
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 4 (April 2004)

Special issue: TOOLS USA 2003

Cite this article as follows: Karine Arnout, Eric Bezault: “How to get a Singleton in Eiffel?”, in
Journal of Object Technology, vol. 3, no. 4, April 2004, Special issue: TOOLS USA 2003, pp. 75-
95, http://www.jot.fm/issues/issue_2004_04/article5

How to get a Singleton in Eiffel?
Karine Arnout, Swiss Federal Institute of Technology, Zurich, Switzerland
Éric Bezault, Axa Rosenberg, U.S.A.

Abstract
Can the Singleton pattern [Gamma95] be turned into a reusable component? To help
answer this question, we have reviewed existing implementations and tried to improve
them. This article explains the difficulties of having a single-instance class in Eiffel and
proposes language extensions, namely once creation procedures, which would be
satisfactory in most cases, or frozen classes.

1 INTRODUCTION

Achieving reusability in software is one of the core goals of object technology and key
aspect of software quality. “Quality through components” [Arnout02] should be the
motto for all software programmers. However, much code is still written anew whenever
a new project starts without benefiting from previous similar developments.

This is particularly true for design patterns [Gamma95] [Vliss98]. Most existing
implementations are just possible ways to get the pattern in a particular context and a
given example. But an example — or a template — is not a reusable library. One should
pursue a higher degree of reuse and examine whether the pattern mechanism could be
provided in a component that clients could reuse off-the-shelf and just focus on the
implementation part that is specific to their applications.

The Eiffel event library [Arslan03] [Meyer03], which provides the
subscription/notification mechanisms of the Observer design attern, shows that building
reusable components from design patterns is not a pure utopia.

The rest of this presentation focuses on one “creational design pattern” [Gamma95]:
the Singleton. First we examine existing attempts to implement the Singleton pattern, and
discuss their limitations; then we propose an extension to the Eiffel language that would
facilitate writing singletons in Eiffel:

Section 2 focuses on the Singleton pattern: it describes the difficulty (even
impossibility) to obtain single-instance classes in current status of the Eiffel
programming language with concrete examples.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_04/article5

HOW TO GET A SINGLETON IN EIFFEL?

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

Section 3 proposes to loosen the existing creation clause rule of Eiffel to allow once
creation procedures, supplies an appropriate semantics, and discusses the
limitations of such a solution.

Section 4 explores a language extension that already exists in Eiffel for .NET, namely
frozen classes.

Section 5 concludes with an assessment of the analysis performed and gives further
research directions.

The analysis reported here is part of a broader research plan of trying to turn design
patterns described in the Design Patterns book [Gamma95] (at least some of them) into
reusable components.

2 SINGLETON

The Singleton pattern

The intent of the Singleton pattern is to “ensure a class only has one instance, and
provide a global point of access to it” ([Gamma95], p 127).

The following diagram shows the classes involved in the Singleton pattern and the
relationships between them ([Jézéq99], p 79):

Fig. 1: Class diagram of the Singleton Pattern

Note that class SHARED_SINGLETON was called SINGLETON_ACCESSOR in [Jézéq99].
We changed its name to better comply with well accepted Eiffel naming conventions.

How to get a “Singleton” in Eiffel

The Design Patterns book [Gamma95] explains with C++ examples how difficult it may
be to ensure that a class has no more than one instance. C++ uses static functions for that
purpose. Since Eiffel does not have static features, we need to explore another way: once
routines.

Although the Eiffel programming language natively includes a keyword — once —
which guarantees that a function is executed only once (subsequent calls return the same
value as the one computed at first call), the implementation of the Singleton pattern is not
trivial.

Note that once routines are executed once in the whole system not once per class.

SHARED_
SINGLETON SINGLETON

singleton

Class Client relationship

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 77

The Design Patterns and Contracts book [Jézéql99] tries but fails [JézéqErr] to provide a
solution. Let’s examine the proposed scheme to identify what was wrong with it and
attempt to correct it.

The Design Patterns and Contracts solution

Here is the approach suggested in [Jézéq99]: Make a class inherit from SINGLETON (Fig.
2) to specify that it can only have one instance thanks to its invariant and provide a global
access point to it through a class SHARED_SINGLETON (Fig. 3).

class SINGLETON

feature {NONE} -- Implementation

 frozen the_singleton: SINGLETON is
 -- The unique instance of this class
 once
 Result := Current
 end

invariant

 only_one_instance: Current = the_singleton

end

Fig. 2: Class SINGLETON

deferred class SHARED_SINGLETON

feature {NONE} -- Implementation

 singleton: SINGLETON is
 -- Access to a unique instance.
 -- Should be redefined as a once function in
 -- concrete subclasses.
 deferred
 end

 is_real_singleton: BOOLEAN is
 -- Do multiple calls to singleton return the same
 -- result?
 do
 Result := singleton = singleton
 end

invariant
 singleton_is_real_singleton: is_real_singleton
end

Fig. 3: Class SHARED_SINGLETON (Access point to SINGLETON)

HOW TO GET A SINGLETON IN EIFFEL?

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

In fact, as explained in the errata of the book [JézéqErr], such an implementation does not
work: it allows only one singleton per system. Indeed, if one inherits from class
SINGLETON several times, the feature the_singleton (Fig. 2), because it is a once
function inherited by all descendant classes, would keep the value of the first created
instance, and then all these descendants would share the same value. This is not what we
want because it would violate the invariant of SINGLETON in all its descendant classes
except the one for which the singleton was created first.

One would need “once per class semantics to create singletons as suggested by the
book. Since the concept does not exist in Eiffel, [one] then [has] to copy all the code that
is in SINGLETON to [one’s] actual singletons” [JézéqErr].

The last sentence by Jean-Marc Jézéquel suggests writing a “singleton skeleton” in
Eiffel. We will now examine this approach.

Singleton “skeleton”

Fig. 4 shows a possible “skeleton” for the singleton pattern:

indexing

 description: “Template to transform a class into a Singleton”
 usage: “[
 Copy/paste this code into the class you want to
 transform into a singleton
 and change the class names SHARED_SINGLETON and
 SINGLETON if needed.
]”

class SHARED_SINGLETON

feature {NONE} -- Implementation

 singleton: SINGLETON is
 -- Access to a unique instance
 once
 create Result
 ensure
 singleton_not_void: Result /= Void
 end

 is_real_singleton: BOOLEAN is
 -- Do multiple calls to singleton return the same
 -- result?
 do
 Result := singleton = singleton
 end

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 79

invariant

 accessing_real_singleton: is_real_singleton

end

Fig. 4: Singleton skeleton
With:

deferred class SINGLETON

feature {NONE} -- Access

 singleton: SINGLETON is
 -- Effect this as a (frozen) once routine.
 -- It should return Current.
 deferred
 end

invariant

 remain_single: Current = singleton

end

Fig. 5: Class SINGLETON used by the Singleton skeleton (wrong solution)
What’s wrong with this implementation?

In spite of the name is_real_singleton, this code does not provide a “real”
singleton. Declaring singleton as a once function does ensure that any call to this
function returns the same object, but nothing prevents the program from creating another
instance of class SINGLETON somewhere else in the code, which breaks the whole idea of
a singleton.

Having an invariant in class SINGLETON to detect attempts to create a singleton
twice is not a proper solution either. The problem is that, in debugging mode, even
though the invariant will catch errors at run-time when the singleton pattern is violated,
clients of class SINGLETON have no means to ensure that this invariant will never be
violated (they cannot test for it as they can do for a precondition before calling a routine),
which reveals a bug in the implementation of the class. The Design by Contract™
method gives the following definition of class correctness ([Meyer92], p 128; [Meyer97],
p 370):

A class is correct with respect to its assertions if and only if:
C1: For any valid set of arguments xp to a creation procedure p:

{Defaultc and prep (xp)} Bodyp {postp (xp) and INV}
C2: For every exported routine r and any set of valid arguments xr:

{prer (xr) and INV} Bodyr {postr (xr) and INV}
Fig. 6: Definition of class correctness

HOW TO GET A SINGLETON IN EIFFEL?

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

A violation of {Defaultc and prep (xp)} or {prer (xr) and INV} is the
manifestation of a bug in the client.

A violation of {postp (xp) and INV} or {postr (xr) and INV} is the
manifestation of a bug in the supplier.

How is class correctness related with this singleton implementation?
The definition of the singleton pattern given in [Gamma95] (p 127) states that the

corresponding class should have at most one instance, which means that we want to
prevent creating more than one such object. In other words, as a client of class
SINGLETON, I want to know whether the instruction:

create s.make

with:
s: SINGLETON

is valid before calling it, hence I want to write code like:
if is_valid_to_create_a_new_instance then
 create s.make
else
 -- Either report an error or

-- try to return a reference to the already created object.
end

The problem with class SINGLETON is that it provides no way to ensure the condition
is_valid_to_create_a_new_instance before calling Bodyp. Since we are dealing
with creation routines, the relevant rule for assessing class correctness is C1. We will get
a violation of INV (on the right hand side of the formula) if we create a second instance
of the class. This indicates a bug in the class SINGLETON itself, not in the client of the
class.

Note that restricting access of the creation procedure of SINGLETON to class
SHARED_SINGLETON would still not ensure correctness since one can inherit from
SHARED_SINGLETON — and this is the expected way to use SHARED_SINGLETON to
get access to feature singleton — and then call a creation procedure on SINGLETON at
will. A possible solution — although not perfect because it violates the Open-Closed
principle, [Meyer97] p 57-61 — is to use frozen classes (classes from which one cannot
inherit) as we describe later (see section 4), but the current version of Eiffel does not
authorize them (it only allows frozen features).

Besides, relying on the evaluation of invariants to guarantee the correctness of a class is
not good design: a program should behave the same way regardless of the assertion
monitoring level.

Tentative correction: Singleton with creation control

Let’s try to correct the previous implementation and define a Boolean feature
may_create_singleton in SINGLETON accessor (Fig. 7 and 8).

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 81

class MY_SINGLETON

inherit

 SINGLETON

create

 make

feature {NONE} -- Initialization

 make (an_accessor: MY_SHARED_SINGLETON) is
 -- Create a singleton from an_accessor.
 require
 an_accessor_not_void: an_accessor /= Void
 may_create: an_accessor.may_create_singleton
 do
 end

feature {NONE} -- Implementation

 singleton: SINGLETON is
 -- Access to unique instance
 once
 Result := Current
 end

end

Fig. 7: Singleton with creation control (wrong solution)

class MY_SHARED_SINGLETON

feature -- Status report

 may_create_singleton: BOOLEAN is
 -- May a new singleton be created? (i.e.
 -- is there no already created singleton?)
 do
 Result := not singleton_created.item
 end

feature -- Access

HOW TO GET A SINGLETON IN EIFFEL?

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

 singleton: MY_SINGLETON is
 -- Access to unique instance
 once
 create Result.make (Current)
 singleton_created.set_item (True)
 ensure
 singleton_not_void: Result /= Void
 may_not_create_singleton:
 not may_create_singleton
 end

feature {NONE} -- Implementation

 singleton_created: BOOLEAN_REF is
 -- Has singleton already been created?
 once
 create Result
 ensure
 result_not_void: Result /= Void
 end

end

Fig. 8: Accessor to singleton with creation control (wrong solution)

However, the feature may_create_singleton does not solve the correctness problem
detailed earlier: it does not prevent from calling two creation instructions as in the
following example (Fig. 9) and breaking our “singleton”.

class MY_TEST

inherit

 MY_SHARED_SINGLETON

create

 make

feature {NONE} -- Initialization

 make is
 -- Create two instances of type MY_SINGLETON.
 local
 s1, s2: MY_SINGLETON
 do

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 83

 if may_create_singleton then
 create s1.make (Current)
 end
 if may_create_singleton then
 create s2.make (Current)
 end
 end

end

Fig. 9: Class breaking the singleton with creation control

Indeed, MY_TEST does not call the once function singleton of class
MY_SHARED_SINGLETON, which means that may_create_singleton is never set to
False and both s1 and s2 get instantiated.

The important point here is that we have broken the “singleton skeleton” by just
looking at the interface forms of classes MY_SINGLETON and MY_SHARED_SINGLETON
and writing code that does not violate the Design by Contract principles (although it
would violate an invariant when executed!).

The interface form of a class retains only specification-related information of the
publicly available features: the signature of features (of both immediate and inherited
features), the comments, and contracts (involving exported features only), namely what
a client of the class needs to know about.

The Gobo Eiffel singleton example

Fig. 10 and 11 show a better approach to the “singleton pattern problem” in Eiffel. (It is a
Gobo Eiffel Example [Gobo].)

class MY_SINGLETON

inherit

 MY_SHARED_SINGLETON

create

 make

feature {NONE} -- Initialization

 make is
 -- Create a singleton object.
 require
 singleton_not_created: not singleton_created
 do
 singleton_cell.put (Current)
 end

HOW TO GET A SINGLETON IN EIFFEL?

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

invariant

 singleton_created: singleton_created
 singleton_pattern: Current = singleton

end

Fig. 10: The Gobo Eiffel singleton example

class MY_SHARED_SINGLETON

feature -- Access

 singleton: MY_SINGLETON is
 -- Singleton object
 do
 Result := singleton_cell.item
 if Result = Void then
 create Result.make
 end
 ensure
 singleton_created: singleton_created
 singleton_not_void: Result /= Void
 end

feature -- Status report

 singleton_created: BOOLEAN is
 -- Has singleton already been created?
 do
 Result := singleton_cell.item /= Void
 end

feature {NONE} -- Implementation

 singleton_cell: CELL [MY_SINGLETON] is
 -- Cell containing the singleton if already created
 once
 create Result.put (Void)
 ensure
 cell_not_void: Result /= Void
 end

end

Fig. 11: Accessor to the Gobo Eiffel singleton example

This implementation is still not perfect; one can still violate the invariant of class
MY_SINGLETON by:

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 85

cloning a singleton — using feature clone or deep_clone from ANY;
using persistence — retrieving a “singleton” object that had been stored before (using

the STORABLE mechanism of Eiffel or a database library);
inheriting from MY_SHARED_SINGLETON and “cheating” by putting back Void to the

cell after the singleton has already been created. Note though that here one needs
to access and modify non-exported features — in this case singleton_cell —
to “break” the singleton implementation given above (Fig. 10 and 11), whereas
one could “break” the code defined previously (Fig. 7, and 8) easily by looking
only at the interface of the classes.

Besides, the use of the invariant
Current = singleton

is not fully satisfactory because it means that descendants of this class may not have their
own direct instances without breaking this invariant.

Eiffel distinguishes between direct instances and instances of a type T, the latter
including the direct instances of type T and those of any type conforming to T (i.e. its
descendants) [Meyer92]. We think it should be the duty of the users of the Singleton
library to decide when implementing a singleton whether there should be only one
instance or only one direct instance of that type; it shouldn’t be up to the authors of the
library to decide.

Finally, this code is not a library component: it is just an example implementing (or
trying to implement) the singleton pattern.

Other tentative implementations

In a discussion in the comp.lang.eiffel newsgroup [Cohen01], Paul Cohen gives an
interesting but somewhat overweight solution. The idea is that the singletons in system
can register their instance by name in a registry. The Design Patterns book [Gamma95]
calls it the “registry of singletons” approach (see 2. Subclassing the Singleton class, p
130). Fig. 12 gives the corresponding Eiffel implementation:

class SINGLETON

feature {NONE} -- Initialization

 frozen register_in_system is
 -- Register an instance of this singleton.
 --|Must be called by every creation procedure
 --|of every descendants of SINGLETON
 --|to fulfill the class invariant is_singleton.
 require
 no_singleton_in_system:
 not singletons_in_system.has (generating_type)
 do
 singletons_in_system.put (Current, generating_type)
 ensure

HOW TO GET A SINGLETON IN EIFFEL?

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

 count_increased: singletons_in_system.count =
 old singletons_in_system.count + 1
 singleton_registered:
 singletons_in_system.has (generating_type)
 end

feature {NONE} -- Implementation

 frozen singletons_in_system: HASH_TABLE [SINGLETON, STRING] is
 -- All singletons in system
 -- stored by name of generating type
 once
 create Result.make (1)
 ensure
 singletons_in_system_not_void: Result /= Void
 end

end

Fig. 12: A “registry of singletons”
Feature generating_type is defined in class ANY; it returns a string corresponding to
the name of current object’s generating type (namely the type of which it is a direct
instance). It is a feature of the Eiffel Library Kernel Standard (ELKS, see [Gobosoft] and
appendix A of ETL3 [Meyer0?a]). However, class HASH_TABLE is not a standard Eiffel
class (for example, SmartEiffel [Inria] does not define it).

Let’s write a descendant of class SINGLETON to understand how this “registry of
singletons” works. A particular singleton implementation should look like the one shown
in Fig. 13:

class MY_SINGLETON

inherit

 SINGLETON

create

 make

feature {NONE} -- Initialization

 make is
 -- Initialize singleton and
 -- add it to the registry of singletons.
 require
 singleton_not_created:
 not singletons_in_system.has (generating_type)
 do
 -- Something here
 register_in_system

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 87

 ensure
 singleton_created:
 singletons_in_system.has (generating_type)
 end
 ...
end

Fig. 13:A particular singleton in the “registry”
Each time a singleton gets created, it adds itself to the registry of singleton. The problem
with this approach is that a client of MY_SINGLETON cannot test for the precondition of
make before calling the routine: first, it does not have access to
singletons_in_system; second, it does not know about the value of
generating_type because the corresponding object has not been created yet.

Doug Pardee gives another possible implementation of the Singleton pattern in the
Eiffel Forum [Pardee01], but it seems too complex to be reused effectively.

Impossible?

The unfruitful attempts reviewed so far illustrate how difficult it is to implement the
singleton pattern in Eiffel, especially as a reusable library. In fact, it is not possible at all
without violating the Design by Contract principles, namely a non-checkable invariant,
even when controlling the creation of the singleton object because it can get involved in
some cloning (clone/deep_clone) or in some persistence mechanisms
(store/retrieve from STORABLE, or a database library).

Assuming we do not take clone and STORABLE into account, one solution could be
to allow once creation procedures in Eiffel with a special semantics ensuring class
correctness. That’s what we will review now.

3 ONCE CREATION PROCEDURES

We propose an extension to the Eiffel programming language that would allow declaring
a creation procedure as a once-procedure — which is currently forbidden by the sixth
clause of the “Creation Instruction rule”, [Meyer92] p 286. (This idea first appeared in
the newsgroup comp.lang.eiffel in 2001 [Silva01].)

Rationale

Let’s consider a creation instruction with target x, a creation reference type TC and a
creation procedure make:

x: TC
create x.make

The semantics of the Creation instruction ([Meyer92], p 289) for a reference creation type
TC is as follows:

1. Allocate memory.

HOW TO GET A SINGLETON IN EIFFEL?

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

2. Initialize the fields with their default values.
3. Call the creation procedure make (to ensure the invariant).
4. Attach the resulting object to the creation target entity x.

This semantics forbids the use of once-procedures as creation procedures. Indeed, with a
once procedure, the first object created would satisfy the class invariant (assuming the
creation procedure is correct), but subsequent creation instructions would not execute the
call, and hence would limit themselves to the default initializations, which might not
ensure the invariant.

But we could think of another semantics for the “Creation_instruction” when the
creation procedure is a once-procedure (namely a procedure declared as once):

If the once creation procedure has not been called yet to create an object of the given
type TC then create an object as indicated above (steps 1 to 4).

Otherwise attach to the creation target entity x the object which has been created by
the first call to the once creation procedure for this type.

This new semantics would make it possible to write a Singleton pattern in Eiffel (Fig. 14
and 15) and would also simplify the implementation of shared objects.

class SINGLETON

create

 make

feature {NONE} -- Initialization

 make is
 once
 ...
 end
end

Fig. 14: Class SINGLETON with once creation procedures

use_singleton is
 -- Declare two variables of type SINGLETON and
 -- check they point to the same object.
 local
 s1, s2: SINGLETON
 do
 create s1.make
 create s2.make

 check
 singleton_pattern: s1 = s2
 end
 end

Fig. 15: Feature using a singleton (declared with a once creation procedure)

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 89

Another possible application would be in the field of graphical user interfaces to display
error messages in the same window:

(create {ERROR_WINDOW}).display (error_message)

default_create being declared as a once creation procedure.
For these examples to be valid, one should remove the sixth clause from the

“Creation Instruction rule” ([Meyer92], p 286).

Open issues

Expanded creation type: It is not clear yet what should be the semantics when the
creation type is expanded. Here is a possible solution:

If the once creation procedure has not been called yet in a creation
instruction/expression of creation type TC then apply steps 3 and 4 described
above to the object attached to x.

Otherwise do nothing.
Creation instruction and “onceness” status: Loosening the creation validity constraints
([Meyer92], p 286) to allow once creation procedures and applying the semantics
described above would mean that a once-procedure has several “onceness” statuses (i.e.
is it the first or a subsequent call?):

when it is called as a regular procedure
when it is called as a creation procedure (for each type for which it is declared as

creation procedure).
Let’s consider an example to better understand the issue:

class A

create

 make

feature

 make is
 once
 ...
 end

end

Fig. 16: Class A declaring a once creation procedure

class B

inherit

 A

HOW TO GET A SINGLETON IN EIFFEL?

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

create
 make
end

Fig. 17: Descendant class B inheriting once creation procedure from A

use_once_creation_procedures is
 -- Use once creation procedure from classes A and B.
 local
 a1, a2: A
 b1, b2: B
 do
 create a1.make
 create a2.make
 create b1.make
 create b2.make
 end

Fig. 18: Feature using once creation procedure from classes A and B
If it is clear that a1 and a2 should be attached to the same object, and likewise for b1 and
b2, however it is not the case of a1 and b1, which have two different creation types and
thus cannot be attached to the same object. Therefore the “onceness” status of make
should be per creation type. But make can also be called as a regular procedure:

a1.make
b2.make

Should we take into account whether make has already been called as a creation
procedure or not in that case? In our opinion, the “onceness” of a procedure should be
different when used as a creation procedure and when used as a regular procedure.
Indeed, even if the once-procedure has already been called as a regular procedure, we still
want the initialization of the object to be made properly when this procedure is called for
the first time as part of a creation instruction:

a1.make
create a2.make

Finally, we should probably combine all the above with the semantics of “once per
thread”, “once per process”, etc. mentioned in section 8.6 of ETL3 [Meyer0?a].

Limitations

Coming back to our discussion about the Singleton pattern, once creation procedures in
Eiffel still would not completely solve the issues described in section 2; in particular:

We would still have the problem of not being able to forbid the duplication of the
singleton object with clone/deep_clone or STORABLE/databases.

We would not have the global access point to the singleton as demanded by the
definition of a singleton in the Design Patterns book ([Gamma95], p 127)
although we can provide a SHARED_SINGLETON access with a once function per
SINGLETON class.

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 91

Another approach would be to extend the notion of frozen features ([Meyer92], p 63) to
frozen classes as it already exists in Eiffel for .NET. We will now review the pros and
cons of this solution.

4 FROZEN CLASSES

Eiffel: The Language ([Meyer92], p 63) defines the notion of frozen features, namely
features that cannot be redefined in descendants (their declaration is final). By broadening
the scope of final declarations from features to classes — as already done in the current
implementation of Eiffel for .NET — it would become possible to implement a “real”
singleton in Eiffel with a proper access point (as defined in [Gamma95], p 127) as a
reusable component.

Rationale

Eiffel features whose declaration starts with the frozen keyword are final: they are not
subject to redefinition in descendants. They are called “frozen features”.

The idea is to extend this notion to classes. The semantics of “frozen classes” is that
one may not inherit from these classes, which as a consequence cannot be deferred
(because they cannot have any descendants and could never be effected).

The only syntactical change to the Eiffel language would be the introduction of the
keyword frozen on classes. The Header_mark defined in section 4.8 of [Meyer92] (p
50) should be extended to:

Header_mark = deferred | expanded | reference | separate | frozen

with the consequence that a class cannot be both frozen and deferred.

The keywords reference and separate do not appear in the first two versions of
Eiffel; they are novelties of the third edition (see ETL3 [Meyer0?a], section 4.9, p 65).

Singleton library using frozen classes

Having frozen classes would enable writing a “singleton library” relying on two classes:
A frozen class SHARED_SINGLETON (Fig. 19) exposing a feature singleton, which is

a once function returning an instance of type SINGLETON.
A class SINGLETON (Fig. 20) whose creation procedure make is exported to class

SHARED_SINGLETON and its descendants only.

frozen class SHARED_SINGLETON

feature -- Access

 singleton: SINGLETON is
 -- Global access point to singleton

HOW TO GET A SINGLETON IN EIFFEL?

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

 once
 create Result
 ensure
 singleton_not_void: Result /= Void
 end
end
Fig. 19: Frozen class SHARED_SINGLETON (global access point to SINGLETON)

class SINGLETON

create {SHARED_SINGLETON}
 default_create
end

Fig. 20: Class SINGLETON
Typical use of the “Singleton library” would be to create a SHARED_SINGLETON to get
one’s own unique instance, as in class MY_SHARED_SINGLETON written below (Fig. 21).

class MY_SHARED_SINGLETON

feature -- Access

 singleton: SINGLETON is
 -- Unique instance
 once
 Result := create {SHARED_SINGLETON}.singleton
 end
end

Fig. 21: Typical use of the “Singleton library”

Pros and cons of introducing frozen classes

Weak point:
The disadvantage of frozen classes is that it goes against the core principles of object-

oriented development. Indeed, the Open-Closed principle ([Meyer97], p 57-61)
states that a module should always be both closed (meaning usable by clients) and
open (meaning it can be extended). Having frozen classes, which by definition
cannot be redefined, violates this principle.

Strong points:
The main advantage of the last solution using frozen classes is that it provides a very

straightforward way (introduction of just one keyword, frozen, with the
appropriate semantics) to get a real singleton in Eiffel, including a global access
point to it — which one could not have with the solution using once creation
procedures.

Besides, there is no such problem as different once statuses depending on whether the
same feature is called as a creation procedure or as a regular procedure.

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 93

On a lower level, having frozen classes would enable the compiler to perform code
optimization, which it could not do for non-final classes.

5 CONCLUSION

This analysis has shown that implementing the Singleton pattern [Gamma95] as a
reusable library in Eiffel is not feasible with the current definition of the language; an
implementation like the Gobo Eiffel example [Gobo-Eiffel] is acceptable, but it is neither
secure nor robust.

Among the two Eiffel language extensions suggested in this paper, the introduction
of frozen classes is the most elegant and would lead to a straightforward way of writing
“real” singletons in Eiffel (including a global access point). The main argument against
authorizing frozen classes is that users may start using them excessively, which would
violate the Open-Closed principle ([Meyer97], p 57-61); we believe it will not be the
case. Indeed, Eiffel developers already have the possibility to declare features as “frozen”
(meaning these features may not be redefined), but they use it only sparsely, in well-
identified and justified cases. Besides, the utility of frozen classes is wider than just the
implementation of the Singleton pattern; for example, it is already used in the .NET
extension of the Eiffel language.

We think that extending Eiffel with frozen classes would provide an elegant way of
writing real singletons in Eiffel. Nevertheless, it would not enable — at least we have not
succeeded in — having reusable library components corresponding to the Singleton
pattern.

REFERENCES

[Arnout02] Karine Arnout. “Contracts and Tests”. Ph.D. research plan, ETH Zurich,
December 2002. http://se.inf.ethz.ch/people/arnout/phd_research_plan.pdf.

[Arslan03] Volkan Arslan, Piotr Nienaltowski, and Karine Arnout. “Event library: an
object-oriented library for event-driven design”. JMLC (Joint Modular
Languages Conference), Klagenfurt, Austria, August 25-27, 2003.
http://se.inf.ethz.ch/people/arslan/data/scoop/conferences/Event_Library_JM
LC_2003_Arslan.pdf.

[Cohen01] Paul Cohen. “Re: Working singleton implementation”. In newsgroup
comp.lang.eiffel [online discussion group]. Cited 15 April 2001.
http://groups.google.com/groups?dq=&hl=en&lr=&ie=UTF-
8&selm=3AD984B6.CCEC91AA%40enea.se&rnum=8.

[Eiffel] Eiffel Forum: Singleton Pattern In Eiffel. http://efsa.sourceforge.net/cgi-
bin/view/Main/SingletonPatternInEiffel.

http://se.inf.ethz.ch/people/arnout/phd_research_plan.pdf
http://se.inf.ethz.ch/people/arslan/data/scoop/conferences/Event_Library_JMLC_2003_Arslan.pdf
http://groups.google.com/groups?dq=&hl=en&lr=&ie=UTF-8&selm=3AD984B6.CCEC91AA%40enea.se&rnum=8
http://efsa.sourceforge.net/cgi-bin/view/Main/SingletonPatternInEiffel
http://efsa.sourceforge.net/cgi-bin/view/Main/SingletonPatternInEiffel

HOW TO GET A SINGLETON IN EIFFEL?

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

[Gamma95]Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides: Design
Patterns. Addison-Wesley, 1995.

[Gobo] Gobo Eiffel Example: gobo-eiffel/gobo/example/pattern/singleton.
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/gobo-
eiffel/gobo/example/pattern/singleton/.

[Gobosoft] Gobosoft: The Eiffel Library Kernel Standard, 2001 Vintage.
http://www.gobosoft.com/eiffel/nice/elks01/index.html.

[Inria] INRIA, Loria: Welcome to SmartEiffel! Home of the GNU Eiffel Compiler,
Tools, and Libraries. http://smarteiffel.loria.fr/.

[Jézéq99] Jean-Marc Jézéquel, Michel Train, and Christine Mingins: Design Patterns
and Contracts. Addison-Wesley, 1999.

[JézéqErr] Jean-Marc Jézéquel: Errata. http://www.irisa.fr/prive/jezequel/
DesignPatterns/#Errata.

[Meyer92] Bertrand Meyer: Eiffel: The Language. Prentice Hall, 1992.

[Meyer94] Bertrand Meyer: Reusable Software: The Base Object-Oriented Component
Libraries. Prentice Hall, 1994.

[Meyer97] Bertrand Meyer: Object-Oriented Software Construction, second edition.
Prentice Hall, 1997.

[Meyer0?a] Bertrand Meyer: Eiffel: The Language, Third edition (in preparation).
http://www.inf.ethz.ch/personal/meyer/#Progress.

[Meyer03] Bertrand Meyer. “The power of abstraction, reuse and simplicity: an object-
oriented library for event-driven design”. In Festschrift in Honor of Ole-
Johan Dahl, Eds. Olaf Owe et al., Springer-Verlag, Lecture Notes in
Computer Science 2635, 2003. Available from
http://www.inf.ethz.ch/~meyer/publications/events/events.pdf. Accessed June
2003.

[Silva01] Miguel Oliveira e Silva. “Once creation procedures”. In newsgroup
comp.lang.eiffel [online discussion group]. Cited 7 September 2001.
http://groups.google.com/groups?dq=&hl=en&lr=&ie=UTF-
8&threadm=GJnJzK.9v6%40ecf.utoronto.ca&prev=/groups%3Fdq%3D%26n
um%3D25%26hl%3Den%26lr%3D%26ie%3DUTF-
8%26group%3Dcomp.lang.eiffel%26start%3D525.

[Pardee01] Doug Pardee. “Re: Once creation procedures”. In newsgroup comp.lang.eiffel
[online discussion group]. Cited 8 September 2001.
http://groups.google.com/groups?dq=&hl=en&lr=&ie=UTF-
8&threadm=GJnJzK.9v6%40ecf.utoronto.ca&prev=/groups%3Fdq%3D%26n
um%3D25%26hl%3Den%26lr%3D%26ie%3DUTF-
8%26group%3Dcomp.lang.eiffel%26start%3D525.

http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/gobo-eiffel/gobo/example/pattern/singleton/
http://www.gobosoft.com/eiffel/nice/elks01/index.html
http://smarteiffel.loria.fr/
http://www.irisa.fr/prive/jezequel/DesignPatterns/#Errata
http://www.irisa.fr/prive/jezequel/DesignPatterns/#Errata
http://www.inf.ethz.ch/personal/meyer/#Progress
http://www.inf.ethz.ch/~meyer/publications/events/events.pdf
http://groups.google.com/groups?dq=&hl=en&lr=&ie=UTF-8&threadm=GJnJzK.9v6%40ecf.utoronto.ca&prev=/groups%3Fdq%3D%26num%3D25%26hl%3Den%26lr%3D%26ie%3DUTF-8%26group%3Dcomp.lang.eiffel%26start%3D525
http://groups.google.com/groups?dq=&hl=en&lr=&ie=UTF-8&threadm=GJnJzK.9v6%40ecf.utoronto.ca&prev=/groups%3Fdq%3D%26num%3D25%26hl%3Den%26lr%3D%26ie%3DUTF-8%26group%3Dcomp.lang.eiffel%26start%3D525

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 95

[Vliss98] John Vlissides: Pattern Hatching: Design Patterns Applied. Addison-Wesley,
USA, 1998.

ACKNOWLEDGEMENTS

We gratefully acknowledge Bertrand Meyer (ETH Zurich & Eiffel Software Inc.) for his
valuable comments and feedback on the paper. We are also thankful to Emmanuel Stapf
(Eiffel Software Inc.), Mark Howard (Axa Rosenberg), and Dominique Colnet (LORIA),
members of the standardization committee ECMA TC39-TG4 for fruitful discussions
about once creation procedures and frozen classes.

About the authors

Karine Arnout is Ph.D. student in the Chair of Software Engineering
held by Prof. Dr. Bertrand Meyer at ETH Zurich. Her Ph.D. topic deals
with contracts and tests. She is a member of the ECMA working group
standardizing Eiffel and worked at Eiffel Software on porting Eiffel to
.NET. She can be reached at Karine.Arnout@inf.ethz.ch.

Éric Bezault is a senior engineer at Axa Rosenberg, research center,
USA. He is the leader of the Gobo Eiffel Project, which provides free
and portable Eiffel tools and libraries. He has several years experience
on Eiffel projects in the financial industry. He is member of the ECMA
group standardizing Eiffel. He can be reached at ericb@gobosoft.com.

mailto:Karine.Arnout@inf.ethz.ch
mailto:ericb@gobosoft.com

