
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 4 (April 2004)

Special issue: TOOLS USA 2003

Cite this article as follows: D. Lucrédio, E. S. Almeida, C. P. Bianchini, A. F. Prado, L. C. Trevelin:
“Orion – A Component Based Software Engineering Environment”, in Journal of Object
Technology, vol. 3, no. 4, April 2004, Special issue: TOOLS USA 2003, pp. 51-74.
http://www.jot.fm/issues/issue_2004_04/article4

Orion – A Component-Based Software
Engineering Environment

Daniel Lucrédio, Calebe de Paula Bianchini, Antonio Francisco do Prado,
Luis Carlos Trevelin, Federal University of São Carlos, Brazil
Eduardo Santana de Almeida, Federal University of Pernambuco – Recife
Center for Advanced Studies and Systems, Brazil

Abstract
Software Engineering Environments (SEEs) have been extensively studied, aiming to
provide help in software development. Component-Based Software Engineering (CBSE)
arises as an approach for constructing software through reusable components, reducing
development costs and time, among other benefits. This paper identifies the main
requirements for Component-Based Software Engineering Environments (CBSEEs),
and presents Orion, a CBSEE which integrates different works from our research group,
involving development tools, a repository, a process model and a middleware platform.

1 INTRODUCTION

CASE tools have existed since the first days of computing. Text editors and command-
line compilers are among the first examples of tools designed to help programmers. Later,
they evolved to more complex environments, automating tasks such as compiling and
debugging. However, these first environments, called PSEs (Programming Support
Environments), supported only coding activities [Harrison 2000]. The next tool
generation came to support other activities, such as analysis and design. Today’s
environments, called SEEs (Software Engineering Environments) cover a wider range of
the software life cycle [Harrison 2000, Sommerville 2000].

Meanwhile, Component-Based Software Engineering (CBSE) is a continuously
growing field. However, there is a lack for good environment support for the CBSE
activities, mainly because most of the environments do not offer comprehensive,
integrated support for the full range of CBSE activities [Lüer 2001]. The construction of
this kind of environments involves general environment issues, such as tool integration,
and specific CBSE issues, such as domain engineering and application composition.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_04/article4

ORION – A COMPONENT BASED SOFTWARE ENGINEERING ENVIRONMENT

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

This paper presents a Component-Based Software Engineering Environment
(CBSEE), called Orion, which integrates different works from our research group,
including an UML modeling tool, a Java programming tool, a network tool, a middleware
platform and a process model. Although not originally designed to work together, they
could be integrated into an environment that fulfills most of the requirements for CBSE.

The paper is organized as follows: Section 2 presents the identified requirements for
CBSEEs. Section 3 presents the different works from our research group that compose
the Orion environment. Section 4 presents Orion, which is briefly evaluated in section 5.
Related works are presented in section 6. Section 7 presents some concluding remarks.

2 REQUIREMENTS FOR COMPONENT-BASED SOFTWARE
ENGINEERING ENVIRONMENTS

Authors such as [Silveira 2002] state that requirements for component-based software
systems are difficult to identify, due to the complexity of the involved factors. However,
several researches found in the literature attempt to identify requirements related to
Component-Based Development [Pressman 2001, Silveira 2002] and CASE
Environments [Almeida 2002b, Lüer 2001, Pressman 2001, Sommerville 2000]. Next the
main requirements identified for CBSEEs and their rationale are presented.

Tool integration

CBSEEs are composed by a set of tools that must interoperate in order to help the
Software Engineer through the development process. This interoperation can be achieved
in different levels [Sommerville 2000].

Platform integration: The tools that compose a CBSEE must run on the same
platform, so they can benefit from the same platform services.

Data integration: The tools within a CBSEE must share information along the
software process, producing and using information that is common to the environment.

Presentation integration: When using a CBSEE, the Software Engineer must use
different tools. It is easier for one to learn how to use a tool if it has the same appearance
than the tools which he is already familiar with.

Control integration: A tool can control the operation of other tools.
Process integration: There is a process model to guide the Software Engineer

through the usage of the tools.

Support for Component-Based Software Engineering activities

A CBSEE must give support to two major activities: Domain Engineering, which
produces components for future reuse, and Component-Based Development, which
produces applications that reuse existing components [Szyperski 1998].

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 53

Domain Engineering, also called development “for reuse”, deals with components
construction. Based on problem domain requirements, components are constructed for
reuse. In order to aid in Domain Engineering, a CBSEE must support domain analysis,
components design, implementation, packaging and publishing.

Component-Based Development, also called development “with reuse”, deals with
the applications composition, reusing existing components. If needed, new components
can be developed, or even acquired from third party. To be effective, a CBSEE must
provide means to find, connect and adapt existing components. It must also support the
addition of components that are developed or acquired during this phase.

Reusability

In order to achieve effective reuse, the Software Engineer must be able to avoid all types
of effort duplication. Not just code, but every kind of software artifact should be reused
[D’Souza 1998]. An example is design patterns application [Gamma 1995]. Each time a
pattern is applied, the same structure must be built. If this structure could be reused, the
Software Engineer would only need to build it once. In order to support reusability, a
CBSEE must offer ways to recover and reuse resources at any time or abstraction level.

Referential Integrity

In CBSE, reuse usually causes several components to reference each other. However, due
to the evolutionary nature of software systems, components are constantly added, updated
and removed from their location. Thus, a CBSEE must guarantee that every reference has
its integrity assured. This is similar to the referential integrity present in most DataBase
Management Systems, with the difference that in a CBSEE these references can involve
different kinds of data, from simple text artifacts to complex high-level models.

Software Configuration Management (SCM)

Software Configuration Management can be defined as the ability to control the changes
that naturally occur during the software process. The objective is to assure that the
software evolves in an ordered way, reducing the confusion between the Software
Engineers. This is an extensive subject, involving many tasks, such as versioning and
modification control. In CBSE, these tasks must be performed either to control the
changes in the components as the changes in the applications.

Multiple Views of Information

The information within the environment must be semantically rich, so that all tools
involved can read and understand it in its own way. This is specially true in CBSE, where
a component can be viewed internally (functionality), or externally (architectural).

ORION – A COMPONENT BASED SOFTWARE ENGINEERING ENVIRONMENT

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

Security

Security is a major issue in any software engineering approach, and so it is in CBSE. To
be reliable, some information must be proven secure. Otherwise, it could risk the whole
project. The idea is that only authorized developers should be able to access and modify
the information, avoiding damage to the project.

Technology and Language Independence

Although extensively studied, software components are still evolving, and there is no
definitive solution. New component-based technologies are constantly arising, such as
EJB [Sun 2002], DCOM [Microsoft 1996], CORBA [OMG 2002b] and JavaBeans [Sun
1997]. A CBSEE must maintain a basic conceptual core, independent to any technology
or language, responding to the novelty without being dependant on it.

3 COMPONENTS OF THE ORION ENVIRONMENT

Our research group has proposed several works in the software engineering area,
including CASE tools, a software artifacts repository, a middleware platform, and a
software process model. Next, these works are briefly discussed.

MVCASE

The MVCASE (Multiple View CASE) [Almeida 2002b] is a modeling tool that provides
graphical and textual techniques based on UML notation [Rumbaugh 1999]. Being fully
implemented in Java, it is platform-independent. MVCASE allows the Software Engineer
to specify systems in different abstraction levels and four views: Use Case View, Logical
View, Component View and Deployment View.

To persist the UML specifications, MVCASE uses the OMG’s XMI (XML Metadata
Interchange) standard [OMG 2002a]. The XMI is a XML-based format used to represent
UML descriptions. Based on the specifications, MVCASE generates XMI descriptions.
This standard allows MVCASE to share models with other tools.

In order to aid in the implementation activities, MVCASE provides wizards to
automate tasks such as code generation, packaging and component publishing. Until this
moment, these wizards support the following technologies: Java 2, EJB [Sun 2002],
CORBA [OMG 2002b] and Java Servlets [Sun 2003b]. MVCASE is currently being used
in several Brazilian institutions, helping in other researches and teaching.

JADE

JADE (JAVA DESIGNER), is a Java-based, object-oriented programming tool with
features that help the Software Engineer in the coding activities. Similar to most of the
commercial programming tools, such as JBuilder [Borland 2003a] and Delphi [Borland

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 55

2003b], JADE has support for coding, compiling, executing and debugging applications.
It has also support for Graphical User Interface (GUI) design.

The major different between JADE and the commercial tools is its ability to persist
the edited classes in XMI format. JADE has a Java parser which retrieves the information
from the code, identifying data such as attributes names and operation signatures. Based
on these elements, XMI descriptions are generated. To describe GUI-related information,
the XMI standard was extended. Figure 1 shows an example of JAVA code described in
XMI.

This allows the information recovered from the code to be viewed by modeling tools
that can read XMI, such as MVCASE. JADE is currently a prototype under development,
being part of an ongoing MSc. dissertation.

MoDPAI

MoDPAI [Bianchini 2002] is a tool to monitor devices using pervasive computing issues
and intelligent agents. Pervasive computing [Hansmann 2001] is the technology that
allows the access to the Internet through mobile devices, such as digital cellular phones.
MoDPAI uses software agents [Franklin 1996, Lucena 2002] to help the network
administrator in his decision-making, speeding up the monitoring and devices control.
The exchange of information between the administrator and agents can occur directly in
the tool or through mobile devices via Internet.

MoDPAI meets the specifications described by the SNMP (Simple Network
Management Protocol) [Stallings 1999], a network management standard based on
TCP/IP [Tanenbaum 1996]. By meeting the SNMP standard, MoDPAI tool can monitor a

Figure 1: Code information described in XMI

<XMI.content>
 ...
 <Class ...>
 <Element.name>Frame1</Element.name>
 ...
 <Method ...>
 <Element.name>Frame1</Element.name>
 <Method.visibility xmi.value="public"/>
 </Method>
 <Attribute ...>
 <Element.name>counter</Element.name>
 <Attribute.visibility xmi.value="public"/>
 <Attribute.type>
 <Class xmi.uuid="int"...>
 </Attribute.type>
 </Attribute>
 </Class>
</XMI.content>

JADE Tool

ORION – A COMPONENT BASED SOFTWARE ENGINEERING ENVIRONMENT

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

network to collect information about distributed devices. This information is analyzed by
the software agents that are programmed in a knowledge base. According to the
intelligence degree, which is predefined by means of clauses written in the KB language
[Lumina 2000], the agents make decisions that change the devices’ configurations.

In order to be able to monitor a network, the administrator must identify and register
all the devices to be monitored. MoDPAI provides mechanisms to automatically search
the network for devices. This search is performed either by looking up devices that have
the SNMP management software installed, or by looking up devices that respond to
PING requests [Stallings 1999]. After identifying the devices, MoDPAI exports the
information to XML. Figure 2 shows this process. This ability to identify the network
topology and export it to XML makes MoDPAI an important part of Orion, as will be
explained later.

MoDPAI tool was the subject of a MSc. dissertation [Bianchini 2002], and has
several other functionalities, related to network monitoring, but that do not relate to the
subject of this paper. Further information may be found in [Bianchini 2002].

JAMP Platform

JAMP (Java Architecture for Media Processing) is an environment for the development
of cooperative multimedia applications [Guimarães 2000, Souza 2001]. It is composed by
several servers, a broker (a specialized server that servers as a bridge between different
clients and servers) and a framework set that is used by the multimedia applications.
Based on the object-oriented paradigm, JAMP uses the Java language, the RMI [Sun
2003a] and CORBA models for the construction of cooperative multimedia applications.

The JAMP platform architecture has three layers. In the first, called Application
Layer, there are several cooperative multimedia applications (chat, whiteboard, etc).
These applications use the platform services through access frameworks, which define an
API that allows the interaction between the applications and the platform services.

The second layer, Services Layer, comprises all the multimedia and distributed
middleware services, being responsible for remote method invocation on distributed
objects and media processing. One interesting service available on JAMP is the Load
Balancing service, which allows method invocations to be redirected to different objects,
to reduce of the communication overhead that occurs when a single object is excessively

Figure 2: Automatic devices identification

Network

MoDPAI

SNMP / PING
Requests

XML
Document

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 57

accessed. In this layer is also located JBroker, which allows clients to invoke methods on
remote objects without knowing details of their location or implementation.

The third layer, called Infrastructure Layer, provides communication transparency
for the distributed applications and the available services. Java/RMI and CORBA are
examples of the models supported by this layer.

The JAMP platform is used according to the following process: The process starts
with the server (an object that provides a service) registering itself in JBroker. When a
client needs a service, it accesses JBroker to search for it. Next, the JBroker returns to the
client a reference for an object that implements the service. The client can then invoke the
service directly on the server. This process is known as Trading Process.

If a single server is excessively accessed, there may be a communication overhead.
JAMP solves this problem through its Load Balancing Service. This service allows
different copies of a server to be registered in JBroker. When a client needs a service,
only one copy is selected, according to some policy or algorithm, reducing the overhead.
Examples of such policies include: round-robin selection, random selection, among
others. JAMP is the result of several MSc. Dissertations, including [Guimarães 2000,
Souza 2001], and it is being currently used and improved with new functionalities.

Repository

The software development process involves great amount and variety of information.
These include requirements, graphical analysis and design models, annotations, drafts,
and executable code. These information constitute an important knowledge base of the
software development process, influencing directly in its quality.

In CBSE, the management of this information is even more important, requiring
efficient storage and search mechanisms to promote reuse. For this reason, a repository is
being developed, with mechanisms to remotely store, search and recover software
artifacts that are produced during development.

The repository is based on the XMI standard. Since the scope of the information that
can be represented in XMI is not fixed, the repository extends it to represent other kinds
of information, such as project execution information and version control. Figure 3 shows
the architecture of the software artifacts repository. The repository has mechanisms for
version control, which means it can control different versions of a given artifact. It has
also security and transaction mechanisms, to assure the consistency and reliability of the
artifacts.

The services for storing and searching software artifacts are available through a
middleware. By doing so, these services can be accessed via a network. The artifacts are
transferred in XMI, being physically stored in this format. By doing so, any tool that is
able to import and export XMI may use the repository, through the middleware layer.
Currently, this middleware is JAMP, which is compatible with Java/RMI and CORBA.

Using the repository, the information produced during the software development
process can be stored and managed, becoming available for later reuse. The repository is

ORION – A COMPONENT BASED SOFTWARE ENGINEERING ENVIRONMENT

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

currently under development, using multi-agents systems technologies and search
engines, being part of an ongoing MSc. dissertation.

Incremental Process Model (IPM)

One of the most compelling reasons for adopting component-based approaches to
software development is the premise of reuse. The idea is to build software primarily by
assembling and replacing interoperable parts. The time reduction and improved product
quality achieved make this approach very attractive [D’Souza 1998].

In order to make reuse effective, it must be considered in all phases of the software
development process [Heineman 2001, Jacobson 1997, Rumbaugh 1999, Szyperski
1998]. Therefore, the Component-Based Development (CBD) must offer methods,
techniques and tools that support components identification and specification, in a
problem domain level, and their design and implementation in a component-oriented
language. Besides, CBD must use interrelations among existent components, which have
been previously tested, aiming to reduce the complexity and the development costs.

Current CBD methods and approaches, such as the ones discussed in [Jacobson
2001, Perspective 2000, Rumbaugh 1999], do not include full support for the concept of a
component. The result is that components are handled mainly at the implementation and
deployment phases. The methods are significantly influenced by their Object-Oriented
origins, while trying to introduce the CBD concepts mainly through the use of standard
Unified Modeling Language (UML) [Boertin 2001, Rumbaugh 1999, Stojanovic 2001].

In this context, motivated by ideas of reuse, component-based development and
distribution, an Incremental Process Model (IPM) [Almeida 2002a, Almeida 2003a] was
developed, as the subject of a MSc. dissertation [Almeida 2003b], to support the
Distributed Component-Based Software Development (DCBD).

IPM was divided into two stages. In the first stage, the process starts from the
requirements of a problem domain and produces implemented components in an object-
oriented language (development “for reuse”). Once implemented, these components are

Artifacts repository
- Version Control
- Security and Transaction
 Management

XMI XMI XMI

Middleware Store and
search services

CASE Tools

XMI XMI XMI

Figure 3: Software artifacts repository architecture

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 59

stored into a repository. In the next stage, using the search mechanism offered by the
repository, the Software Engineer consults the available components of a given problem
domain, and develop the applications that reuse them (development “with reuse”). Figure
4 illustrates IPM using SADT notation [Ross 1997]. An experiment was conducted, to
compare IPM with an ad-hoc approach. The results, as shown in [Almeida 2003b],
indicate that some gains are achieved with IPM, such as reduced development time and
increased number of documentation artifacts.

4 THE ORION ENVIRONMENT

Orion covers a substantial part of the software lifecycle, with tools that aid in the
specification, design, implementation and deployment tasks. Figure 5 shows Orion’s
architecture.

Guided by IPM, the Software Engineers use the tools in different development tasks.
The artifacts produced by the tools during the process are stored in the repository. The
tools and the repository are integrated through JAMP platform, thus operating over a
network.

This architecture allows cooperative work, since multiple Software Engineers can
work together in a same project, using different workstations and sharing information
through the repository. The version control and security mechanisms provided by the
repository helps to maintain the information consistent and reliable.

Each tool of the environment has specific features, and contributes with the Software
Engineer in different ways. However, the most important component of the environment
is the IPM, which guides the Software Engineer during the usage of the environment,
providing a well-defined approach for constructing component-based software. For this
reason, the steps of IPM will be followed to explain how Orion works.

Figure 4: Process model for DCBD

ORION – A COMPONENT BASED SOFTWARE ENGINEERING ENVIRONMENT

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

Following is a detailed presentation of each stage of IPM and how Orion is used in
each one, using the Service Order problem domain of a computer company as an
example. The Service Order (SO) domain applications are divided into three big modules.
The first one, Customers, is responsible for registering and notifying customers of a
certain service order. The second one, Employees, is responsible for registering
employees and controlling service order tasks. The third one, Reports, is responsible for
emitting several reports to the manager.

Development of Distributed Components

In this stage, components of a problem domain are built in four steps: Define Problem,
Specify Components, Design Components and Implement Components.

In the first step, Define Problem, emphasis is placed on understanding the problem
and specifying “what” the components must do to solve the problem. Initially, the domain
requirements are identified, using techniques such as storyboards and mind-maps
[D’Souza 1998] to represent the different situations and problem domain scenarios. Next,
the requirements are specified in Collaboration Models [D’Souza 1998, Rumbaugh
1999], representing action collections and the participant objects. Finally, the
collaboration models are refined into Use Cases Model [D’Souza 1998], aiming to reduce
complexity and improve the problem domain understanding. MVCASE tool is used in
this step. Through its graphical and textual capabilities, the Software Engineer constructs
the mind-maps, collaboration and use cases models. The first step is summarized in
Figure 6, where MVCASE screenshots show mind-maps, defined in the Service Order
domain requirements identification, a Collaboration Model, and the Use Cases Model.

Figure 5: Orion Architecture

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 61

In the second step, Specify Components, the system’s external behavior is described

in a non-ambiguous way. Again, MVCASE is used, to refine the previous specifications,
obtaining the components specifications. The Model of Types is specified, according to
Figure 7. Object types and attributes are defined, without worrying with implementation.
Still in this step, the data dictionary can be used to specify each type, and the Object
Constraint Language (OCL) [D’Souza 1998] to detail the objects behavior.

Once identified and specified, the types are put together into Model Frameworks.

Model Frameworks are designed at a higher abstraction level, establishing a generic
scheme that can be imported, at the design level, with substitutions and extensions in
order to generate specific applications [D’Souza 1998]. The fact that the Model
Framework is small, thus narrowly focused, increases its reuse potential in a well-defined
application domain. In addition, a Model Framework is a reusable asset at the design
level. As a design represents much of the major decisions that go into finished code, it
can specify frameworks at design level and offer a process to refine them down to the
code level. Figure 8 shows a MVCASE screenshot with this model being edited. It is then
stored in the repository, becoming available for future reuse.

Figure 7: Model of Types from Specify Components step

Figure 6: Define Problem step

ORION – A COMPONENT BASED SOFTWARE ENGINEERING ENVIRONMENT

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

The types with names written between brackets are defined as placeholders

[D’Souza 1998]. These types can be substituted in the specific application. The concept is
similar to the extensibility of classes of the object-oriented paradigm. In Orion, this is
achieved by retrieving the framework from the repository and using MVCASE to apply it
to an application domain, as shows Figure 9. When the framework is applied, the
placeholders are substituted by their respective types.

Still in this step, the Use Cases Models from the last step are refined through

Interaction Models represented by sequence diagrams [Rumbaugh 1999], to detail the
utility scenarios of components in different problem domain applications.

In the third step, Design Components, the Software Engineer performs the
components inner design and specifies non-functional requirements, such as: distributed
architecture, fault tolerance, caching, and persistence. First, the Models of Types are
refined into Classes Models [Rumbaugh 1999], where the classes are modeled with their
relationships, considering the components definitions and their interfaces. The previous
Interactions Models are also refined to show details of method behavior in each class.

Next, the non-functional requirements are incrementally specified. For the
distribution non-funcional requirement, IPM uses of the Distributed Adapters Pattern
(DAP) [Alves 2001]. DAP is a combination of the Facade, the Adapter, and the Factory
design patterns [Gamma 1995]. DAP introduces a pair of object adapters [Buschmann
1996] to achieve better decoupling of components in distributed architectures. The
adapters encapsulate the API for allowing distributed or remote access of business

Figure 8: Service Order Model Framework

Figure 9: Service Order Framework Application

Service Order
Model

Framework

Repository MVCASE

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 63

objects. In this way, the business layer becomes independent from the distribution layer,
so that changes in the latter do not impact on the former [Alves 2001].

To apply DAP, the Software Engineer uses both the repository and MVCASE. The
repository stores the DAP structure, which is imported into MVCASE and adapted.
Figure 10 shows an example, with DAP being applied to the Customer component of the
Service Order Domain.

The Source and Customer Target components abstract the domain business rules.
ICustomer TargetInterface abstracts Customer Target’s behavior in a distributed
scenario. At this interface, the components Source and Customer Target do not have
communication code either. These elements form a distribution-independent layer.
CustomerSourceAdapter and CustomerTargetAdapter are connected to a specific
distribution API to encapsulate the communication details. CustomerSourceAdapter
isolates the Source component from distributed code. It is located in the same machine
that Source and works as a proxy to CustomerTargetAdapter. CustomerTargetAdapter is
located in another machine, isolating CustomerTarget from distribution-related code.

Once the distribution requirement is specified through DAP, other non-functional

requirements can be specified. In this example, database persistence will be specified,
through the Persistence framework [Yoder 1998], shown in Figure 11. The
ConnectionPool component, through IConnectionPool interface, manages the database
connection. The DriversUtil component, based on XML, has information about the
supported database drivers. The TableManager component manages the mapping
between objects and tables. The persistent component of the FacadePersistent structure,
through its IPersistentObject interface, is responsible for treating incoming requests.

 Figure 11: Persistence Framework

Figure 10: DAP application using the repository and MVCASE

MVCASE

Repository

DAP Structure

Distribution-Independent Layer

ORION – A COMPONENT BASED SOFTWARE ENGINEERING ENVIRONMENT

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

In the last step of the first stage, Implement Components, the Software Engineer
defines the distribution technology. In this example, CORBA was chosen. Next, he uses a
code generator from MVCASE to generate part of the executable code, such as the
classes hierarchy and structure, with attributes, operation signatures and references. The
components design and the generated code are then stored in the repository, in XMI.

To complement the partially-generated code of the components, the Software
Engineer uses JADE tool, which has features to compile, execute and debug executable
code. As mentioned earlier, the major advantage of using JADE instead of the similar
commercial tools is that it can write high-level XMI descriptions, which can then be read
in a modeling tool, helping to maintain the consistency between models and code.

Figure 12 illustrates this process. First, the Software Engineer uses MVCASE to
generate part of the component code, storing it together with the component design in the
repository (1), in XMI. Next, he imports the code into JADE (2), and completes it (3).
Note that in this example some operations were added into the code. JADE generates
XMI descriptions of the modified code, which are then stored back in the repository (4).
Note that the operations added in (3) are now present in the class description (4).

Once the components are stored in the repository, the Software Engineer goes to the

second stage of IPM, where applications that reuse those components are developed.

Development of Distributed Applications

The application development starts with the application requirements identification and
proceeds with the normal life cycle development, which includes: Specify, Design,
Implement, and Deploy Application. For a better comprehension of these steps, an
application to register a customer via web is used as an example. This application reuses
the components of the Service Order (SO) domain, built in the previous stage.

Figure 12: CustomerTarget Component being implemented. Since JADE is able to write in XMI, the changes are
automatically reflected into the model

JADE

Repository

MVCASE

(1) (2)

(4)

(3)

Added
operations

Partially-
generated code+

XMI

Completed
code

+

XMI

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 65

The first step, Specify Application, starts with the problem understanding and the
identification of the application requirements. Before the requirements specification starts
at MVCASE, the Software Engineer imports the components of the related problem
domain, in this case SO, available in the repository and that will be used in the
application. Next, the requirements are specified in Use Cases and Sequence Diagrams.

In the second step, Design Application, the specifications from the previous step are
refined by the Software Engineer to obtain the design. In this step, the non-functional
requirements related to distributed architecture and data persistence are specified. Figure
13 shows a components diagram of the application, where the persistence framework is
reused.

Once the application is designed, the Software Engineer goes to the next step,
Implement Application, where he uses MVCASE to generate part of the application’s
code and complement it with JADE.

The implemented application can then be deployed, which is the final step, Deploy

Application. In distributed component-based software, this involves choosing in which
network computer each component will be deployed, aiming to reduce network traffic,
achieve fault tolerance and load balancing, among others issues. Orion offers a novel
approach to perform this task, as shown in Figure 14.

Figure 13: Application design with reuse of the Persistence
Framework components

Repository MVCASE

Persistence
Framework

ORION – A COMPONENT BASED SOFTWARE ENGINEERING ENVIRONMENT

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

First, the Software Engineer retrieves the network topology, using MoDPAI tool (1).

Next, a XML document containing the network topology description is generated (2).
This document is then imported in MVCASE (3), becoming available in the form of the
UML’s deployment diagram. Next, the Software Engineer can analyze the best
possibilities and, in a “drag and drop” process (4), configure in which computer each
component will be deployed. Once the deployment configuration is defined, the Software
Engineer can use the JAMP services (5) to remotely register each component in its
corresponding computer (6).

The use of Orion in the deployment process gives the Software Engineer the ability
to automatically configure the execution environment. He can change between different
deployment configurations, and decide which one results in better performance, or
reduced network traffic. Fault tolerance and Load Balancing can also be configured in the
environment, by “dragging” the same component into more than one computer. JAMP’s
ability to register multiple copies of a same server can be used to implement these issues.

5 ORION EVALUATION

In order to evaluate Orion, a preliminary study was performed, with an Accountancy and
Invoice domain. This section briefly describes the evaluation.

Methodology

The Accountancy and Invoice domain was developed, using Java as implementation
language, HTML and Servlets for user interfaces, MySQL for persistent storage and
JAMP as the distribution platform. The study was performed by two undergraduate
students (S1 and S2) with two years of experience on these technologies.

Figure 14: Application deployment with MoDPAI, MVCASE and JAMP

Network topology
information (XML)

Physical
Network

MoDPAI

MVCASE

JAMP

(1)

(2) (3)

(4)

(5)(6)

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 67

First, based on the problem domain requirements, S1 and S2 used Orion to develop
the components, during first stage of IPM. Table 1 summarizes this stage.

After the conclusion of the first stage, S1 and S2 began the next phases, completing

the steps of the second stage of IPM. Table 2 summarizes this stage.

The construction of the domain and their applications resulted in a total of 33

components, 51 applications and 10263 lines of code developed, as measured by the Unix
wc (word count) program, not counting blank lines, comments and libraries. Total time
was 82 hours and 5 minutes.

Table 2: Produced Artifacts and tools used in the second stage of IPM.
Step Tools used Artifact Qt.

Specify Application Repository, Use Case Model 8
Design Application MVCASE, Components Model 11

Implement Application JADE Application 51
Deploy Application MVCASE, MoDPAI,

JAMP
Files 87

Table 1: Produced Artifacts and tools used in the first stage of IPM.
Step Tools used Artifact Qt.

Define Problem Mind-Map 1
Define Problem MVCASE Collaboration Model 1
Define Problem Use Cases Model 1

Specify Components Model of Types 1
Specify Components Data Dictionary 1
Specify Components MVCASE Model Framework 1
Specify Components Framework Application 1
Specify Components Interactions Model 36
Design Components Classes Model 11
Design Components MVCASE Interactions Model 36
Design Components Components Model 11

Implement Components MVCASE, JADE, Interfaces 22
Implement Components Repository Components 33

ORION – A COMPONENT BASED SOFTWARE ENGINEERING ENVIRONMENT

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

Discussion

After this preliminary study, some key points could be identified. When comparing to an
ad-hoc approach, with isolated tools, the following benefits are achieved with Orion:

Reuse: The distributed repository, with mechanisms to store, search and recover
software artifacts, facilitates the reuse during the development process.

Maintainability: The ability to treat software artifacts in different abstraction levels
facilitates changes to be performed. The support for code generation, components
packaging and publishing helps in evaluating the impact of these changes.

Development time: The implementation and deployment tasks, which are partially
automated in Orion, are executed in less time than if done manually. Other tasks, such as
modeling, are facilitated by the graphical features of the environment, which also
contributes to decrease development time.

A main disadvantage was observed. In order to fully take advantage of Orion, the
Software Engineer is restricted to some technologies, such as UML and Java. Other
technologies can be used, but without the complete support of the environment.

Summary

As mentioned before, although not originally idealized as such, Orion environment
implements most of the identified requirements for Component-Based Software
Engineering Environments:

Tool integration: Different types of integration between the tools are achieved. The
use of JAMP platform as a common middleware layer between the tools, allows them to
benefit from the same platform services. The common repository, which is capable of
storing and searching XMI documents allows the tools to share their information. A tool
can control the operation of other tools, as in the deployment activity, where MVCASE
uses MoDPAI tool to recover network information. And a well-defined software process
model guides the environment usage.

Support for Component-Based Software Engineering activities: The basic CBSE
activities, development “for reuse” and development “with reuse”, are both supported by
Orion. Components are constructed, stored in the repository, and then reused.

Reusability: The use of a repository, with services for storing and searching software
artifacts, provides different levels of reuse, including design patterns, frameworks,
components design and executable code.

Referential Integrity: The version control and search mechanisms of the repository
help in avoiding wrong references, since the Software Engineer can search the repository
for the referenced components. However, there are no mechanisms implemented yet to
assure the integrity of the references, leaving this task for the Software Engineer.

Software Configuration Management: The version control mechanism of the
repository helps to guarantee a minimal control of the changes. However, a more
complete treatment for Software Configuration Management is required.

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 69

Multiple Views of Information: The use of the XMI standard allows the information
to be exchanged between different tools. Each tool offers a different view of the
information.

Security: The information produced is stored in the repository, which has a security
mechanism, that assures minimal user access control.

Technology and Language Independence: Some tools of the environment are
dependent on technology, such as JADE and JAMP, which are Java-based, and
MVCASE, which uses UML as a modeling language. However, Orion supports the
construction of distributed component-based software in any language or technology,
demanding only more manual effort.

6 RELATED WORK

Harrison et al [Harrison 2000] offer a historical view of software engineering
environments, covering the evolution of CASE tools from the first Programming Support
Environments to complex Software Engineering Environments. Some future expectations
are presented, describing current and future tendencies of CASE tools. Issues presented in
this work, such as tool integration and multiple views of information are achieved by
Orion.

Lüer et al. [Lüer 2001] proposes a Component-Based Development Environment
(CBDE). They identified seven requirements for CBDEs adopted by industrial
component models. However, these requirements do not cover tool integration issues.
Since an environment is composed by two or more tools, this integration must be
achieved in order to provide a quality support for the development process. They also
utilize the concept of requires and provides ports. A requires port is a description of what
is needed for some component to run. A provides port is a description of something that
the component performs. A requires port of one component must be connected to a
provides port of some other component. These concepts can be used to show an
architectural view of the applications composed by components. They can also be used as
a search criteria for finding components in a repository.

In his work, [Silveira 2002] introduces a new concept, the Spontaneous Software,
which offers the Software Engineer the possibility to create software by dynamically
installing the components as they are needed. The components are searched in
repositories distributed over open networks. A framework was constructed in order to
implement these ideas. Several advantages are achieved, such as reusability, evolvability,
versioning, among many others. However, only executable code is treated. Orion assumes
that these issues must be treated in different abstraction levels, not only code.

Ye & Fischer [Ye 2002] utilize the active repository concept, in order to achieve
greater reuse. He states that reuse cannot be fully performed if the Software Engineer
does not have a good knowledge of the component libraries, which is often true, since the
libraries are usually extremely large. He proposes a process called information delivery,
which consists in anticipating the Software Engineer’s needs for components. This helps

ORION – A COMPONENT BASED SOFTWARE ENGINEERING ENVIRONMENT

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

the Software Engineer in gaining more knowledge about the existing components,
increasing the reuse. The information delivery process is performed by monitoring the
activities of the Software Engineer, such as codification and code documentation, and
automatically searching for the components. The search criteria is identified inside the
code. For instance, a Javadoc comment, or a method call, can be used to formulate a
search criteria. In order to increase the search result quality, a combination between
searching and browsing is used, as in Orion. However, as in [Silveira 2002], only
executable code is considered as software components.

One of the major differences between Orion and other works is that Orion provides
practical tools and solutions to perform the CBSE activities. IPM gives the Software
Engineer precise, comprehensive ways of using the different tools of the environment,
benefiting from their features to develop quality component-based software. Another
difference is that Orion works with artifacts in different abstraction levels, not only
executable code. The features to recover network information, automatically deploying
the components into the computers of the network, are also a differential between Orion
and most of the CBSE environments found in the literature.

7 CONCLUDING REMARKS

This paper presented a Component-Based Software Engineering Environment. By
integrating tools that were not originally designed to work together, with a software
process model and a middleware platform, Orion implements most of the identified
requirements, covering a substantial part of the component-based development process.
Different technologies, such as middleware, XMI, frameworks, design patterns and CBD
principles, were used to construct tools with features that offer an efficient,
comprehensive way to develop component-based software. Together with the ability to
work over a network, integrating several Software Engineers in the same project, these
features make Orion an excellent choice for CBSE support.

Future works shall deal with the extension of Orion to cover a wider range of the
development process, such as requirements engineering and testing. Other works shall
deal with active repositories mechanisms, to improve reusability. Currently, adjustments
and refinements are being performed. A download version is also being prepared, which
will be soon available in our web site (http://www.recope.dc.ufscar.br). More details
about this work may be found in the references.

ACKNOWLEDGEMENTS

The authors would like to thank to CAPES, CT-Info/CNPq, FAPESB and FAPESP, the
brazilian institutions which help to support this work.

http://www.recope.dc.ufscar.br

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 71

REFERENCES

[Almeida02a] Almeida, E, S.; Bianchini, C, P.; Prado, A, F.; Trevelin, L, C. “Distributed
Component-Based Software Development Strategy”. In: The 12Th PhDOOS. In
Conjunction With the 16Th ECOOP, Málaga - Espanha. Lecture Notes in Computer
Science (LNCS) Springer-Verlag, 2002.

[Almeida02b] Almeida, E, S.; Bianchini, C, P.; Prado, A, F.; Trevelin, L, C. “MVCase:
An Integrating Technologies Tool for Distributed Component-Based Software
Development”. In: The 6Th Asia - Pacific Network Operations and Management
Symposium, Proceedings of IEEE, Poster Session, Jeju Island – Korea, 2002.

[Almeida03a] Almeida, E, S.; Bianchini, C, P.; Prado, A, F.; Trevelin, L, C. “IPM: An
Incremental Process Model for Distributed Component-Based Software
Development”. In: The 5th International Conference On Enterprise Information
Systems (ICEIS), Angers - França. ACM Press, 2003.

[Almeida03b] Almeida, E.S. An Approach for the Distributed Component-Based
Software Development (in portuguese), MSc. Dissertation, Federal University of São
Carlos – Brazil, 2003.

[Alves01] Alves, V., Borba, P., 2001. “Distributed Adapters Pattern (DAP): A Design
Pattern for Object-Oriented Distributed Applications”. In The First Latin American
Conference on Pattern Languages of Programming – Brazil, 2001.

[Bianchini02] Bianchini, C.P. Devices Monitoring Tool using Pervasive Computing and
Software Agents (in portuguese), MSc. Dissertation - Federal University of São
Carlos – Brazil, 2002.

[Boertin01] Boertin, N., Steen, M., Jonkers., H, “Evaluation of Component-Based
Development Methods”. In EMMSAD’2001, Sixth CAiSE/IFIP8.1, 2001.

[Borland03a] Borland Software Corporation. “JBuilder”. Available at URL:
http://www.borland.com/jbuilder/index.html - Consulted in April, 2003.

[Borland03b] Borland Software Corporation. “Delphi Studio”. Available at URL:
http://www.borland.com/delphi/index.html - Consulted in April, 2003.

[Buschmann96] Buschmann, F., et al, Pattern Oriented Software Architecture: A System
of Patterns. John Wiley & Sons, 1996.

[D’Souza98] D’Souza, D. F. and Wills, A. C. Objects, Components and Frameworks with
UML: The Catalysis Approach. Addison Wesley. 1998.

[Franklin96] Franklin, S., Graesser, A. “Is it an Agent or just a Program? : A Taxonomy
for Autonomous Agents”. Proceedings of the Third International Workshop on Agent
Theories, Architectures, And Languages. Springer-Verlag, 1996.

[Gamma95] Gamma, E., Helm, R., Johnson, R., Vlissides, J.M., Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

ORION – A COMPONENT BASED SOFTWARE ENGINEERING ENVIRONMENT

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

[Guimarães00] Guimarães, M.P. Implementation Design for Cooperative Work Support
in JAMP Platform (in portuguese), MSc. Dissertation - Federal University of São
Carlos, 2000.

[Hansmann01] Hansmann, U.; … [et al]. Pervasive Computing Handbook. Springer-
Verlag, 2001. 409p.

[Harrison00] Harrison, W., Ossher, H., and Tarr, P. “Software Engineering Tools and
Environments: A Roadmap”. In The Future of Software Engineering. ACM, New
York, 2000, 261-277.

[Heineman01] Heineman, G., T., Councill, W., T. Component-Based Software
Engineering, Putting the Pieces Together, Addison-Wesley, 2001.

[Jacobson97] Jacobson, I., Griss, M., Jonsson, P. Software Reuse: Architecture, Process
and Organization for Business Sucess, Addison-Wesley. Longman, 1997.

[Jacobson01] Jacobson, I., et al., 2001. The Unified Software Development Process, 4th
edition. Addison-Wesley, 2001.

 [Lucena02] Lucena, C.; … [et al]. “Software Engineering for Large-Scale Multi-Agent
Systems”. SELMAS’2002. Proceedings of 24th International Conference on Software
Engineering. P 653-654. Orlando, Florida, USA, 2002.

[Lüer01] Lüer, C. and Rosenblum, D. S. “WREN: An Environment for Component-
Based Development”. ACM SIGSOFT Software Engineering Notes. Volume 26.
Number 5. September 2001. pp. 207-217.

[Lumina00] Lumina Corporate Solution; Moura, L.M. “KB Implementation. Internal
Technical Report” (in portuguese). Lumina Corporate Solution, 2000. 88p.

[Microsoft96] Microsoft Corporation. “DCOM Technical Overview”. November 1996.
http://msdn.microsoft.com/library/backgrnd/html/msdn_dcomtec.htm

[OMG02a] Object Management Group. XML Metadata Interchange (XMI) – Version 1.2,
January, 2002.

[OMG02b] Object Management Group. The Common Object Request Broker
Architecture: Core Specification, Version 3.0.2. December, 2002.

[Perspective00] Perspective Select Perspective. Princeton Softech’s practical
methodology for delivering next generation applications, The Active Archive
Solutions Company, 2000. http://www.princetonsoftech.com. Consulted June, 2002

[Pressman01] Pressman, R. S. Software Engineering: A Practitioner's Approach,
McGraw-Hill, 2001.

[Ross97] Ross., D., T. “Structured Analysis (SA): A language for communicating Ideas”.
IEEE Transaction on Software Engineering, 1997.

[Rumbaugh99] Rumbaugh, J., Jacobson, I., Booch, G. The Unified Modeling Language
Reference Manual, Addison-Wesley, 1999.

http://msdn.microsoft.com/library/backgrnd/html/msdn_dcomtec.htm
http://www.princetonsoftech.com

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 73

[Silveira02] Silveira, G.E. SOS - A Framework for Distribution, Management and
Evolution of Component-Based Software Systems over Open Networks. PhD thesis,
Informatics Department, Federal University of Pernambuco - Brazil, 2002.

[Sommerville00] Sommerville, I. Software Engineering (6th Edition). Pearson Education,
August 2000.

[Souza01] Souza, L.F.H., Middleware Service Models Study and JAMP Platform
Extensions Proposal (in portuguese), MSc. Dissertation - Federal Universisty of São
Carlos – Brazil, 2001.

[Stallings99] Stallings, W. SNMP, SNMPv2, SNMPv3, and RMON 1,2 and 3. ed.
Addison-Wesley, 1999. 619p.

[Stojanovic01] Stojanovic, Z., Dahanayake, A., Sol., H. “A Methodology Framework for
Component-Based System Development Support”. In EMMSAD’2001, Sixth
CAiSE/IFIP8.1, 2001.

[Sun97] Sun Microsystems. JavaBeans API Specification. Version 1.01. July 1997.

[Sun02] Sun Microsystems. Enterprise Java Beans Specification V. 2.1. August, 2002.

[Sun03a] Sun Microsystems. Java RMI: Remote Method Invocation Specification. URL:
http://java.sun.com/j2se/1.4.1/docs/guide/rmi/spec/rmiTOC.html. Consulted 04/2003.

[Sun03b] Sun Microsystems. Java Servlet Technology. URL:
http://java.sun.com/products/servlet/ - Consulted in February, 2003.

[Szyperski98] Szyperski, C. Component Software – Beyond Object-Oriented
Programming. Addison-Wesley and ACM Press, 1998.

[Tanenbaum96] Tanenbaum, A.S. Computer Networks. 3 ed. Prentice Hall, 1996. 848p.

[Ye02] Ye, Y, Fischer, G.; “Supporting Reuse by Delivering Task-Relevant and
Personalized Information”, In: 24th International Conference on Software
Engineering. Orlando, USA, 2002.

[Yoder98] Yoder, J., Johnson, R., E., Wilson, Q., D. “Connecting Business Objects to
Relational Databases”. In: PLoP’1998, Pattern Language of Progamming, 1998.

About the authors
Daniel Lucrédio is a computer engineer in the Federal University of São
Carlos, Brazil, and M.Sc. candidate in Computer Science in the Federal
University of São Carlos. Researcher in the Software Engineering
Environments are, is the author of MVCASE, an UML-based modeling
tool used in several brazilian institutions. E-mail: lucredio@dc.ufscar.br.

http://java.sun.com/j2se/1.4.1/docs/guide/rmi/spec/rmiTOC.html
http://java.sun.com/products/servlet/
mailto:lucredio@dc.ufscar.br

ORION – A COMPONENT BASED SOFTWARE ENGINEERING ENVIRONMENT

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

Eduardo Santana de Almeida graduated in Computer science in
Universidade Salvador (UNIFACS) and obtained his M.Sc. degree in the
Federal University of São Carlos, Brazil. PhD candidate in the Federal
University of Pernambuco, Brazil. Author of several papers on
Component-Based Software Engineering.

Calebe de Paula Bianchini is a B.Sc. from University of São Carlos
(UFSCar/Brazil), where he has also obtained his M.Sc. degree. Currently,
he is working towards his Ph.D. in Electronic Engineering at the
Polytechnic School-University of São Paulo (POLI-USP), where he works
with Parallel and Distributed Systems and High Performance Computing.

Antonio Francisco do Prado graduated in Fortification and Construction
Engineering in the Military Institute of Engineering (IME), where he also
obtained his M.Sc. degree in informatics. PhD from PUC-Rio, Brazil. He
currently conducts several researches in Component-Based Software
Engineering area, and the development of tools and processes for CBSE.

Luis Carlos Trevelin graduated in computer science in São Carlos Institute
of Mathematical Sciences – University of São Paulo, where he also obtained
his M.Sc. degree. PhD in PUC-Rio, Brazil, and post-PhD through University
of Kent at Canterbury, England. He conducts several researches on distributed
systems, including the development of a CORBA middleware platform.

