, is given in [Chalin03] of invalid and inconsistent 
JML specifications caused by this problem. Hence, there is a semantic gap between user 
expectations and the current language design and semantics of JML numeric types. As a 
way of leading up to our proposed means of bridging the semantic gap, we explore next 
how the specification of isqrt might be “fixed” within the current semantics of JML. 
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Attempting to mend the gap 

The isqrt specification can easily be corrected so that Integer.MIN_VALUE is not a 
valid result by ensuring that arithmetic overflow does not occur while interpreting the 
ensures clause expression. A strengthened specification is given in Figure 3—
differences relative to the previous specification are underlined. (It should be noted that 
one of our goals here is to preserve the overall form of the ensures clause predicate while 
exploring means of adapting or adorning the predicate so that its meaning matches our 
expectations.)  Explicit type widening ensures that all operators will be applied to long 
arguments. 

  /*@ public normal_behavior 
    @   requires y >= 0; 
    @   ensures Math.abs((long)\result) <= y 
    @       && (long)\result * \result <= y 
    @       && y < (Math.abs((long)\result)+1) 
    @               * (Math.abs((long)\result)+1); 
    @*/ 
  public static int isqrt(int y) 
 

Figure 3. JML specification of isqrt(int) with cast to long 
 

Although explicit type casting solves the problem in this particular case, it would be 
ineffective if the argument and return types of isqrt were changed from int to long.  
The specification of this new isqrt(long) method can none-the-less be corrected by 
making use of the only available mechanism in JML to express arbitrary precision 
arithmetic, namely, the JMLInfiniteInteger model class. The resulting specification 
of isqrt(long) is given Figure 4. Notice how we might have gained accuracy, but we 
loose significantly in clarity. The intent of the specification is obviously lost due to its 
verbosity, and it becomes clear why JML developers might avoid using 
JMLInfiniteInteger for something as common as expressions involving arithmetic. 

/*@ public normal_behavior 
  @  requires y >= 0; 
  @  ensures  
  @    (new JMLInfiniteInteger(\result)).abs().compareTo( 
  @             new JMLInfiniteInteger(y)) <= 0 
  @     && (new JMLInfiniteInteger(\result)).multiply( 
  @             new JMLInfiniteInteger(\result)).compareTo( 
  @                  new JMLInfiniteInteger(y)) <= 0  
  @     && (new JMLInfiniteInteger(y).compareTo( 
  @          (new JMLInfiniteInteger(\result)).abs(). 
  @            add(JMLInfiniteInteger.ONE). 
  @            multiply( 
  @              (new JMLInfiniteInteger(\result)).abs(). 
  @                 add(JMLInfiniteInteger.ONE))) < 0; 
  @*/ 
public static int isqrt(int y) 
 

Figure 4. Specification of isqrt(long) using JMLInfiniteInteger 
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We come to the conclusion that there is no general and practical language 
mechanism in JML that would allow us to mend the semantic gap. Hence, in the next two 
sections we explore JML language variants named JMLa and JMLb. They represent our 
approaches to closing the semantic gap while, at the same time, balancing JML’s 
language design goals. By presenting an intermediate step (JMLa) towards our final 
solution (JMLb) we can better convey the motivation behind our choice of language 
features. 

3 JMLA: PRIMITIVE ARBITRARY PRECISION NUMERIC TYPES 

Shortening the semantic gap 

The overly verbose specification of isqrt(long) defined using the 
JMLInfiniteInteger reference type makes it obvious that, just as Java has primitive 
fixed precision numeric value types, JML should have primitive arbitrary precision 
numeric value types. To this end we introduce in JMLa the primitive numeric types 
\bigint and \real representing arbitrary precision integers and floating point 
numbers, respectively. Like other JML keywords that can occur in expressions, these start 
with a slash character so as to prevent name clashes in specifications for existing Java 
code that made use of identifiers with the names bigint or real. 

External to the language we also define a model class named 
org.jmlspecs.lang.JMLMath that, in particular, provides methods like those of 
java.lang.Math but that are defined over \bigint’s and \real’s. Like in Java, all 
specifications implicitly import org.jmlspecs.lang.*.  

A JMLa specification for isqrt(long) is given in Figure 5. Note how it preserves 
the clarity and the form of the original specification while achieving the required degree 
of accuracy.  

/*@ public normal_behavior 
  @   requires y >= 0; 
  @   ensures JMLMath.abs(\result) <= y 
  @        && (\bigint)\result * \result <= y 
  @        && y < (JMLMath.abs(\result) + 1) 
  @                * (JMLMath.abs(\result) + 1); 
  @*/ 
public static long isqrt(long y) 
 

Figure 5. JML specification of isqrt(long) with casts to \bigint 
 

Closing the semantic gap 

Most specifiers think in terms of arbitrary precision arithmetic, yet the semantics of 
expressions in Java and JML are such that fixed precision arithmetic is the default 
interpretation. Introducing new primitive arbitrary precision types to the JML language is 
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one step towards narrowing this gap, but it does not close it.  Alternatives for closing the 
gap include: 

• Adapting the Java language to support a primitive arbitrary precision integral 
type, as is done in languages like ML and Haskell. Such a new language feature 
would naturally become a part of JML. Of course, offering programmatic support 
for reals is not possible. 

• Adding distinct operator names (e.g. \oplus or ⊕) to distinguish between 
operations over fixed vs. arbitrary precision numeric types. In specifications, Java 
operators would refer to operations over \bigint and \real whereas the special 
operators would refer to Java’s fixed precision arithmetic. Although this solution 
is common in Larch, it would go against JML’s main language design goals.  

• Adding implicit promotion to \bigint for integral expressions. (Of the examples 
that we have surveyed, we have yet to justify the need for implicit promotion to 
\real.) 

Among these alternatives the last would appear to be the most feasible and the one that 
clashes the least with the language design goals of JML and hence it is chosen for JMLa.  

Informal semantics 

JMLa introduces the primitive types \bigint and \real, and appropriately places them 
as new “top” elements of the Java numeric type hierarchy as illustrated in Figure 6. Type 
numeric widening and narrowing are defined as a natural extension of the rules of Java. 

 
Figure 6. JMLa primitive numeric type hierarchy 

 

With respect to the semantics of integral arithmetic expressions, in JMLa we ensure that 
numeric operations that can cause overflow are performed over \bigint by default. We 
call the operators that can result in overflow unsafe operators; they are: unary -, binary +, 
-, * and /. Early in our design of JMLa, expression semantics followed a simple rule: all 
unsafe operators unconditionally promoted their integral operands to \bigint before 
performing the operation. This turned out to be impractical since Java programs contain 
many instances of constant expressions involving unsafe operators, the most common of 
which is -1. By the simple semantic rule, -1 would be implicitly promoted to \bigint 
and if this expression was on the right-hand side of an assignment or the argument to a 
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method call, then it would most likely have to be explicitly cast back a fixed precision 
type. Such explicit casts are unnecessary because it is easy to determine statically 
whether the evaluation of a constant expression will result in overflow or not. Thus we 
amended the rule to preserve Java semantics if: the operands are constant expressions and 
operator evaluation does not result in overflow.  

JMLa Expression Equivalent JMLa Expression  
(all conversions made explicit) 

Result 
Type Same semantics as in Java? 

+i +i int Yes, since unary + is safe. 
-i -(\bigint)i \bigint No, unary – is unsafe. 
-5 -5 int Yes, since –5 is an int value. 

-
Integer.MIN_VALUE 

-
(\bigint)Integer.MIN_VALUE\bigint

No, since the constant 
expression value is not in the 
range of int. 

i + j (\bigint)i + (\bigint)j \bigint No, since binary + is unsafe. 
Integer.MIN_VALUE 

- 1 
(\bigint)Integer.MIN_VALUE

- (\bigint)1 \bigint No, since the expression value 
is not in the range of int. 

2 + bi (\bigint)2 + bi \bigint Almost: Java-like type 
promotion 

2 + (int)bi (int)2 + (int)bi int Yes. 

i * f (float)i * f float Yes, no implicit promotion to 
\real. 

3 * 5 – 
Short.MAX_VALUE 

3 * 5 – 
(int)Short.MAX_VALUE int Yes (const. expr. value is an 

int). 

d / r (\real)d / r \real Almost: Java-like type 
promotion 

(\bigint)d / 2 (\bigint)d / (\bigint)2 \bigint Almost: Java-like type 
promotion 

Figure 7. Sample JMLa expressions 
(assume int i,j; \bigint bi; float f; double d; \real r) 

 

Examples of JMLa expressions are given in Figure 7. Notice how –5 has type int 
whereas -Integer.MIN_VALUE has type \bigint because evaluation of the latter 
constant expression in Java would result in an overflow. Other JMLa languages features 
were also defined [Chalin03] but since they are not a part of JMLb they are not discussed 
here. 

4 JMLB: MATH MODES 

Better balance of language design goals 

In all cases that we have encountered of invalid or inconsistent JML specifications (due 
to fixed precision arithmetic), the cases recover their validity and consistency under 
JMLa with either no syntactic changes or minor syntactic changes to the specifications 
[Chalin03]. Thus, the semantic gap has been closed, but this is achieved at the cost of 
contravening one of the basic design goals of JML, namely, that expressions that are 
valid in Java and JML should have the same meaning. At a minimum, there should be a 
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visual cue for specification readers to indicate that the semantics of numeric expressions 
are not like in Java. It is with this idea that we introduced the notion of arithmetic modes 
in JMLb. The default mode in JMLb coincides with Java semantics (like in JML). To 
indicate that JMLa semantics are in effect one must explicitly provide a modifier either to 
a class or a method declaration. We believe that this allows JMLb to achieve a better 
balance of the JML language design goals with a small extra cost (as compared to JMLa). 

Math modes 

In JMLb, there are three integral arithmetic modes, or math modes for short. The 
semantics of expressions for each mode is as follows: 

• Java math corresponds to Java semantics. 
• Bigint math corresponds to the JMLa implicit promotion semantics. 
• Safe math is like Java math except that arithmetic overflows are signaled by 

means of exceptions (like C# checked mode). 
To set the math mode for all specification expressions in a class one annotates the class 
definition with one of the following modifiers: spec_java_math, spec_bigint_math 
and spec_safe_math. These modifiers can also be applied to individual method 
definitions (examples will follow shortly). The scope of a modifier is the entire 
declaration to which it is applied. For finer grained control JMLb has operators that limit 
the scope of a mode to a given expression, E: e.g. \java_math(E), 
\bigint_math(E), and \safe_math(E). 

A sample JMLb specification is given in Figure 8. In this specification, the class 
modifier spec_bigint_math informs us that all specification expressions in the class 
are to be interpreted in bigint math mode by default. The first method specification is a 
slightly modified version of the specification of isqrt given in Figure 1 in which we 
have replaced the occurrences of Math by JMLMath. Notice that under JMLb, the 
specification of isqrt is valid since the expressions are interpreted over \bigint rather 
than int. The second specification is of an increment method that demonstrates the use 
of a math mode modifier, as applied to a method declaration, as well as a math mode 
operator. In this case, we make use of \java_math to specify that i+1 should be 
interpreted as in Java so that, e.g., i+1 will be equal to Integer.MIN_VALUE when i is 
equal to Integer.MAX_VALUE (as indicated in the given specification example). The 
final method specification illustrates the use of \bigint in a model method, thus 
defining inc as equivalent to the successor function over the infinite set of mathematical 
integers. 

When unspecified, the default mode is Java math, but to ensure that JML users are 
aware of the possible consequences of this default, JML tools will issue a warning if the 
math mode is not explicitly stated. In most cases, JML authors will want to choose 
spec_bigint_math. 

JMLb also provides the modifiers code_java_math, code_bigint_math and 
code_safe_math that allow the semantics of arithmetic expressions to be changed in 
Java code. Of course, for this to be effective one must use special compilers such as the 
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MultiJava or the JML Run-time Assertion Checker (RAC) compilers [Burdy+03]. We 
believed that this can be an convenient means of providing arbitrary precision arithmetic 
(for bigint math) or run-time overflow detection (for safe math). The latter feature is built 
in to the C# language and is called checked mode. Like in JMLb, the default mode in C# 
is unchecked. These code math modes are not discussed any further in this article. 

 
public /*@spec_bigint_math@*/ class JMLbSample 
{ 
  /*@ public normal_behavior 
    @   requires y >= 0;     
    @   assignable \nothing; 
    @   ensures JMLMath.abs(\result) <= y  &&  
    @           \result * \result <= y  && 
    @           y < (JMLMath.abs(\result) + 1) 
    @                * (JMLMath.abs(\result) + 1); 
    @*/ 
  public static int isqrt(int y) { 
    return (int) Math.sqrt(y); 
  } 
 
  /*@ public normal_behavior 
    @   assignable \nothing; 
    @   ensures \result == \java_math(i + 1); 
    @ for_example 
    @   public normal_example 
    @     requires i == Integer.MAX_VALUE; 
    @     assignable \nothing; 
    @     ensures \result == Integer.MIN_VALUE; 
    @*/ 
  /*@spec_safe_math@*/  
  public static int increment_and_wrap(int i) { 
      return i+1; 
  } 
 
  /*@ public normal_behavior 
    @   assignable \nothing; 
    @   ensures \result == i + 1; 
    @*//*@  
  @ public pure model static \bigint inc(\bigint i) { 
  @    return i+1; 
  @ }  
  @*/ 
} 

Figure 8. Sample JMLb specification 
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Advantages over JML 

Some of the key advantages of JMLb over JML include: 
• JMLb semantics more closely match user expectations.  We demonstrate in 

[Chalin03] how all of the invalid or inconsistent JML specifications given in that 
article recover their validity and consistency when interpreted under JMLa (i.e. 
JMLb with the spec_bigint_math modifier applied to each class) with little or 
no changes to the specifications.  

• JMLb can be used to write simpler, and clearer specifications (as compared, e.g., 
to use of JMLInfiniteInteger).   

• The meaning of JMLb specifications in bigint math mode can be independent of 
the particular choice of numeric type of fields and variables—as it should be 
since, e.g., method specifications are meant to express essential method behavior, 
which often is independent of field and variable types. This is not the case in Java 
and JML; e.g. “i == E” may be unsatisfiable if the identifier i is declared to be 
of type short. 

• ESC/Java [Flanagan+02] will be able to detect more errors under JMLb semantics 
than it currently can for JML (in particular due to the previous point). 

• Verification proofs will be greatly simplified as we recover the familiar laws of 
arithmetic when operating over \bigint and \real (e.g. associativity, 
commutativity and closure of operators). 

These points are particularly important as we witness the increased use of JML, 
especially in security critical areas like smart cards. Of course, these benefits come at the 
cost of a slightly more complex semantics and an increased departure from Java 
semantics. We believe though, that the benefits of JMLb outweigh its disadvantages. 

5 JMLB SEMANTICS 

The LOOP tool, developed at the University of Nijmegen, provides a semantics of Java 
and JML by means of a shallow embedding into PVS [vdBJ01, JP03]. PVS, short for 
Prototype Verification System, is the name given to a powerful theorem prover and to the 
specification language that it supports [PVS]. Following the LOOP approach, this section 
also presents a formalization of JMLb semantics by means of an embedding into PVS. 
We focus only on those aspects of JMLb that differ from JML—namely the semantics of 
arithmetic expressions under the various math modes—while ignoring important issues, 
such as abnormal termination in expressions, which are already effectively handled in 
LOOP. The semantics given here can be regarded as complementary to the LOOP 
semantics, eventually to be integrated with it (more will be said of this in the conclusion). 
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Abstract syntax and semantic objects 

The semantics of JMLb expressions is defined by means of an  “inference system” in a 
style referred to as natural semantics [Winskel93]. The inference rules allow us to 
establish the validity of elaboration predicates of the form 

ρ  Η xa A⎯→⎯  

where A is generally the name of an abstract syntax phrase class. Such a predicate asserts 
that the syntactic object a corresponds to the semantic object x under the context ρ; we 
will also say “a elaborates to x under ρ.” For the cases covered here, the context will be 
an environment containing the declarations under which elaboration is to be performed, a 
will be a JMLb expression and x a PVS expression qualified with its type. 

 
  e  ∈  EXPR ::=    cτ  |  ι  |  op(e1, …, ek) |  (τ) e |  \old(e) |  e.ι  |  e.ι (e1, …, ek)  | (q τ ι ; e)  
    |       \java_math(e) | \bigint_math(e) | \safe_math(e) | … 
  τ  ∈  TYPENM ::=     ι  |  … 
op  ∈  OPNM  
  q  ∈  QUANTNM ::=    \forall |  \exists 
 

Figure 9. Abstract syntax of JMLa expressions 
 

The abstract syntax for expressions relevant to our presentation is given in Figure 9. The 
defined cases are: 

• An integral literal constant of type τ ∈ {int, long}. 
• An identifier representing a logical variable (including \result, method 

parameters and quantifier variables). Since our focus in this article is on the 
particularities of JMLb semantics of expressions over numeric types, we shall 
make the simplifying assumption that all class and instance members are 
expressed in the form e.ι so as to be distinguishable from the occurrence of a 
logical variable. 

• An operator applied to one or more arguments.  Operators include those of Java 
(e.g. +, -, *) and JML (e.g. ==>, <==>). 

• A type cast expression. 
• A pre-state expression. 
• A field access expression. 
• A method invocation expression.  (Recall that methods in JML expressions must 

be “pure” [LBR02].) 
• A quantified expression. 
• Math mode expressions. 

JMLb expressions are translated into the “semantic objects” of PVS expressions, whose 
annotated abstract syntax is 

ε  ∈  PVSEXPR ::=    c : τ  |  op(ε1, …, εk) : τ  |  q (ι : τ ) : ε 
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Each PVS expression is annotated with its type. This allows us to ensure that, in 
particular, overloaded operators can be disambiguated. The cases of PVSEXPR define: 
constants, operators (including logical connectives and equality), quantified formulas 
(where q is either FORALL or EXISTS). Elaboration of expressions is done in the context of 
an environment, ρ ∈ ENV that can be thought of as a mapping from identifiers into their 
attributes. The following identifiers have a special meaning: 

• \result is the JML logical variable that can be used in ensures clauses to denote 
the value returned by a method; 

• \mathMode denotes the “currently active” math mode; 
• \state denotes the evaluation state context and is either bound to pre or post. 

By default, requires clause expressions are evaluated in pre and ensures clause 
expressions in post. 

The updated environment denoted by ρ ⊕ { ι � α } is the same as ρ except that it maps ι 
to α.  Note that in the initial JMLb environment ρo,  \mathMode is set to java. 

Primitive numeric types in PVS 

Before presenting the elaboration rules, we will explain how JMLb primitive numeric 
types are modeled in PVS.  The JMLb arbitrary precision types \bigint and \real are 
modeled by the standard PVS types integer and real. For convenience, we have also 
defined a synonym for integer named bigint. We have created simple theories, all of 
the same form, for each of the bounded precision integral types. As an example, an 
excerpt of the theory for int is given in Figure 10. Notice how the int type is simply 
defined as the subtype of integer that contains values in the range min to max 
inclusive. A key function in this theory is narrow which effectively defines narrowing 
primitive conversion to int. All arithmetic operators are defined using their integer 
counterparts followed by an application of narrow. Thus, addition of int’s is defined as 
the addition of their values interpreted as integer’s followed by a narrowing of the 
result to int: i.e. add(i,j) = narrow((i:int + j:int):integer):int. Bitwise 
operators are tricky to handle in PVS hence, for the most part, we use the bit vector 
library that is part of the standard distribution of PVS. 
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int: THEORY 
 BEGIN 
  IMPORTING number_theory@mod_nt, div@div,  
            div@div_alt, div@rem 
  ... 
  twoPn: posint = 4294967296 
  max  : nat    = 2147483647 
  min  : negint = -2147483648 
   
  int: TYPE+ = {i: integer | min <= i AND i <= max}  
                 CONTAINING 0; 
   
  % Narrowing primitive conversion to int 
  narrow(i: integer): int = 
      LET b:nat = mod(i, twoPn) IN 
        IF b <= max THEN b ELSE b - twoPn ENDIF   
 
  neg(i:int)  : int = narrow(-i) 
  add(i,j:int): int = narrow(i + j) 
  sub(i,j:int): int = narrow(i - j) 
  mul(i,j:int): int = narrow(i * j) 
 
  % Division rounds towards zero (JLS2.0, Section 15.17.2): 
  % 
  div(i:int, j:{j:int|j /= 0}): int = narrow(div.div(i,j)) 
   
  % Remainder satisfies (i/j)*j + (i%j) == i for all  
  % values except j = 0, including i = max and j = -1  
  % (JLS2.0, Section 15.17.3). 
  % 
  rem(i:int, j:{j:int|j/=0}): int = narrow(rem.rem(i,j)) 
   
  div_rem: LEMMA FORALL (i,j:int):  
      j /= 0 => div(i,j)*j + rem(i,j) = i 
  ... 
 
  bit_neg(i:int): int = -i – 1 
  ... 
 END int 

Figure 10. PVS theory for int 
 

Elaboration rules 

Elaboration rules for JMLb expressions are given in Figure 11. For each syntactic case of 
EXPR we have combined the type and expression elaborations into a single rule. Aside 
from the backslash prefixing the JMLb type names \bigint and \real, JMLb and PVS 
type names coincide, hence we will make no distinction between them, using the same 
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type name τ in both the abstract syntax and PVS expressions. The given semantics do not 
cover rules for constant expressions, and (as was mentioned earlier) it ignores issues of 
abnormal termination. 

 
Figure 11.  JMLb expression semantics, selected rules 
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• The rules for literals [Literal] and logical variables [Logical Var] illustrate that 

they are translated almost literally. Thus, 3 and 5L elaborate to 3:int and 
5:long respectively. Similarly, provided that a logical variable has been declared 
in scope, it elaborates to the same name qualified with its declared type (of course 
\result would have to be mapped to a special PVS name). Method parameters, 
quantifier variables and \result are modeled as logical variables. 

 
Operator(s) 

op 
Argument Type(s) 

ArgTypeop 

Argument 
Conversion

convop 

Result 
Type 

resultTypeop 

PVS Function(s) 
φop 

+ (unary) Numeric unp to τ τ id: τ → τ 
- (unary) Numeric unp to τ  τ  τ.neg 

~ Integral unp to τ  τ  τ.bit_neg 
! boolean none boolean NOT 

*, /, % Numeric, Numeric bnp to (τ,τ) τ τ.mul, τ.div, τ.rem 
+, - Numeric, Numeric bnp to (τ,τ) τ τ.add, τ.sub 

<<, >>, 
>>> Integral, Integral arg1:unp to τ

arg2: unp τ τ.lshift, τ.rshift, 
τ.rshift_u 

<, <=, >, 
>= Numeric, Numeric bnp boolean <, <=, >, >= 

Numeric, Numeric bnp boolean ==, /= 
==, != boolean, 

boolean none boolean ==, /= 

boolean, 
boolean none boolean AND, XOR, OR 

&, ^, | 
Integral, Integral bnp to (τ,τ) τ τ.bit_and, τ.bit_xor, 

τ.bit_or 

&&, || boolean, 
boolean none boolean AND, OR 

==> boolean, 
boolean none boolean ==> 

<==>, 
<=!=> 

boolean, 
boolean none boolean ==, /= 

Figure 12. Semantics of selected JMLb operators 
 

• There are two elaboration rules for expressions involving operators. [Op] applies 
to all unsafe operators (these are listed in Section 3) while in bigint math mode. 
The [OpJava] rule applies to operators that are not unsafe, or to any operator 
while in Java or safe math mode. To apply either of these rules one must make use 
of the information provided in Figure 12. Let op be an operator that appears in 
column 1 of the table, then the remaining columns define: the required argument 
type(s) (ArgTypeop), the kind of argument conversion to be applied (convop), the 
resulting type of the expression (resultTypeop) and finally, the PVS function 
corresponding to the operator op (φop). In the argument type column: “numeric” 
includes Java numeric types as well as \bigint and \real; “integral” includes 
Java integral types as well as \bigint. The argument conversions that can be 
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applied correspond to unary numeric promotion or binary numeric promotion. 
These promotion functions come in two variants (see Figure 13): those 
corresponding to implicit promotion to arbitrary precision types (JML.*) and 
those that imitate the standard Java promotion rules (Java.*). 

• The math mode operators merely set the active mode in the environment under 
which their arguments are interpreted. 

• Type casts are processed in two cases depending on the nature of the cast: i.e. 
whether it corresponds to a widening [Widen] or narrowing primitive conversion 
[Narrow]. Type widening requires no special operator in PVS. On the other hand, 
narrowing to type τ requires the application of the narrow function defined in the 
theory of τ. 

• Interpretation of a pre-state expression is simply achieved by changing the 
elaboration context with respect to the current state variable (\state). For the 
given rules, this currently has an impact only on field member access. 

• Quantified expressions are translated almost directly into PVS. The JML 
quantifiers \forall and \exists are named FORALL and EXISTS in PVS. 

• Field access makes use of the function val which is defined over the state held in 
ρ. Given a reference r of type Ref[τ], and a state s, then val(s,r) will yield the 
value of type τ contained in r. 

• Member access is restricted to pure methods—i.e. in particular, methods that are 
guaranteed not to have side-effects. 

 
JML.unp(τ) = 

 if  τ ∈ { float, double, \real }
then \real  
else \bigint end 

JML.bnp(τ1, τ2) =  if  τ1 or τ2 is one of   
         { float, double, \real } 
 then (\real, \real) 
else (\bigint, \bigint) end 

Java.unp(τ) = if τ ∈ { byte, short, char }  
then int else τ end 

Java.bnp(τ1, τ2) = if \real ∈ {τ1, τ2} then (\real, 
\real) 
else-if \bigint ∈ {τ1, τ2} then (\bigint, 
\bigint) 
else-if double ∈ {τ1, τ2} then (double, double) 
else-if float ∈ {τ1, τ2} then (float, float) 
else-if long ∈ {τ1, τ2} then  (long, long) 
else  (int , int ) end 

 
Figure 13. JMLb type conversion functions 

 

Example 

As an example of the application of the elaboration rules we will use the JMLb isqrt 
specification given in Figure 8. The resulting PVS translation is shown in Figure 14.  
Notice how the PVS expressions closely resemble their JMLb counterparts.  As a partial 
indication of the suitability of the semantic translation, we have been successful in 
proving the consistency of the isqrt specification (making use of PVS abs for 
JMLMath.abs). 
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IMPORTING int, ... 
 
isqrt_requires(y: int): bool =  y >= 0; 
isqrt_ensures(y, result: int): bool = 
  JMLMath.abs(result) <= y AND result * result <= y AND 
      y < (JMLMath.abs(result)+1) * (JMLMath.abs(result)+1); 
 
isqrt_consistent: LEMMA FORALL (y:int): 
  EXISTS (result:int):  
    isqrt_requires(y) => isqrt_ensures(y,result) 

 
Figure 14. PVS definition of isqrt 

 

6 RELATED WORK 

Primitive arbitrary precision numeric types 

Several computer languages and tools provide basic language support for arbitrary 
precision integers including: specification languages, such as B, OBJ, VDM, and Z 
[Bowen03]; BISLs such as Larch, and Extended ML (EML); Functional languages like 
ML, Haskell, and Lisp; proof tools like PVS and symbolic mathematics systems such as 
Mathematica and Maple. Basic support for real numbers is most common in general 
design specification languages and proof tools and less common in other languages. 
Symbolic mathematics packages often provide arbitrary precision rational numbers. 

Eiffel 

Eiffel, well know for its promotion of design by contract, also makes use of pre- and 
post-conditions in “method” specifications [Meyer92]. Like JML, Eiffel does not have 
support for arbitrary precision integers (as part of its kernel), but it is subject to similar 
problems due to the use of fixed precision arithmetic types in specifications. As an 
example, consider the following specification for the abs function as taken from any one 
of the kernel classes INTEGER_8, INTEGER_16, INTEGER, or INTEGER_64: 

abs: INTEGER_16 is 
  ensure 
    non_negative: Result >= 0 
    same_absolute_value: (Result = item) or (Result = -item) 

The non_negative clause cannot be satisfied when applied to 
INTEGER_16.Min_value. Due to Eiffel’s type system and language semantics with 
respect to numeric conversions and method/operator resolution, it is unclear how the 
solutions presented here could be generalized to Eiffel. 
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Spark 

Spark is a carefully chosen subset of Ada suitable for use in the development of highly 
reliable software [Barnes03]. Tool support includes the Spark Examiner which can 
perform extended static checking of Spark code annotated with assertions (e.g. 
subprogram pre- and post-conditions, loop invariants). 

Although integral types are of fixed precision in Spark (and Ada), Spark does not 
suffer from the same problems as JML because integral arithmetic in specification 
expressions is interpreted over the arbitrary precision integers. Thus, the following Spark 
function specification 

function Negate(X: Integer) 
--# returns –X; 

would result in the generation of the verification condition Integer’First <= –X <= 
Integer’Last which is unprovable when X is Integer’First. The same result 
would be obtained in spec_bigint_math mode in JMLb—in fact, Spark specification 
expression semantics corresponds to JMLb spec_bigint_math mode. The main 
difference is that there is no type corresponding to the mathematical integers in Spark. 
Arithmetic in Ada programs is checked: i.e. overflows are reported by means of 
exceptions. Hence, Ada code is interpreted in the equivalent of JMLb’s code safe math 
mode. Spark does not currently support specification and reasoning about exceptions. 

UML/OCL and Java in KeY 

The KeY project (http://www.key-project.org) offers tool support for the specification 
and verification of Java Card programs. Specifications are expressed in UML/OCL and 
verification is carried out in Dynamic Logic [Ahrendt+04]. For the purpose of program 
verification in KeY, Java is extended with four primitive arbitrary precision types (called 
arithmetical types): arithByte, arithShort, arithInt and arithLong. Arithmetic 
operators are defined (for each arithmetical type) with a semantics identical to their Java 
counterparts except in those situations where overflow would occur; in these cases, the 
semantics of the operators over the arithmetical types is left unspecified. It should be 
noted that this Java language extension is only used during the verification process (and 
hence, need not be supported by, say, a specially adapted Java compiler). 

The KeY approach to specification and verification (with respect to integral 
arithmetic) is the following [BS04, Section 3.5]: 

1. Specifications are written in UML/OCL using the OCL type Integer which 
corresponds to the mathematical integers. 

2. Implementations of operations (methods) specified using the Integer type must 
be declared with one of the KeY arithmetical types. 

3. Verification is then performed and if successful, then the semantics of KeY 
guarantee that the implementation will preserve its validity if all arithmetical 
types are replaced by their corresponding Java types. 
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The KeY approach is similar to Larch in that it appears to have two tiers (see Section 2). 
The shared or mathematical tier is provided by UML/OCL. As a consequence, the 
semantic gap that was present in JML is absent from KeY because specification 
statements are expressed in UML/OCL using the mathematical integers. On the other 
hand, there is no clearly identified interface specification language in KeY. This can give 
rise to problems: for example, consider the following UML/OCL method specification: 

context C::negate(x: Integer) : Integer 
post result = -x 

From this specification we can deduce that acceptable implementations will consist of a 
class named C exporting a method named negate, but the signature of negate is not 
fixed; any of the following (among others) might be acceptable: byte negate(byte) or 
int negate(int) or even int negate(byte). No such ambiguity is possible in JML 
since the method signature is fixed in the “interface” part of the specification. We believe 
that this might explain, in part, why the KeY solution (e.g. adding for new primitive types 
to Java) is more complex than the approach adopted in JMLb (in which we added only 
one new integral type). 

7 CONCLUSIONS AND FUTURE WORK 

We have illustrated a semantic gap between user expectations of the meaning of 
expressions over numeric types and the current JML language definition. Due to this gap, 
several published JML specifications are invalid or inconsistent—we have presented two 
such problematic specifications. To better meet user expectations, we have defined a 
variant of JML called JMLb that has support for primitive arbitrary precision numeric 
types \bigint and \real. JMLb also introduces arithmetic modes and allows specifiers 
to select the mode that is most appropriate for the specification at hand, generally though, 
it will be spec_bigint_math mode. A semantics of JMLb expressions is given and its 
application is illustrated by means of a simple example.  

Members of Concordia’s Dependable Software Research Group (DSRG) have 
completed the implementation of JMLb in the JML checker and this has allowed us to 
detect or confirm over two dozen inconsistent or erroneous JML specifications. Work is 
also progressing towards inclusion of JMLb support (both spec and code math modes) in 
jmlc, the JML runtime assertion checker compiler (RACC) as well as support for the 
code math modes in the MultiJava compiler. 

Cees-Bart Breunesse and Joe Kiniry from the University of Nijmegen have nearly 
completed the integration of JMLb in the LOOP tool and ESC/Java2, respectively. 
Hence, it is now possible to use the LOOP tool to perform verifications of JML annotated 
Java modules under JMLb semantics. The main task that remains to be done for 
ESC/Java2 is finding a suitable replacement for the Simplify theorem prover which 
inadequately handles arbitrary precision integral arithmetic. 
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