
Vol. 3, No. 6
Special issue: ECOOP 2003 workshop on FTfJP

Stronger Typings for Smarter Recompilation
of Java-like Languages

Davide Ancona, DISI, University of Genova, Italy
Giovanni Lagorio, DISI, University of Genova, Italy

We define an algorithm for smarter recompilation of a small but significant Java-like
language; such an algorithm is inspired by a type system previously defined by Ancona
and Zucca.
In comparison with all previous type systems for Java-like languages, this system
enjoys the principal typings property, and is based on the two novel notions of local
type assumption and entailment of type environments. The former allows the user
to specify minimal requirements on the source fragments which need to be compiled
in isolation, whereas the latter syntactically captures the concept of stronger type
assumption.
One of the most important practical advantages of this system is a better support for
selective recompilation; indeed, it is possible to define an algorithm directly driven by
the typing rules which is able to avoid the unnecessary recompilation steps which are
usually performed by the Java compilers.
The algorithm is smarter in the sense that it never forces useless recompilations, that
is, recompilations which would generate the same binary fragment obtained from the
previous compilation of the same source fragment.
Finally, we show that the algorithm can actually speed up the overall recompilation
process, since checking for recompilation is always strictly less expensive than recom-
piling the same fragment.

1 INTRODUCTION

Selective recompilation [1] is the ability to avoid unnecessary recompilation steps
after code modification, while retaining both type safety and semantic consistency
of programs. Despite Java1 compilers allow separate compilation, the support for
selective recompilation is rather poor; as a consequence, for maintaining the consis-
tency of large projects, users are forced to spend a considerable amount of time in
recompiling software in reaction to source modifications.

As a starting example, let us consider the following two classes defined in two
separate files:

1Throughout this paper we will only mention Java for brevity, but all claims about Java can
be replaced with analogous claims about C#.

Cite this article as follows: Davide Ancona, Giovanni Lagorio: ”Stronger Typings for
Smarter Recompilation of Java-like Languages”, in Journal of Object Technology, vol.
3, no. 6, June 2004, Special issue: ECOOP 2003 workshop on FTfJP, pp. 5–25,
http://www.jot.fm/issues/issue 2004 06/article1

http://www.jot.fm/issues/issue_2004_06/article1

STRONGER TYPINGS FOR SMARTER RECOMPILATION OF JAVA-LIKE LANGUAGES

class H extends P { class P extends Object {
int g(P p) {return p.f(new H());} int f(Object o) {return 1;}
} }

Classes H and P both compile successfully. Now let us change the definition of P;
obviously P needs to be recompiled (let us assume that such a recompilation is
successful), but what about H? In Java three different cases may occur:

Case 1. The modification of P invalidates neither the type safety nor the
semantic consistency of H: if we recompile H, then we get no error and the
same bytecode. This happens, for instance, if we add to P a new method
int h().

Case 2. The modification of P does not invalidate the type safety of H, but
does compromise its semantic consistency: if we recompile H we get no error
but we obtain a different bytecode. For instance, if the parameter type of f
becomes P, then the bytecode for H must change correspondingly, since in the
Java bytecode method calls are annotated with the types of the parameters of
the resolved method.

Case 3. The modification of P compromises the type safety of H: if we recompile
H we get an error; for instance, this happens if we change the parameter type
of f to be int.

In case 1 we would like to avoid an unnecessary recompilation of class H, while in
case 2 we do want to force recompilation of H; however, this is not possible with
the SDK compiler2, where the user can in fact choose either to recompile all classes
(avoiding type unsafety and semantic inconsistency, but not unnecessary recompila-
tions), or to recompile only modified classes (avoiding unnecessary recompilations,
but not type unsafety and semantic inconsistency).

The only Java-specific approach to selective recompilation we are aware of (at
least in form of a publication) is Javamake [6]. Javamake is a make technology
based on a quite elaborate dependency analysis which allows avoidance of useless
recompilations. However this approach still allows some useless recompilations in
the situations depicted by case 1, and (what is perhaps worst) does not guarantee
that recompilation is always forced in the situations corresponding to case 2; this
is mainly due to the fact that the algorithm is quite involved, and not based on a
formal model.

On the contrary, the algorithm presented in this paper is directly driven by
a formal type system for a small but significant subset of Java, which is just a
simplified version of the system which has been proved to have principal typings
by Ancona and Zucca [4]. Principality and soundness of the system guarantee that

2Throughout the paper we refer to the compiler of Java 2 SDK, version 1.4.2.

6 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 6

1 INTRODUCTION

our algorithm is smarter, in the sense that recompilations are always avoided in the
situations captured by case 1, and always forced in those depicted by case 2.

However, our algorithm is not the smartest, since for what concerns case 3 of our
starting example, the best solution would consist in detecting the problem without
re-inspecting the source code for H, but since this task turns out to be quite hard, our
algorithm deals with cases 2 and 3 in the same way, by always forcing recompilation
of the involved fragments.

The algorithm is heavily based on the formal system and indeed implements the
two most peculiar notions: local type assumptions , and entailment between type
environments.

In the SDK type systems, that is, those modeling typechecking of the SDK Java
compiler [2, 7, 10], typings cannot be principal because the type environments ex-
press too strong requirements on classes [3]. For instance, in our starting example
class H is successfully compiled by the SDK compiler under the assumptions that
class P extends Object and its body exactly contains just one method, named f,
with one parameter of type Object, and return type int. This assumption, which
we call standard, specifies the global type of P which is far from minimal for success-
fully compiling H. On the other hand, local - as opposite to global - type assump-
tions can express minimal requirements on classes as, for instance, “the invocation
p.f(new H()) can be resolved to a method f, with parameter type Object, and
return type int”.

As a consequence, our algorithm uses several kinds of local type assumptions;
for instance, besides the conventional assumption C1 ≤ C2 requiring class C1 to be a
subtype of C2, the local assumption C.m(T̄)

res→ <T̄
′, T> requires that the invocation

of method m of an object of type C with arguments of type T̄ is successfully resolved
to a method (obviously named m) with parameters of type T̄

′ and return type T.

In order to avoid unnecessary recompilations, the algorithm needs to compare
the minimal assumptions (that is, a type environment Γ1) required for compiling a
given class into a given binary, with the standard type assumptions extracted from
the modified code (that is, a type environment Γ2), in order to decide whether the
assumptions in Γ2 implies those in Γ1. In other words, the algorithm implements an
entailment relation ` between type environments which is the same defined in the
formal system, so that it is possible to check whether Γ2 ` Γ1 holds.

Recalling our starting example, let ΓH denote the type environment used for
compiling class H before P was modified, and let τH and τP denote the types of H
and P extracted from the code after P was modified. Then the algorithm forces the
recompilation of H if and only if the entailment relation H:τH , P:τP ` ΓH does not
hold.

The paper is structured as follows. Section 2 is a gentle introduction to the
formal system, whereas Section 3 gives the formal definitions. Section 4 makes a
comparison with Javamake, introduces the basic ideas of our approach and then de-
scribes the algorithm and, finally, makes some considerations on the costs of smarter

VOL 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 7

STRONGER TYPINGS FOR SMARTER RECOMPILATION OF JAVA-LIKE LANGUAGES

selective recompilation. Section 5 contains pointers to other related work and some
conclusions.

2 AN INFORMAL PRESENTATION

This section is a gentle introduction to the system formally defined in Section 3.
More precisely, the two basic notions of local type assumption and entailment rela-
tion between type environments are informally presented and motivated.

The language used in the examples is a basic subset of Java, where classes can
only declare instance methods (possibly overloaded) and have just the implicit de-
fault (parameterless) constructor.

Local Type Assumptions Let us consider a slightly more complex version of
the class H defined in the Introduction:

class H extends P {
int g(P p) {return p.f(new H());}
int m() {return new H().g(new P());}
U id(U u){return u;}
X em(Y y){return y;}
}

and let us analyze under which assumptions class H can be successfully compiled. If
we take the approach of the SDK compiler, then we would need to impose rather
strong requirements on the classes used by H, by asking for the most detailed type
information about such classes.

In our system this corresponds to compiling H in a type environment Γs which
contains standard type assumptions on the classes P, U, X and Y. For instance, if Γs

is defined by:

Γs = P:<Object, int f(Object)>, U:<Object, >, Y:<X, >, X:<Object, >

then we are assuming that class P extends Object and declares only int f(Object),
classes U and X both extend Object and are empty, and class Y extends X and is
empty. An environment like Γs containing only standard type assumptions is called
a standard type environment .

Under the assumptions contained in Γs class H can be successfully compiled to
the following binary fragment Bh:

class H extends P {
int g(P p) {return p.<<P.f(Object)int>>(new H());}

8 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 6

2 AN INFORMAL PRESENTATION

int m() {return new H().<<H.g(P)int>>(new P());}
U id(U u){return u;}
X em(Y y){return y;}
}

In our system a binary fragment is just like a source fragment except that in-
vocations contain a symbolic reference � C.m(T1 . . . Tn)T� to a method, giving the
name m, the parameter types T1 . . . Tn and the return type T of the method, as well
as the class C in which the method is to be found (see [13] 5.1). Indeed, from our
perspective the most critical difference between source and binary fragments is type
annotations in method invocations, since it makes the problem of separate compi-
lation (that is, separate typechecking plus code generation) substantially different
from that of separate typechecking.

Let us now try to relax the strong assumptions in Γs by seeking an environment
Γl containing other kinds of type assumptions which still guarantee that H compiles
to the same binary fragment Bh, but impose fairly weaker requirements on classes
P, U, X and Y.

A first basic request is that the compilation environment containing H must
provide a definition for the four classes which H depends on. In our system this is
expressed by a local assumption of the form ∃ C, therefore Γl will contain at least
the assumptions ∃ P,∃ U,∃ X,∃ Y.

Let us now focus on each single class used by H.
Class P: in order to correctly compile class H (into Bh) the following additional
assumptions on class P must be added to Γl:

• P 6< H: P cannot be a proper subtype of H since inheritance cannot be cyclic.

• P,int g(P): P can be correctly extended with method int g(P); indeed, ac-
cording to Java rules on method overriding, if P has a method g(P), then g

must have the same return type int as declared in H. Analogous requirements
are needed for the other methods declared in H.

• P.f(H)
res→ <Object, int>: invocation of method f of an object of type P with

an argument of type H, is successfully resolved to a method with a parameter
of type Object and return type int. This assumption ensures that the body
of g in H is successfully compiled to the same bytecode of method g in Bh (in
other words, the same symbolic reference to the method is generated). Note
that we do not need to know the class where the method is declared, since the
bytecode is annotated with the type of the receiver.

Class U: no additional requirements on U are needed, since the static correctness of
method id in H only requires the existence of U.
Classes X and Y: in order to correctly compile class H, class Y must be a subtype
of class X, otherwise method em in H would not be statically correct. Therefore we
need to add the assumption Y ≤ X.

VOL 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 9

STRONGER TYPINGS FOR SMARTER RECOMPILATION OF JAVA-LIKE LANGUAGES

In conclusion, class H can be successfully compiled to Bh in the environment Γl

defined by:

Γl = ∃ P,∃ U,∃ X,∃ Y, P 6< H, Y ≤ X, P,int g(P),

P,int m(), P,U id(U), P,X em(Y), P.f(H)
res→ <Object, int>

Furthermore, Γs is stronger than Γl; for instance, class U must extend Object and be
empty in Γs, while in Γl it can extend any class and declare any method. The notion
of stronger type environment is syntactically captured by an entailment relation on
type environments.

Entailment of Type Environments In our system the intuition that Γs is
stronger than Γl is formalized by the following property: for all S, τ, B if Γl ` S : τ ;
B is provable, then Γs ` S : τ ; B is provable as well. However, since the definition
above cannot be directly checked in an effective way, the notion of stronger type
environment needs to be captured by an entailment relation (that is, a computable
relation) between type environments (see Figure 4 for the formal definition).

For instance, in our system Γs ` Γl can be proved. Furthermore, the entailment
relation is proved to be sound, that is, if Γ1 ` Γ2 can be proved, then Γ1 is stronger
than Γ2. In the particular example, we can go further, by showing that Γs is actually
strictly stronger than Γl.

Let us add in H the new method int one(){return 1;}. After this change, the
new code for class H still compiles in Γs, whereas the compilation of the same code
in Γl fails. To see this, let us consider the following new declaration for class P:

class P extends Object{
int f(Object o){return 1;}
P one(){return new P();}
}

The reader can easily verify that each type assumption in Γl about P is satisfied
by the new version of P above, however if we put all classes together we obtain
a statically incorrect program, since method one is redefined in H with a different
return type. Therefore Γs is strictly stronger than Γl; from this last claim and from
the soundness of the entailment we can deduce Γl 6` Γs.

3 FORMALIZATION

In this section we define the type system informally presented in the previous section.
The system is just a slightly simplified version of the system defined by Ancona and
Zucca [4].

10 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 6

3 FORMALIZATION

P ::= 〈S1 . . . Sn〉
S ::= class C extends C′ { MDSs }

MDSs ::= MDs
1 . . . MDs

n

MDs ::= MH { return Es; }
MH ::= T0 m(T1 x1, . . . , Tn xn)
Es ::= new C() | x | N | Es

0.m(E
s
1, . . . , E

s
n)

T ::= C | int
T̄ ::= T1 . . . Tn

B̄ ::= 〈B1 . . . Bn〉
B ::= class C extends C′ { MDSb }

MDSb ::= MDb
1 . . . MDb

n

MDb ::= MH { return Eb; }
Eb ::= new C() | x | N | Eb

0 � C.m(T̄)T� (Eb
1, . . . , E

b
n)

MS ::= T m(T̄)
MSS ::= {MS1, . . . , MSn}

Implicit assumptions:

• class names in P are distinct;

• method signatures in MDSs and MDSb are distinct;

• parameter names in MH are distinct.

Figure 1: Syntax

Definition of the System

The language we consider is a rather small but significant subset of Java; indeed,
it includes one of the most critical features for separate compilation, which is Java
static overloading ([5] – see the end of page 1).

The syntax of the language is defined in Figure 1, and type environments are
defined in Figure 2; metavariables C, m, x and N range over sets of class, method and
parameter names, and integer literals, respectively.

A program P is a sequence of source fragments; a source fragment S is a class
declaration consisting of the name of the class, the name of the superclass and
a sequence of method declarations MDSs. A method declaration MDs consists of a
method header and a method body (an expression). A method header MH consists of
a (return) type, a method name and a sequence of parameter types and names. There
are four kinds of expression: instance creation, parameter name, integer literal, and
method invocation. A type can be either a class name or int.

As already mentioned, the bytecode of our language differs from the source code
only for method invocations which contain a symbolic reference � C.m(T̄)T� to the

VOL 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 11

STRONGER TYPINGS FOR SMARTER RECOMPILATION OF JAVA-LIKE LANGUAGES

MS ::= T m(T̄)
MSS ::= {MS1, . . . , MSn}

µ ::= <C, T̄, T>
µs ::= {µ1, . . . , µn}

Γs ::= γs
1 . . . γs

n

γs ::= C:τ
τ ::= <C, MSS>
τ̄ ::= 〈τ1 . . . τn〉

Γl ::= γl
1 . . . γl

n

γl ::= ∃ T |
T ≤ T′ |
C.m(T̄)

res→ <T̄
′, T> |

C,MS |
C 6< C′ |

Γ ::= γ1 . . . γn

γ ::= γs | γl

Figure 2: Type environments

method to be invoked (see Section 2).

A standard type environment Γs is a possibly empty sequence of type assump-
tions of the form C:<C′, MSS> with the meaning “C extends C′ and declares exactly
all methods3 specified by MSS”. We denote the empty sequence by Λ and use the
notation def (Γs) for the set {C | C:τ ∈ Γs} (where γ ∈ Γ means Γ contains the
assumption γ).

A local type environment Γl is a possibly empty sequence of local type assump-
tions of the following kinds:

• ∃ T with the meaning “T is defined”;

• T ≤ T′ with the meaning “T is a subtype of T′”;

• C.m(T̄)
res→ <T̄

′, T> with the meaning “the invocation of method m of an object of
type C with arguments of type T̄, is successfully resolved to a method (obviously
named m) with parameters of type T̄

′ and return type T.

• C,T m(T1 . . . Tn) with the meaning “C can be extended by a subclass having
method T m(T1 . . . Tn) without breaking the Java rule on method overriding”;

• C 6< C′ with the meaning “C is not a proper subtype of C′”;

Finally, type environments Γ used for separate compilation can contain both
standard and local type assumptions; standard type assumptions are needed for
dealing with mutual recursion between classes (see rule for separate compilation of
programs in Figure 3) and for compatibility with the SDK systems.

Typing rules for separate compilation are defined in Figure 3. The top-level rule
defines the compilation of a program P, whose type is 〈τ1 . . . τn〉, into a set of binary
fragments 〈B1 . . . Bn〉. The provided environment, Γ, is enriched with the type of the
fragments to compile to deal with mutual recursion. The resulting environment Γ′

3For simplicity, in our language instance methods are the only members a class can contain.

12 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 6

3 FORMALIZATION

` Γ′�
Γ′ ` Si : τi ; Bi ∀i ∈ 1, . . . , n

Γ ` P : 〈τ1 . . . τn〉; 〈B1 . . . Bn〉

P = 〈S1 . . . Sn〉
Γ′ = Γ, C1:τ1, . . . , Cn:τn

Ci = name(Si), τi = type(Si)
∀i ∈ 1, . . . , n

Γ ` MDs
i ; MDb

i ∀ i ∈ 1, . . . , n
Γ ` C′

,MSi ∀ i ∈ 1, . . . , n
Γ ` C′ 6< C

Γ ` class C extends C′ {MDSs} : 〈C′, MSS〉;
class C extends C′ {MDSb}

MDSs = MDs
1 . . . MDs

n

MSS = {MS1, . . . MSn}
type(MDs

i) = MSi

∀ i ∈ 1, . . . , n

Γ; {x1:T1, . . . , xn:Tn} ` Es : T; Eb

Γ ` T ≤ T0

Γ ` ∃ Ti ∀ i ∈ 0, . . . , n

Γ ` T0 m(T1 x1, . . . , Tn xn) { return Es; };
T0 m(T1 x1, . . . , Tn xn) { return Eb; }

Γ; Π ` N : int; N

Γ; Π ` x : T; x
Π(x) = T

Γ ` ∃ C
Γ; Π ` new C : C; new C

Γ; Π ` Es
0 : C; Eb

0

Γ; Π ` Es
i : Ti ; Eb

i ∀i ∈ 1, . . . , n

Γ ` C.m(T1 . . . Tn)
res→ <T̄

′, T′>

Γ; Π ` Es
0.m(Es

1, . . . , E
s
n) : T′

; Eb
0 � C.m(T̄′)T′ � (Eb

1, . . . , E
b
n)

type(class C extends C′ { MDSs }) = 〈C′, type(MDSs)〉
type(MDSs) = type(MDs

1) . . . type(MDs
n)

type(MH { return Es; }) = type(MH)
type(T0 m(T1 x1, . . . , Tn xn)) = T0 m(T1 . . . Tn)

name(class C extends C′ { MDSs }) = C

Figure 3: Separate compilation

VOL 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 13

STRONGER TYPINGS FOR SMARTER RECOMPILATION OF JAVA-LIKE LANGUAGES

must be well-formed and the compilation of all the fragments Si must be derivable
in Γ′. The functions name and type extract from a class declaration the name and
the type of the class, respectively.

The rule which defines the compilation of a single fragment for class C checks
that all methods can be compiled, that the superclass C′ can be safely extended with
the methods declared in C and that there are no cycles involving C and C′ (existence
of the superclass is guaranteed by this last check). The function type extract from
a method declaration the return type and the signature of the method.

The rule for compiling a method declaration checks that the body can be com-
piled and that the return type and the types of the parameters are defined.

The typing rule for method invocation checks that all sub-expressions can be
compiled and that the method can be successfully resolved.

The entailment of type environments is given in Figure 4.

Rule (well-def) defines well-formed type environments, that is, consistent en-
vironments, and relies on the definition of well-formed standard environments. A
standard type environment is well-formed if the inheritance relation is acyclic, all
used classes are defined and the Java rules on overriding are respected (that is, a
class cannot declare a method with the same name and parameter types of an in-
herited method and different return type). The rules for well-formed standard type
environments can be found in Figure 5.

Rules (empty), (conc), and (singleton) ensure the basic properties expected by
an entailment relation. Note that Γ1 ` Γ2 is provable only if Γ1 is well-formed.

A class type C is defined in Γ if C is declared in Γ (def), whereas types Object

and int are always defined (rules (Object) and (int)).

Rules for subtyping are standard.

Rule (exact res) deals with the situation where there exists a method in a super-
class of the type of the receiver with parameters of the same type of the arguments;
clearly, in this case invocation will be always resolved to that method, despite the
other type assumptions contained in Γ. Rule (match res) requires more type assump-
tions than the previous rule in order to be applicable: the standard type assumptions
of all superclasses of the type C of the receiver - C included - must be in Γ. Then it
is possible to compute all applicable methods (function applAll) and to verify that
each applicable method is matchable (function matchAll) as well. Finally, the set of
all applicable methods must contain the most specific method (function mostSpec).
A method T′ m′(T̄′) is applicable to the invocation C.m(T̄) in Γ if m′ = m and T̄ ≤ T̄

′ can
be proved in Γ, while it is matchable if m = m′ and there exists a type environment
where T̄ ≤ T̄

′ can be proved. The definitions of the auxiliary functions are shown in
Figure 6. Rule (complete res) can be applied if the standard type assumptions of
all superclasses of the types C and T̄ - C and T̄ included - of the receiver and of the
arguments (Γ ` T̄ ⇑) can be found in Γ; in this case the set of all applicable methods
is the same in any environment entailed by Γ, therefore there is no need to compute

14 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 6

3 FORMALIZATION

(well-def)
Γs ` Γ ` Γs�

` Γ�

(empty)
` Γ�
Γ ` Λ

(conc)
Γ ` Γ1 Γ ` γ

Γ ` Γ1, γ
(singleton)

` Γ1, γ, Γ2�
Γ1, γ, Γ2 ` γ

(def)
Γ ` C:<C′, MSS>

Γ ` ∃ C
(Object)

` Γ�
Γ ` ∃ Object

(int)
` Γ�

Γ ` ∃ int

(refl)
Γ ` ∃ T

Γ ` T ≤ T
(trans)

Γ ` C1 ≤ C2 Γ ` C2:<C3, MSS>

Γ ` C1 ≤ C3

(top)
Γ ` ∃ C

Γ ` C ≤ Object
(vector)

Γ ` Ti ≤ T′
i ∀ i ∈ 1, . . . , n

Γ ` T1 . . . Tn ≤ T′
1 . . . T′

n

(exact res)
Γ ` C′:<C′′, MSS> Γ ` C ≤ C′

Γ ` C.m(T̄)
res→ <T̄, T>

T m(T̄) ∈ MSS

(match res)

applAll(Γ, C, m, T̄) = µs
matchAll(Γ, C, m, T̄) = µs
mostSpec(Γ, µs) = <T̄

′, T′>

Γ ` C.m(T̄)
res→ <T̄

′, T′>

(complete res)

applAll(Γ, C, m, T̄) = µs
Γ ` T̄ ⇑
mostSpec(Γ, µs) = <T̄

′, T′>

Γ ` C.m(T̄)
res→ <T̄

′, T′>

(,obj)
` Γ�

Γ ` Object,T m(T̄)

(,down)

Γ ` C:<C′, {MS1, . . . , MSn}>
Γ ` C′

,T m(T̄)

Γ ` C,T m(T̄)

MSi = T′ m(T̄) =⇒ T = T′

∀ i ∈ 1, . . . , n

(not sub)
Γ ` C ⇑ C′ 6∈ supertypes(Γ, C)

Γ ` C 6< C′

Figure 4: Type environments entailment

VOL 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 15

STRONGER TYPINGS FOR SMARTER RECOMPILATION OF JAVA-LIKE LANGUAGES

Γs ` Γ ` Γs�
` Γ�

Γs ` Γs�
` Γs� Γs ` Λ� Γs ` T�type

T = int∨
T = Object∨
T ∈ def (Γs)

Γs ` Ti �type ∀i ∈ 0, . . . , n

Γs ` T0 m(T1..Tn)�MS
Γs ` MSi �MS ∀i ∈ 1, . . . , n

Γs ` MS1 . . . MSn�MSS

Γs ` Object:∅

Γs ` C′:MSS′

Γs ` MSS�MSS
Γs ` C:MSS ∪ MSS′

Γs(C) = <C′, MSS>
T m(T̄) ∈ MSS, T′ m(T̄) ∈ MSS′ =⇒ T = T′

T m(T̄), T′ m(T̄) ∈ MSS =⇒ T = T′

Γs ` Γ1
s � Γs ` C:τ

Γs ` Γ1
s, C:τ�

C:τ ′ ∈ Γ1
s =⇒ τ ′ = τ

Figure 5: Well-formed standard type environments

the matchable methods.

Rule (,obj) states that Object can be safely extended by any method4 (that is,
without breaking the Java rule on overriding); in all other cases, if a class C′ can be
safely extended by a method T m(T̄) then any direct subclass C of C′ can be safely
extended by the same method, providing that C does not contain a method with the
same name, same types as parameters but different return type (rule (,down)).

Finally, rule (not sub) is applicable only if Γ contains the standard type assump-
tions of all supertypes of C - C included (Γ ` C ⇑) - and C′ is not in the set of such
supertypes (function supertypes).

Properties

Since the type system presented here is just a simplification of that defined by
Ancona and Zucca [4], the same properties can be proved and all proofs can be
immediately adapted.

The two main properties we are interested in for selective recompilation are
soundness of entailment, and existence of principal typings.

Soundness of the entailment corresponds to the following claim: if Γ1 ` Γ2, then
for all P, τ̄ , B̄, if Γ2 ` P:τ̄ ; B̄ holds, then Γ1 ` P:τ̄ ; B̄ holds as well. Since
entailment is used by our algorithm to check for recompilation (see also Section 4),
this property guarantees that the algorithm always forces recompilations which are
really needed, that is, which either fail or generate different binaries.

Principality says that if a program P can be compiled to a binary B̄, then there

4For simplicity, we ignore all the predefined methods of Object, defined in 4.3.2 of [8].

16 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 6

4 SELECTIVE RECOMPILATION

Γ ` Object ⇑
Γ ` int ⇑

Γ ` C′ ⇑
Γ ` C ⇑

Γ(C) = <C′, >
Γ ` T1 ⇑ . . . Γ ` Tn ⇑

Γ ` T1 . . . Tn ⇑

supertypes(Γ, C) =

{Object} if C = Object

{C} ∪ supertypes(Γ, C′) if Γ(C) = <C′, >
⊥ otherwise

appl(Γ, C, m, T̄) =

{
{<C, T̄′, T> | T m(T̄′) ∈ MSS, Γ ` T̄ ≤ T̄

′ } if Γ(C) = < , MSS>
⊥ otherwise

applAll(Γ, C, m, T̄) =

∅ if C = Object

µs1 ∪ µs2 if Γ(C) = <C′, >
appl(Γ, C, m, T̄) = µs1,
applAll(Γ, C′, m, T̄) = µs2

⊥ otherwise
match(T1 . . . Tm, T′

1 . . . T′
n) ⇐⇒ m = n ∧ ∀i ∈ 1..n (Ti = int) ⇐⇒ (T′

i = int)

match(Γ, C, m, T̄) =

{
{<C, T̄′, T> | T m(T̄′) ∈ MSS,match(T̄, T̄′)} if Γ(C) = < , MSS>
⊥ otherwise

matchAll(Γ, C, m, T̄) =

∅ if C = Object

µs1 ∪ µs2 if Γ(C) = <C′, >
match(Γ, C, m, T̄) = µs1,
matchAll(Γ, C′, m, T̄) = µs2

⊥ otherwise

mostSpec(Γ, µs) =

<C, T̄, T> if <C, T̄, T> ∈ µs and

Γ ` C ≤ C′,
Γ ` T̄ ≤ T̄

′ for all <C′, T̄′, T′> ∈ µs
⊥ otherwise

Figure 6: Auxiliary judgment and functions

exists a minimal Γ s.t. Γ ` P:τ̄ ; B̄ holds, where “minimal” means that for all Γ′,
if Γ′ ` P:τ̄ ; B̄ holds, then Γ′ ` Γ holds as well. From the point of view of smarter
recompilation, this means that our algorithm never forces useless recompilations
which would generate the same binary.

4 SELECTIVE RECOMPILATION

Why making Java selective recompilation smarter?

Although several papers have been written on the subject of selective recompilation
(see Section 5), Dmitriev’s approach [6] is the only other Java specific proposal
we are aware of. Dmitriev’s paper describes a make technology, based on smart

VOL 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 17

STRONGER TYPINGS FOR SMARTER RECOMPILATION OF JAVA-LIKE LANGUAGES

dependency checking, that aims to keep a project (that is, a set of source and
binary fragments) consistent while reducing the number of files to be recompiled. A
project is said to be consistent when all its sources can be recompiled producing the
same binaries as before. The main idea is to catalog all possible changes to a source
code (as, for instance, adding/removing methods) establishing a criterion for finding
a subset of dependent classes that have to be recompiled. A freely downloadable
tool, Javamake, is based on that paper and implements the selective recompilation
for Java upon any Java compiler. This tool stores some type information for each
project in database files which are used to determine which changes have been made
to the sources with respect to the previous (consistent) version. Even though this
approach has the advantage of being the only one to be both well documented and
fully implemented, unfortunately, it is not based on a theoretical foundation, as
pointed out by the author himself. As a consequence, no clue of the fact that the
algorithm is correct is provided, and there is no guarantee that Javamake always
forces the recompilation of a class when needed for ensuring the consistency of the
project. Furthermore, Javamake cannot avoid a considerable amount of unnecessary
recompilations.

Our approach

Our algorithm, on the other hand, is defined on top of a good theoretical basis.
Soundness of entailment ensures that the algorithm is correct, in the sense that all
recompilations needed for maintaining the project consistent are always forced. The
principal typings property guarantees that the algorithm is smarter, since it never
forces useless recompilations: whenever a class is recompiled, either recompilation
fails, or generates a different binary.

One of the key point is that, during compilation of a class C to a binary B, it is
possible to infer the minimal type assumptions Γ needed for compiling C to B [11, 4].
If the new standard environment obtained after some modification to other classes
still entails Γ, then there is no need to recompile C. Before sketching the whole
algorithm, let us show the idea on the the example already discussed in Section 2:

class P extends Object { class H extends P {
int f(Object o) { return 0 ; } int g(P p) {return p.f(new(H));}
// int f(int i) { return i ; } int m() {return new H().g(new P());}
} U id(U u){return u;}
class U extends Object {} X em(Y y){return y;}
class Y extends X {} }
class X extends Object {}

These classes compile successfully, and they form our example project. The
compiler would generate the following minimal environment for H:

Γl = ∃ P,∃ U,∃ X,∃ Y, P 6< H, P,int g(P), P,int m(),

P,U id(U), P,X em(Y), P.f(H)
res→ <Object, int>, Y ≤ X

18 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 6

4 SELECTIVE RECOMPILATION

If we add a method f(int) in P, then class H still invokes the same method as before,
because the new method is not even applicable to the invocation with an argument
of type P. These considerations are formally captured by the entailment relation:
the new standard environment (that can be extracted from the new source for P and
the old binary of H) still entails Γl therefore there is no need to recompile H. For
instance, the reader can verify that P.f(H)

res→ <Object, int> can still be entailed.
On the other hand, whereas Javamake5 is able to detect that classes U, X and Y need
not to be recompiled, since they do not use P at all, it cannot distinguish between
changes to a set of overloaded methods that alter the resolution of a particular
call and changes that do not. So, Javamake would unnecessarily recompile class H,
because it contains a call to P.f, producing the same binary as before.

Description of the algorithm

For sake of simplicity we assume that all project files reside in the same directory
and contain just one class declaration each. The input of the algorithm is the project
directory. The algorithm computes the set S of source project files which need to be
recompiled, and then typechecks all files in S and, if no error is detected, generates
for each file in S the corresponding binary file (as usual, in a .class file) and the
set of minimal type assumptions needed for generating that binary (in a separate
.mta file).

The algorithm consists of the following three main components: extract , select ,
and typecheck .

Component extract generates a well-formed standard type environment by ex-
tracting the global types of all classes from the sources and binaries of the project.
If a class has an up-to-date binary file, then its type information is extracted from
there, otherwise it is extracted from the source file. If the extracted type environ-
ment is not well-formed, then extract fails.

Component select produces the set of files that need to be recompiled, and its
behavior is specified by the following pseudo-code:

select (Γ){
let S = {C .java | the binary of C.java is either absent or not up-to-date}
let T = {C .java | C.java is a project file} \ S
for all C .java ∈ T if not entails(Γ,C .mta) then S = S ∪ {C .java}
return S }

We assume the standard Java name conventions for files; binary files are not up-to-
date if the corresponding source file has been changed but not yet recompiled (hence

5Version 1.3.1, the latest available when we run this test.

VOL 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 19

STRONGER TYPINGS FOR SMARTER RECOMPILATION OF JAVA-LIKE LANGUAGES

it has a more recent time-stamp). Since .class and .mta files are simultaneously
generated by typecheck , for simplicity we assume that they are always both present
or absent, and that they always have the same time-stamp. The actual parameter
of select is the standard type environment returned by extract , whereas entails is
the subcomponent at the heart of select which implements the entailment relation.
It takes a well-formed standard type environment Γ, a local type environment Γl,
and returns true if and only if Γ ` Γl holds.

entails (Γ,Γl){
for all ta in Γl if not holds (Γ,ta) return false
return true }

The subcomponent holds just performs some of the standard checks done by
conventional Java compilers:

holds (Γ,ta){
switch(ta){
case ∃ T:
return T == int or T defined in Γ

case C.m(T̄)
res→ <T̄

′, T>:
return T m(T̄′) is the most specific method applicable to the call C.m(T̄)

... } }

Finally, the main component typecheck takes a well-formed standard type envi-
ronment (produced by extract) and a source file C.java, and either fails (if some error
is detected), or produces the file C.mta of minimal type assumptions and the bi-
nary file C.class. The most interesting subcomponent of typecheck is the one which
typechecks expressions and, in case of success, returns the type and the minimal
assumptions of the expression (for sake of simplicity we omit bytecode generation).

typecheckExp (Γ,e){
switch(e){
case e0.m(e1, . . . , en):
for i=0 . . . n let (Ti, Γi) = typecheckExp(Γ, ei)

if ∃ T′, T′
1, . . . , T

′
n s.t. holds(Γ, T0.m(T1, . . . , Tn)

res→ <T̄
′, T′>)

then return (T′, (Γ0, . . . , Γn, T0.m(T1, . . . , Tn)
res→ <T̄

′, T′>))
else fails

... } }

20 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 6

4 SELECTIVE RECOMPILATION

The most interesting case is method call. First, all sub-expressions are typechecked
from left to right; if all sub-expressions are successfully typechecked, then the type
Ti and minimal assumptions Γi of each ei have been computed. The existential
condition of the conditional statement can be implemented in a straightforward way,
since corresponds to method resolution performed by conventional Java compilers.
Finally, if resolution succeeds, then the whole typechecking succeeds as well, and
the type of the expression is the return type T′ of the most specific method, while
the minimal assumptions are the collection of all minimal assumptions for sub-
expressions plus the additional assumption T0.m(T1, . . . , Tn)

res→ <T̄
′, T′>.

The cost of selective recompilation

The real goal of smart recompilation is not avoiding useless recompilations, but
rather making recompilation as fast as possible, while retaining consistency of the
project. Clearly, avoiding useless recompilations can be an effective way for speeding
up recompilation, but only if the costs of actually doing a recompilation outweigh
the costs for checking for recompilation.

Notice that in the extreme case when all sources have to be recompiled, every
approach different than blindly recompiling all sources is slower, due to the overhead
necessary to detect which files have to be recompiled. Anyway, modifications to large
projects are likely to affect only a small subset of the files.

So, in evaluating the cost of recompiling a source S, let us compare the direct
recompilation of S with respect to checking whether the type assumptions of S still
hold, followed by the recompilation of S if needed. An important thing to note is
that there is some overlapping in what a compiler needs to do in order to compile
a given source S, and in checking whether the type assumptions for S still hold in a
new environment.

After some changes have been made, only two scenarios are possible:

• Scenario n.1: the source S needs not to be recompiled, as all its assumptions
are satisfied in the new environment. In order to typecheck S the compiler
must check exactly the same assumptions plus, of course, parsing the source
and generating the bytecode. So, in this case, we can easily conclude that
running the compiler on S is more expensive than discovering that it does not
need to be recompiled with our method.

• Scenario n.2: the source S needs to be recompiled, as at least one of its assump-
tions is not satisfied by the new environment. Obviously, in this case the cost
of checking for recompilation is an overhead. However, such an overhead is
small since all assumptions which have been already successfully checked can
be cached in order to be reused during recompilation. As a consequence, the
overhead reduces to the time needed for checking the first single assumption
that does not hold and which triggers the recompilation.

VOL 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 21

STRONGER TYPINGS FOR SMARTER RECOMPILATION OF JAVA-LIKE LANGUAGES

These last considerations strongly suggest that in the average case our strategy
outperforms the blind recompilation. Moreover, the overhead in the worst cases is
rather small.

For what concerns space costs there is always an overhead, which, however, can
be kept small. However, type assumptions generated by our algorithm are stored in
separate .mta files, in order to prevent .class from growing. This is important, as
binary fragments are usually transmitted through the network.

In a Java implementation of our algorithm, type assumptions can be imple-
mented by objects which are stored and retrieved using standard Java serialization
mechanism. As this standard mechanism is known to be rather inefficient, the size
of .mta files could be easily reduced by using optimized serialization mechanisms
[14]. Moreover, most of the type information stored in a .mta file is a replication of
what can be found in the corresponding .class file, therefore a considerable amount
of space could be saved by using pointers to the .class files.

For instance, the space cost for storing the type assumption T.m(T̄)
res→ <T̄

′, T′>
for a method invocation amounts to the cost required for storing the static types
T̄ of the arguments, plus a pointer to an entry of the constant pool in the .class

file containing all the other needed information (the static type of the receiver, the
name, return type and parameter types). Finally, note that different expressions
can generate the same assumptions which, obviously, can be stored just once.

5 CONCLUSION AND OTHER RELATED WORK

We have presented an algorithm for smarter recompilation of a small subset of Java,
based on a formal type system enjoying the principal typings property.

The properties of the type system guarantee that the algorithm is smarter, in
the sense that it always forces recompilations which are really needed, but never
forces useless recompilations which would lead to the same binary.

We have compared our algorithm with Javamake and shown that our approach
is cleaner (since it is based on theoretical foundations) and leads to a smarter re-
compilation strategy. However, much work still remains to be done, since Javamake
is a real tool running for the entire Java language (and not just a small subset). We
are currently implementing in Java the algorithm we have presented in this paper
and, in the meantime, we are studying how our approach can be scaled to the entire
Java language [11, 12] by directly modifying the SDK compiler. Since some Java
features badly interacts with separate compilation, we expect our tool for selective
recompilation of Java to be still smarter than Javamake, but less smart that the
algorithm presented here, in order to keep the costs of checking for recompilation
less expensive than the costs of actually doing a recompilation.

Selective recompilation [1] is an issue that has been deeply studied for program-
ming languages, in order to reduce rebuilding time due to source modifications.

22 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 6

6 ACKNOWLEDGEMENTS

Besides the paper on Javamake [6] already discussed in Section 4, there are a
number of papers on selective recompilation for several languages. According to the
classification given in [1], [9] adopts for ML an approach which involves both cut-off
elimination and smart recompilation, while [16] investigates smartest recompilation,
by employing type inference to derive the type assumptions needed for compiling
an ML code fragment in isolation. Smart and smarter recompilations have been
considered as well for C-like languages [17, 15].

Unfortunately, very little has been done on this side for Java-like languages.
The solution presented here is similar to attribute recompilation, according to the
classification given in [1]. Here attributes correspond to local type assumptions
which can be automatically inferred when compiling a closed set of fragments; these
assumptions can be used later for selective recompilation.

6 ACKNOWLEDGEMENTS

We warmly thank Sophia Drossopoulou and Elena Zucca for their useful suggestions
and corrections to previous versions of this paper.

Partially supported by Dynamic Assembly, Reconfiguration and Type-checking -
EC project IST-2001-33477, and APPSEM II - Thematic network IST-2001-38957.

REFERENCES

[1] Rolf Adams, Walter Tichy, and Annette Weinert. The cost of selective recompi-
lation and environment processing. ACM Transactions on Software Engineering
and Methodology, 3(1):3–28, January 1994.

[2] D. Ancona, G. Lagorio, and E. Zucca. A formal framework for Java separate
compilation. In B. Magnusson, editor, ECOOP 2002 - Object-Oriented Pro-
gramming, number 2374 in Lecture Notes in Computer Science, pages 609–635.
Springer, 2002.

[3] D. Ancona, G. Lagorio, and E. Zucca. True separate compilation of Java classes.
In ACM SIGPLAN Conference on Principles and Practice of Declarative Pro-
gramming (PPDP’02), pages 189–200. ACM Press, 2002.

[4] D. Ancona and E. Zucca. Principal typings for Java-like languages. In ACM
Symp. on Principles of Programming Languages 2004, pages 306–317. ACM
Press, January 2004.

[5] L. Cardelli. Program fragments, linking, and modularization. In ACM Symp.
on Principles of Programming Languages 1997, pages 266–277. ACM Press,
1997.

VOL 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 23

STRONGER TYPINGS FOR SMARTER RECOMPILATION OF JAVA-LIKE LANGUAGES

[6] M. Dmitriev. Language-specific make technology for the Java programming
language. ACM SIGPLAN Notices, 37(11):373–385, 2002.

[7] S. Drossopoulou and S. Eisenbach. Describing the semantics of Java and proving
type soundness. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java,
number 1523 in Lecture Notes in Computer Science, pages 41–82. Springer,
1999.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language Specifica-
tion, Second Edition. Addison-Wesley, 2000.

[9] R. Harper, P. Lee, F. Pfenning, and E. Rollins. A compilation manager for
standard ML of New Jersey. In ACM SIGPLAN Workshop on Standard ML
and its Applications, July 94.

[10] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. In ACM Symp. on Object-Oriented Programming:
Systems, Languages and Applications 1999, pages 132–146, November 1999.

[11] G. Lagorio. Towards a smart compilation manager for Java. In Blundo and
Laneve, editors, Italian Conf. on Theoretical Computer Science 2003, number
2841 in Lecture Notes in Computer Science, pages 302–315. Springer, October
2003.

[12] G. Lagorio. Another step towards a smart compilation manager for Java. In
Hisham Haddad, Andrea Omicini, Roger L. Wainwright, and Lorie M. Liebrock,
editors, ACM Symp. on Applied Computing (SAC 2004), Special Track on
Object-Oriented Programming Languages and Systems, pages 1275–1280. ACM
Press, March 2004.

[13] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java
Series. Addison-Wesley, Second edition, 1999.

[14] Michael Philippsen and Bernhard Haumacher. More efficient object serializa-
tion. In IPPS/SPDP Workshops, pages 718–732, 1999.

[15] Robert W. Schwanke and Gail E. Kaiser. Smarter recompilation. ACM Trans-
actions on Programming Languages and Systems, 10(4):627–632, October 1988.

[16] Z. Shao and A.W. Appel. Smartest recompilation. In ACM Symp. on Principles
of Programming Languages 1993, pages 439–450. ACM Press, 1993.

[17] Walter F. Tichy. Smart recompilation. ACM Transactions on Programming
Languages and Systems, 8(3):273–291, July 1986.

24 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 6

6 ACKNOWLEDGEMENTS

ABOUT THE AUTHORS

Davide Ancona took a Ph.D. in Computer Science at the University of Pisa
on 1998, and since 2000 is assistant professor at the department of Computer Sci-
ence of the University of Genova (DISI). His research interests are in object ori-
ented programming, module systems, and type systems. He can be reached at
davide@disi.unige.it. See also http://www.disi.unige.it/person/AnconaD/.

Giovanni Lagorio is a PhD student at the department of Computer Science of
the University of Genova (DISI), University of Genova. His research interests are
in the area of programming languages; in particular, design and foundations of
modular and object-oriented languages and systems. He can be reached at lago-
rio@disi.unige.it. See also http://www.disi.unige.it/person/LagorioG/.

VOL 3, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 25

mailto:davide@disi.unige.it
http://www.disi.unige.it/person/AnconaD/
mailto:lagorio@disi.unige.it
mailto:lagorio@disi.unige.it
http://www.disi.unige.it/person/LagorioG/

