
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 5, May-June 2004

Cite this article as follows: William N. Robinson, Greg Elofson: “Goal Directed Analysis with Use
Cases”, in Journal of Object Technology, vol. 3, no. 5, May-June 2004, pp. 125-142.
http://www.jot.fm/issues/issue_2004_05/article3

Goal Directed Analysis with Use Cases
William N. Robinson, Dept. of Computer Information Systems, Georgia State
University, U.S.A.
Greg Elofson, Graduate School of Business, University of New Orleans, U.S.A.

Abstract
Use-cases are touted as means to manage the complexity of object-oriented software
specification. The UML use-case relationships provide the means to organize use-
cases, which in turn, organize use-case requirements. Analysts, unfortunately, have
difficulty in determining the scope of a single use-case, as well as defining its
elaborations. In response, we define a goal-directed modeling approach based upon
foundational definitions for domain property, goal, requirement, and specification. The
more formally defined goals guide use-case definition, organization, and enable
analyses otherwise unavailable to conventional object-oriented analysis. Goal directed
analysis with use-cases helps manage specification complexity.

1 MODELING WITH GOALS

Software specification by use-cases has grown with the popularity of object-oriented
software engineering [Weidenhaupt 1998]. Use-cases are now part of every object-
oriented analysis method [Regnell 1996], including the popular Unified Modeling
Language (UML) and methodology [Fowler 1997]. Analysts, however, have difficulty in
decomposing and structuring use-cases. One solution appears to be the use of high-level
software goals. Goals can guide use-case development, as well as enable early analysis of
software specifications.

Goals

Software controls a small portion of the world. It interacts with its environment. It
monitors environmental properties and introduces changes through modification of the
logical values or physical effectors that it controls. From these simple observations, we
can define four foundational definitions important to the description of software systems,
according to van Lamsweerde [van Lamsweerde 2000] and others [Jackson 1995, Parnas
1995].
• A goal is a desired property of the environment. For example, “After delivery of an

order, the customer shall pay the business.”

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_05/article3

GOAL DIRECTED ANALYSIS WITH USE CASES

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

• A domain property is a property that exists naturally in the environment, as it would
independent of any software system. For example, “After the production of a
perishable product, the product becomes stale.”

• A requirement is a special kind of goal that constrains the software behavior. To be a
requirement, a goal must satisfy the following three properties: (i) it is described
entirely in terms of values monitored by the software; (ii) it constrains only values
that are controlled by the software; and (iii) the controlled values are not defined in
terms of future monitored values. For example, “Within one day after the delivery of
an order, the system shall send an invoice to the order’s customer.”

• A specification is special kind of requirement that only references system properties.
For example, “The system shall compute product age as the current date minus the
product’s production date.”

Most system goals have a form, such as “the system shall do X”, where X is some
function that the system shall provide. For example, “the inventory tracking system shall
record the inventory level of all products stored in the warehouse.” A slightly more
refined view of goals is presented in the following four goal patterns.
• Achieve goals require that some property eventually holds; for example, “After the

delivery of an order, the system shall send an invoice to the order’s customer.”
• Cease goals require that some property eventually stops to hold; for example, “After a

past-due account is paid in full, the system shall stop sending invoice reminders to the
account’s customer.”

• Maintain goals require that some property always holds; for example, “The system
shall always record the current inventory level of each inventory product.”

• Avoid goals require that some property never holds; for example, “An unauthorized
user shall never access any customer account.”

The preceding goal patterns have been formalized [van Lamsweerde 2000], although here
they are only presented informally. More generally, Dwyer et. al. have analyzed over 500
examples of the kinds of properties that have been used in requirements [Dwyer 1999].
They found that nearly all conformed to eight temporal patterns, which a refinements of
the preceding patterns [Dwyer 1999].

Goal-Oriented Modeling

Goals are used in a variety of ways to analyze software systems[Kavakli 2000]. Perhaps,
van Lamsweerde says it best[van Lamsweerde 2000]:

Goals drive the elaboration of requirements to support them; [Dardenne 1991, Ross
1977, Rubin 1992] they provide a completeness criterion for the requirements
specification —the specification is complete if all stated goals are met by the
specification[Yue 1987]; they provide a rationale for requirements —a requirement
exists because of some underlying goal which provides a base for it [Dardenne 1991,
Sommerville 1997]; goals represent the roots for detecting conflicts among
requirements and for resolving them eventually [Robinson 1989, van Lamsweerde
1998]; goals are generally more stable than the requirements to achieve them [Anton

MODELING WITH GOALS

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 127

1994]. In short, requirements "implement" goals much the same way as programs
implement design specifications.

Although goals are widely recognized as important, their use in object-oriented modeling
is rare—particularly, with the UML methodology.

Cockburn is often cited as having introduced goals to object-oriented analysis
[Cockburn 1997, Cockburn 1997]. He defines use-cases to satisfy goals: “All the
interactions relate to the same goal. … The goal is a strategic goal with respect to the
system.” He sees five opportunities for goals: (1) attach non-functional requirements to
goals, (2) track the project by goals, (3) get subtle requirements from goal failures, (4)
use goals with responsibility-based design, and (5) match user goals to operational
concepts. More recently, Bock shows how goals can assist in choosing parameters from
the object model [Bock 2000, Bock 2001].

Sometimes goals are called features. For example, Leffingwell defines a feature as,
“a service the system provides to fulfill one or more stakeholder needs.”—p. 89
[Leffingwell 2000]. According to Leffingwell, software satisfies requirements, which
satisfy use-cases, which satisfy features, which satisfy user needs. Thus, analysts use
different documents to describe different levels of system abstraction. Although people
may not agree on the term—goal, feature, or softgoals [Gross 2001]—most agree that
goals provide a target for the more refined software specification that follows. However,
no one has provided a method showing how to derive UML use-case specifications from
system goals.

2 A GOAL-ORIENTED METHOD

We define a method for deriving UML specifications from goals. The method is a
synthesis of common UML methods, such as the Rational Unified Process [Kruchten
2000], and goal-oriented requirements analysis methods, such as KAOS [Dardenne
1993]. The method consists of five activities:

1. Elicit the system context. Information about the proposed system, and its context,
are acquired through interviews, document gathering, observation, etc.

2. Define the system goals. Based on the system context, an analyst defines the
system goals.

3. Derive requirements. Goals are refined to the requirements level.
4. Derive use-cases. Organizational, system, and low-level use-cases are derived

from the requirements.
5. Derive UML models. Other UML models, such a class and sequence diagrams, are

derived from the use-cases or requirements.
Elicitation is common to all systems analysis methods. Defining goals and deriving
requirements is common to goal-oriented methods. Finally, defining use-cases at varied
abstraction levels and deriving their associated models is common to object-oriented
methods.

GOAL DIRECTED ANALYSIS WITH USE CASES

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

Our goal-driven object-oriented approach to analysis provides direction to what
otherwise has been a complex process. In fact, many methods provide more alternative
activities than specific directions. Consequently, analysts become a drift is a sea of
notations and possibilities.

Adding goals to UML method of analysis provides the following benefits.
• Abstraction. Goals provide high-level, functional and non-functional, understandable

descriptions of what the system shall do, without the complexity of describing how
the system works [van Lamsweerde 2001].

• Direction. Goals provide analysts with a checklist of activities to complete
[Sommerville 1997, Yue 1987].

• Traceability. Goals provide a bridge linking stakeholder requests to system
specification [Robinson 1990, Robinson 1998].

• Analysis. Goals provide a means to analyze the system prior to its construction. Such
analysis is important, and includes: conflict analysis [Robinson 1994, van
Lamsweerde 1998] and coverage analysis [Yue 1987].

Next, we present the activities of defining system goals to deriving use-cases (preceding
steps 2 – 4); goals and their relationship to UML is the major emphasis. The presentation
draws on two systems development exemplars [Feather 1997]: (1) the elevator problem,
and (2) a common order processing system.

3 DEFINING SYSTEM GOALS AND REQUIREMENTS

Analysts define desired properties of the environment, or goals, based on stakeholder
needs. As environmental statements, goals do not explicitly constrain software behavior;
that is the job of requirements. Analysts refine goals by adding details, which typically
constrain the software. Thus, requirements can be derived from goals by refinement.

Analysts structure goals according to how they relate to each other. Structuring is
important when there are many goals. Perhaps, systems with a small number of goals, say
25, may simply provide a goal list. Most systems, however, must provide a hierarchical
structuring of goals.

To define a goal hierarchy, an analyst needs at least one initial goal and two
questions: how? and why? Some initial goals can be obtained through interviews,
observations, and the review of existing documents and systems. Next, the analyst selects
a goal and asks: “How can this goal be satisfied?” and “Why is this a system goal?” How
questions are answered by refining the goal into subgoals; this expands the hierarchy
downward by introducing goals that are more specialized. Generally, a goal G, may be
satisfied by the conjunction of subgoals: G1 and G2 and… Gn. Of course, there may be
more than one way to satisfy a goal. Thus, a goal G, may be satisfied by the disjunction
of subgoals: G1 or G2 or… Gn. Answering the why question expands the hierarchy in the
opposite direction, by introducing goals that are more abstract.

DEFINING SYSTEM GOALS AND REQUIREMENTS

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 129

Figure 1 illustrates a hierarchical goal structure. . The most abstract goal, G1, is
shown at the top, while the most specific goals, G8.1 and G9.1, are shown at the bottom.
Goals G8 and G9 are shown as two alternatives means to satisfy goal G1.2.1. Therefore, we
describe the refinement of goal G1.2.1, as an or-refinement. In contrast, the refinement of
goal G1 is shown as an and-refinement: all subgoals of an and-refinement must be
satisfied as a means to satisfy the goal.

G1

G1.2

G1.2.1

G9G8

G8.1 G9.1

or

G1.1

and

Figure 1 Goal hierarchy.

Figure 2 shows the hierarchical goal structure of Figure 1 as represented in
RequisitePro™. Indentation and hierarchical numbering capture the same information,
while allowing for a more command, and practical, textual presentation.

Figure 2 A RequisitePro view of the goal hierarchy.

Refinement patterns

An analyst creates a goal hierarchy by refining goals. A goal is refined by adding more
specific details. As an illustration, consider providing a friend with directions to your

GOAL DIRECTED ANALYSIS WITH USE CASES

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

house. First, you might suggest an overview: “From your location, you will need to get
on a highway, drive south, go through some business and residential streets, and then you
will arrive.” Next, you might refine your description by describing the details of the
highway, the intermediate streets, and finally your address. Just as milestones can aid
driving, they can aid the refinement of goals.

Table I presents the two basic patterns that analyst use to generate a goal hierarchy.
Disjunction is the first. It simply specifies alternatives means to satisfy a goal.
Conjunction is the second. It refines the description of a goal. The more specific details
provided expand the goal hierarchy toward the operational descriptions needed by
software designers and programmers.

Two refinement patterns are often used: milestone and case-based [Darimont 1996].
The milestone refinement pattern decomposes achievement into a set of intermediate
steps, the sum of which adds up to satisfy the overall goal. The case-based refinement
pattern decomposes achievement into a set of cases, which add up to satisfy the overall
goal. As with all refinement patterns, the sum of the and-subgoals must satisfy the goal.

DEFINING SYSTEM GOALS AND REQUIREMENTS

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 131

Table I Patterns for elaborating a goal hierarchy.

 Type Definition Example
Disjunction
(or)

Basic G1 ← G1.1 or G1.2 After the elevator arrives at a floor,
the floor display shall indicate arrival.
←
After the elevator arrives at a floor,
the floor display shall sound a chime.
or
After the elevator arrives at a floor,
the floor display shall floor number
shall light.

Basic G1 ← G1.1 and G1.2 After the elevator arrives at a floor,
the display lights shall be updated. ←
After the elevator arrives at a floor,
the call light shall become unlit. and
After the elevator arrives at a floor,
the floor number light shall light.

Milestone After P then Q

 ← After P then M
and After M then Q

After the elevator call button is
pressed, the call button shall light. ←
After the elevator call button is
pressed, then the controller shall be
notified of the button press. and
After the controller is notified of a
button press, then the call button shall
light.

Conjunction
(and)

Case-
based

If P then Q

 ← If C1 then Q
and If C2 then Q
and P implies C1 or
C2

An elevator shall not shutdown while
there are pending requests. ←
An elevator shall not shutdown while
there are pending call requests. and
An elevator shall not shutdown while
there are pending open door requests.
and
An elevator shall not shutdown while
there are pending close door requests.
and
Pending requests means call, open
door, or close door.

GOAL DIRECTED ANALYSIS WITH USE CASES

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

When to stop asking how?

By refining goals, an analyst creates detailed descriptions, perhaps even approaching
program definitions. Consider starting with goal, G1 and then refining it to G1.1 and G1.1.1,
etc. When should refinement stop? When should an analyst stop asking how? To answer
this question, it is helpful to have a deeper understanding of requirements.

Ideally, requirements are a minimal set of descriptions that constrain the system
behavior as a means to bring about desired properties of the environment. Domain
properties need only be included as necessary. For example, as part of goal refinement:
“Given that goal G1 can be satisfied by first G1.1 and then G1.2, we need only implement
G1.2 because G1.1 is satisfied by the environment through domain property, P1.” Similarly,
requirements need only be included as necessary to describe the system’s interactions
with the environment.

Unfortunately, it can be difficult for analysts to recognize when they are describing
unnecessary domain properties and system details. For example, given a series of goal
refinements, G1 ← G1.1 … ← G1.1.1.1.n, at what point does the nth subgoal become an
unnecessary implementation detail rather than a system requirement?

A requirement simultaneously describes the environment and the system. In so
doing, it specifies a portion of the system and the domain properties on which it depends.
A requirement derived from many refinement steps probably lacks references to the
environment. In fact, a description that only references system properties is a special kind
of requirement, called a specification.

The term requirement has been used in a variety of ways. We adopt Jackson’s
approach, which he so eloquently describes in his book, Software requirements &
specifications: a lexicon of practice, principles, and prejudices [Jackson 1995]. (Jackson
refers to an elevator as a lift, and the system as the machine.)

Requirements are about the phenomena of the application domain, not about the
machine. To describe them exactly, we describe the required relationships among the
phenomena of the problem context. A lift passenger who wants to travel from the third
to the seventh floor presses the Up button at the third floor.

The light beside the button must then be lit, if it was not lit before. The lift must arrive
reasonably soon, traveling in an upwards direction. The direction of travel is indicated
by an arrow illuminated when the lift arrives. The doors must open, and stay open long
enough for the passenger to enter the lift. The doors must never be open except when
the lift is stationary at the floor. There’s nothing here about the machine that will
control the lift.

But the machine can ensure that these requirements are satisfied because it shares
some phenomenon with the application domain: they have some events or states in
common. When a shared event happens, it happens in both; a shared state, with its
changes of value, is visible and both. For example, pressing the lift button is an event
common to the application domain and the machine that controls the lift. To the
passenger the event is ‘Hit the Up button on the third floor’. The machine may see it as

DEFINING SYSTEM GOALS AND REQUIREMENTS

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 133

‘input signal on line 3U’. But they are both participating in the same event. Another
shared event is the activation of the lift winding motor. The event ‘turn winding motor
on’ in the problem context is the same event as ‘output signal on line M+’ in the
machine. […]

But not all the phenomenon of the problem context are shared with the machine. For
example, the movement of the lift when it is traveling between floors is not shared. The
machine has no direct indication of the lift travel until it reaches the next sensor. Nor
are the entry and exit of each passenger shared events. The machine has no way of
knowing that the passenger who pushed the request button to travel to floor 4 actually
got out at floor 2.

In general, that opens up a gap between the customer’s requirements and what the
machine can achieve directly, because the customer’s requirements aren’t limited to
the phenomena shared with the machine. –pp. 169 – 170 [Jackson 1995].

Figure 3 illustrates required behaviors as the intersection between environmental
behaviors and implementable behaviors [Jackson 1995]. The system interacts with a
portion of the world, which exhibits the environmental behaviors, as represented in
domain properties. Implementable behaviors are executed by the system. A specification
describes how the system produces its behaviors. A requirement refers to properties of
both the environment and the system. A domain property only refers to properties of the
environment. A system specification only refers to properties of the system.

Figure 3. Requirements as the boundary between environment behaviors and implementable behaviors.

For an analyst, goal refinement should stop when the goal descriptions no longer refer to
domain properties. After that point, development moves from the analysis phase to the
design phase. Of course, a designer may wish to further refine the goals as a means to
describe the inner workings of the system.

One cannot distinguish between a requirement and a specification without knowing
what the system is intended to do. Passenger movement is an elevator system goal.
Consequently, elevator controller descriptions are requirements. However, winding motor
descriptions are implementation details because they do not refer directly to passenger
domain properties; thus, winding motor descriptions are specifications in this context.
Their refinement begins in the later phase of system design.

What if we work at the elevator winding motor factory? Our goal is to produce
efficient, silent, and smooth winding motors. For us, winding motor descriptions are

Environmental
Behaviors

Implementable
Behaviors

Required
Behaviors

GOAL DIRECTED ANALYSIS WITH USE CASES

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

requirements, because they refer to our system as well as our domain properties. “The
motor shall act as a brake against gravity to smooth the descent of an elevator,” is a
requirement for employees of a winding motor company.

Goals, requirements, and specifications are similar. As presented in the introduction,
a goal is a desired property of the environment. A requirement is a special kind of goal
that has certain restrictions on use of monitored and controlled values. A specification is
more restricted, in that it only refers to system properties. Analysts use goals to help
decide, for the system at hand, if a description is a requirement or if it is a specification.
This is important, because specification work can be set aside, until the requirements
analysis is satisfactory. Thus, an analyst can say, “If I refine goal G1.1.1.1., it will be the
start of specifying the system. I had better finish my requirements before I begin the
specification phase. So, I’ll check the other goals to see if they are sufficiently refined.”

Why ask why?

By asking Why questions, an analyst can derive rationale for system goals. For example,
an analyst may be presented with the goal, “The elevator controller shall open and close
the elevator doors.” “Why?”, the analyst asks. For an elevator controller, it may appear
obvious. An elevator controller exists to control the doors and move the elevator between
floors. Still, why do we have elevator controller software?

By asking Why questions of the elevator system, analyst are led to consider the cost
of the elevator controller. Earlier, elevator operator labor was relatively inexpensive and
elevator control software was nonexistent. Now, elevator control software is cheaper than
operator labor, when amortized over the life of the elevator. Consequently, when the
decision about the elevator controller is revisited in light of the software solution, the
software solution appears best. Thus, high-level rational guides decisions among lower-
level choices.

4 DERIVING USE-CASES

In UML, a use-case “describes a sequence of actions a system performs that yields a
result of value to a particular actor”—p.491 [Leffingwell 2000]. Use-cases can describe a
system at different levels of abstraction [Regnell 1996]. We recognize three common use-
case types, based on their actors and use of specification statements [Cockburn 1997,
Larman 2001]:
• Organizational use-cases include actors from multiple organizations, with a focus on

documenting the information flow among organizations. Each statement in the use-
case is a goal or requirement, as defined in the introduction. An inter-organizational
workflow use-case is a typical example.

• Task use-cases include actors from only a single organization, with a focus on
designing the information processing needed to provide value to the actors. Each

DERIVING USE-CASES

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 135

statement in the use-case is either a goal or requirement. A user interface use-case is a
typical example.

• Low-level use-cases support the definition of task use-cases as a means to decompose
or organize use-cases; use-case statements are specifications in that they only
reference system properties, and do not reference domain properties. A system service
use-case, such as data persistence, is typical example.

We consider use-cases based on goal statements as abstract, and use-cases based on
requirements or specifications are concrete.

Analysts derive use-cases from the goal hierarchy. Consider each node:
• If it has subgoals, then an abstract use-case can be defined with the subgoals as use-

case steps.
• If it has subrequirements, then a concrete use-case can be defined with the

subrequirements as use-case steps.
• If it is a leaf requirement, then a low-level use-case can be defined using specification

statements.
A node with an and-refinement has each subnode (goal or requirement) as a properly
ordered step in the use-case. A node with an or-refinement can either: (1) include only
one of the nodes, or (2) include each subnode, along with a condition of its application,
thereby, defining alternative use-case paths. By considering the children, and other
ancestors, of the subnodes, further use-case details can be added directly to the use-case,
or through separate use-case extensions.

Consider the following statement: “S1: An unauthorized user shall never access any
customer account.” It is a goal, because the software system is not constrained. Now,
consider the following requirement that is part of the goal’s refinement: “S2: The system
shall authenticate each user identity with an external authentication service.” An
organizational use-case can describe the interactions among the user, software system,
and the authentication server. Moreover, based on two lower-level nodes, two task use-
cases can further refine the description of how the system will manage the interactions:
(1) a user login task use-case, and (2) an authentication request task use-case. Of course,
both of these task use-cases can be refined into low-level use-cases using the UML uses
and extends relationships.

5 ELEVATOR REQUIREMENTS

Consider the common exemplar of specifying an elevator controller. The following
defines three high-level goals.

The elevator shall minimize its cost of operation.
The elevator shall minimize its movement.
The elevator shall move passengers between floors.

GOAL DIRECTED ANALYSIS WITH USE CASES

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

The third goal can be refined, using milestones, to eight subgoals; they are shown as
GOAL3.2 to GOAL3.9 in Figure 4. They also appear as the system statements in the
abstract use-case of Table 2.

Figure 4. The elevator goal hierarchy.

The preceding goals are system goals, whereas most use-cases are derived from actor
goals [Cockburn 1997]. System goals derive a systems view that is compatible with
Jackson’s view of requirements: system specification is the focus because users cannot be
directly constrained. Nevertheless, one can use actor goals to derive the elevator system.
In doing so, the actor actions imply the system actions. Here, we show how the system
actions imply the actor actions.

To derive a use-case from GOAL3, an analyst places each subgoal, in its proper order,
as a system action. Next, the actor actions are defined for each system action requiring
input or accepting output, for example, the rider’s elevator request, in step 3, provides the
input for the system statement in step 4. The resulting abstract use-case is shown in Table
2.

ELEVATOR REQUIREMENTS

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 137

Table 2. An abstract task use-case for riding an elevator.
Rider (Actor) Elevator (System)
1. 2. The elevator shall monitor

rider requests from each floor.
3. The rider requests

an elevator from the
floor.

4. After a rider request from a
floor, the elevator shall move to
that floor.

5. 6. After arrival at a requested
floor, the elevator shall open
its doors.

7. 8. The elevator shall monitor
rider entry.

9. The rider enters the
elevator.

10. After a rider enters the
elevator, the elevator shall
close its doors.

11. 12. The elevator shall monitor
rider destination floor
requests.

13. The rider requests a
destination floor .

14. The elevator shall move the
elevator to the rider’s
destination floor.

15. 16. After arrival at a requested
floor, the elevator shall open
its doors.

17. 18. The elevator shall monitor
rider exit.

19. The rider exits the
elevator.

20.

The system statements of Table 2 are goals rather than requirements because they not
realizable [Letier 2002]. In particular, they do not describe monitored and controlled
variables. For example, how can the elevator monitor rider requests (GOAL3.6)? Should
riders beam their requests from their hand-held devices? (Implicitly, a set of domain
properties defines the monitored and controlled variables.) Refinement of the goals into
requirements provides for a concrete use-case, as shown in Table 3.

GOAL DIRECTED ANALYSIS WITH USE CASES

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

Table 3. A concrete task use-case for riding an elevator.
Rider (Actor) Elevator (System)
1. 2. The elevator shall monitor call button

requests from each floor.
3. The rider presses
the call button .

4. After a call button request from a floor,
the elevator shall request that the controller
move it to that floor.

5. 6. After arrival at floor whose floor number
indicator matches a requested floor number, the
elevator shall request that the controller open
the doors.

7. The rider enters
the elevator.

8. After the door sensor indicates no
blockage, the elevator shall request that the
controller close the doors.

9. 10. The elevator shall monitor the destination
floor request panel.

11. The rider shall
press the destination
button.

12. After the doors close, the elevator shall
request that the controller move the elevator to
the closest requested destination floor.

13. 14. After arrival at floor whose floor number
indicator matches a requested floor number, the
elevator shall request that the controller open
the doors.

15. The rider exits the
elevator.

16.

The system statements of Table 3 are requirements refined from the goals of Table 2.

The goal hierarchy of Figure 4 shows all the relationships; it shows: (1) goal refinement,
(2) derived requirements, and (3) use-case actor actions associated with goals (e.g., UC5).
Although not shown in Table 3, some actor actions have been refined from their abstract
counterparts in Table 2; for example, UC5.1 indicates that the rider presses the
monitored call button, rather than placing an abstract request.

The definitions for goal, requirement, and specification guide the definition of the
goal hierarchy and use-cases. Goals provide rationale and structure for the requirements
that provide sufficient details for use-case definition. Their definitions, along with actor
differentiation, clearly sort use-cases into organizational, task, or low-level. Alternative
classifications, such as essential and real, are more subjective [Larman 2001].

Analysts derive UML models from requirements, be they free form requirements, or
use-case requirements. A simple approach, for example, is to define a UML class for each
noun occurring in a requirement; similarly, requirement actions become class operations
[Rumbaugh 1991]. Further analysis may reveal that the derived definitions need to be
combined—because of synonyms, for example. The goal hierarchy, like use-cases,
consist of text statements. Therefore, analysts can also mine them for candidate classes
and operations. Formalized goals enable the automated derivation of classes and
operations [Letier 2002].

DISCUSSION

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 139

6 DISCUSSION

We have applied the goal directed UML modeling approach in industrial and university
settings. We offer the following as lessons learned, rather than conclusions, because of
their anecdotal nature.
• Analysts are quick to grasp the foundational definitions when they a given a number

of examples—good and bad.
• Analysts find it natural to generate goal hierarchies using How and Why questions.
• Analysts can quickly generate good use-cases from the goal hierarchy.
Our future research plans include a controlled experiment to test the effectiveness of the
approach. In particular, we believe that analysts can produce better use-cases in shorter
time using the goal directed approach, than they can by using classic use-case guidance,
or no guidance. The theory of goal directed problem solving provides support: it applies
to object-oriented analysis [Purao 2002], programming [Soloway 1984], as well as
general problem solving [Newell 1972]. We believe that the goal directed approach to
object-oriented specification is easily learned and effectively applied, because of the
familiarity and power of the underlying problem solving approach.

Generally, analysts have difficulty overcoming the complexity of object-oriented
methods. Use-cases are considered to be the answer. Of course, that leads to the question
of how use-cases are defined and organized as a means of reducing complexity. Use-case
types, such as essential and real, are supposed to guide analyst; however, their definitions
typically generate more questions than answers.

The definitions for domain property, goal, requirement, and specification provide a
foundation upon which complexity can be conquered. Based on the form of their
descriptions, analysts know if their descriptions are defining the domain, domain
changes, software requirements, or the internals of software. The definitions guide the
development of the goal hierarchy. Guided by the goal hierarchy, analysts derive use-
cases can defined. (Use-cases based on goals can describe ideal behaviors. However,
goals must be realizable before a software can be defined; for example, software values
cannot be defined in terms values to be observed in the future [Letier 2002].) Use-cases
are defined at the leaves of the goal hierarchy, thus, they are partitioned, thereby
partitioning them into functional groups, naturally. Overall, goal directed analysis with
use-cases reduces complexity and guides analysis.

ACKNOWLEGEMENTS

This paper has benefited greatly from reviews provided by Greg Elofson and Sandeep
Purao. Thanks! Of course, any remaining errors are solely the responsibility of the author.

GOAL DIRECTED ANALYSIS WITH USE CASES

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

REFERENCES

[Anton 1994] A. I. Anton, W. M. McCracken, and C. Potts, "Goal Decomposition and
Scenario Analysis in Business Process Reengineering," Proceedings of
Conference on Advanced Information Systems Engineering (CAISE'94),
LNCS 811, 1994.

[Bock 2000] C. Bock, "Goal-driven Modeling," Journal of Object-Oriented
Programming, vol. 13, pp. 48–53, 2000.

[Bock 2001] C. Bock, "Goal-driven Modeling, Part II," Journal of Object-Oriented
Programming, vol. 14, 2001.

[Cockburn 1997] A. Cockburn, "Goals and Use Cases," Journal of Object-Oriented
Programming, vol. 10, pp. 35-40, 1997.

[Cockburn 1997] A. Cockburn, "Using Goal-Based Use Cases," Journal of Object-
Oriented Programming, vol. 10, pp. 56-62, 1997.

[Dardenne 1991] A. Dardenne, S. Fickas, and A. v. Lamsweerde, "Goal-Directed
Concept Acquisition in Requirements Elicitation," Proceeings of the Sith Intl.
Workshop on Software Specification and Design (IWSSD-6), Como, 1991.

[Dardenne 1993] A. Dardenne, A. van Lamsweerde, and S. Fickas, "Goal-Directed
Requirements Acquisition," Science of Computing Programming, vol. 20, pp.
3-50, 1993.

[Darimont 1996] R. Darimont and A. van Lamsweerde, "Formal Refinement Patterns for
Goal-Driven Requirements Elaboration," Fourth Symposium on the
Foundations of Software Engineering, San Francisco, CA, 1996.

[Dwyer 1999] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, "Patterns in property
specifications for finite-state verification," Twenty-First International
Conference on Software Engineering, Los Angeles, 1999.

[Feather 1997] M. S. Feather, Fickas, S., van Lamsweerde, A., "Requirements and
Specification Exemplars," Automated Software Engineering, vol. 4, pp. 419-
438, 1997.

[Fowler 1997] M. Fowler and K. Scott, UML Distilled - Applying the Standard Object
Modeling Language. Readings, MA: Addison-Wesley, 1997.

[Gross 2001] D. Gross and E. Yu, "From Non-Functional Requirements to Design
through Patterns," Requirements Engineering. Springer-Verlag, vol. 6, pp.
18-36, 2001.

[Jackson 1995] M. J. Jackson, Software requirements & specifications: a lexicon of
practice, principles, and prejudices. New York, Wokingham, England ;
Reading, Mass.: ACM Press ; Addison-Wesley Pub. Co., 1995.

[Kavakli 2000] E. Kavakli, "Goal-Oriented Requirements Engineering: A Unifying
Framework," Requirements Engineering Journal, vol. 6, pp. 237-251, 2000.

DISCUSSION

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 141

[Kruchten 2000] P. Kruchten, The rational unified process: an introduction, 2nd ed.
Reading, Mass.; Harlow, England: Addison-Wesley, 2000.

[Larman 2001] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process, Second ed: Prentice
Hall, 2001.

[Leffingwell 2000] D. Leffingwell and D. Widrig, Managing software requirements: a
unified approach. Reading, Mass ; Harlow, England: Addison-Wesley, 2000.

[Letier 2002] E. Letier and A. v. Lamsweerde, "Agent-Based Tactics for Goal-Oriented
Requirements Elaboration," Proceedings ICSE'2002 - 24th International
Conference on Software Engineering, Orlando, FL, 2002.

[Letier 2002] E. Letier and A. v. Lamsweerde, "Deriving Operational Software
Specifications from System Goals," FSE'10 - 10th ACM S1GSOFT Symp. on
the Foundations of Software Engineering, Charleston, NC, 2002.

[Newell 1972] A. Newell and H. A. Simon, Human problem solving. Englewood cliffs,
N.J.: Prentice-Hall, 1972.

[Parnas 1995] D. L. Parnas and J. Madey, "Functional Documents for Computer
Systems," Science of Computing Programming, vol. 25, pp. 41-61, 1995.

[Purao 2002] S. Purao, A. Bush, and M. Rossi, "Towards an understanding of the use of
problem and design spaces during object oriented system development,"
Information and Organization, Pergamon, vol. 12, pp. 249-281, 2002.

[Regnell 1996] B. Regnell, M. Anderson, and J. Bergstrand, "A Hierarchical Use Case
Model with Graphical Representation," Proceedings the IEEE International
Symposium and Workshop on Engineering of Computer-Based Systems
(ECBS'96), Friedrischshafen, Germany, 1996.

[Robinson 1989] W. N. Robinson, "Integrating multiple specifications using domain
goals," 5th International workshop on software specification and design,
1989.

[Robinson 1994] W. N. Robinson, "Interactive Decision Support for Requirements
Negotiation," Concurrent Engineering: Research & Applications, Special
Issue on Conflict Management in Concurrent Engineering, The Institute of
Concurrent Engineering,, vol. 2, pp. 237-252, 1994.

[Robinson 1990] W. N. Robinson, "Negotiation behavior during requirement
specification," Proceedings of the 12th International Conference on Software
Engineering, Nice, France, 1990.

[Robinson 1998] W. N. Robinson and S. Pawlowski, "Surfacing Root Requirements
Interactions from Inquiry Cycle Requirements," The Third IEEE International
Conference on Requirements Engineering (ICRE'98), Colorado Springs, CO,
1998.

GOAL DIRECTED ANALYSIS WITH USE CASES

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

[Ross 1977] D. T. Ross and K. E. S. Jr., "Structured analysis for requirements definition,"
Transactions on Software Engineering, vol. SE-3, pp. 6-15, 1977.

[Rubin 1992] K. S. Rubin and A. Goldberg, "Object Behavior Analysis,"
Communications of the ACM, vol. 35, pp. 48-62, 1992.

[Rumbaugh 1991] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
ObjectOriented Modeling and Design: Prentice Hall, 1991.

[Soloway 1984] E. Soloway and K. Ehrlich, "Empirical studies of programming
knowledge," Transactions on Software Engineering, vol. SE-10, pp. 595-609,
1984.

[Sommerville 1997] I. Sommerville and P. Sawyer, Requirements engineering: a good
practice guide. Chichester, England; New York: John Wiley & Sons, 1997.

[van Lamsweerde 2001] A. van Lamsweerde, "Goal-Oriented Requirements Engineering:
A Guided Tour," RE'01 - 5th IEEE International Symposium on
Requirements Engineering, Toronto, 2001.

[van Lamsweerde 1998] A. van Lamsweerde, R. Darimont, and E. Letier, "Managing
Conflicts in Goal-Driven Requirements Engineering," IEEE, Transactions on
Software Engineering, vol. 24, pp. 908-926, 1998.

[van Lamsweerde 2000] A. van Lamsweerde and E. Letier, "Handling obstacles in goal-
oriented requirements engineering," in IEEE Transactions on Software
Engineering, vol. 26, 2000, pp. 978-1005.

[Weidenhaupt 1998] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, "Scenarios in
System Development: Current Practice," IEEE Software, vol. 15, pp. 34-45,
1998.

[Yue 1987] K. Yue, "What does it mean to say that a specification is complete?," 4th
International workshop on software specification and design, Monterrey,CA,
1987.

About the authors
William N. Robinson is an independent software consultant and
associate professor of Computer Information Systems at Georgia State
University. He can be reached at wrobinson@gsu.edu.

Greg Elofson is professor at the Graduate School of Business, University of New
Orleans. He can be reached at gelofson@uno.edu.

mailto:wrobinson@gsu.edu
mailto:gelofson@uno.edu

