
Vol. 3, No. 4
Special issue: TOOLS USA 2003

Improving Rule Set Based Software Qual-
ity Prediction: A Genetic Algorithm-based
Approach

Salah Bouktif , Dept. of Computer Science and Op. Res., University of
Montreal, Canada
Danielle Azar , Doina Precup , School of Computer Science, McGill
University, Montreal, Canada
Houari Sahraoui and Bal ázs Kégl , Dept. of Computer Science and Op.
Res., University of Montreal, Canada

Abstract
The object-oriented (OO) paradigm has now reached maturity. OO software prod-
ucts are becoming more complex which makes their evolution effort and time
consuming. In this respect, it has become important to develop tools that allow
assessing the stability of OO software (i.e., the ease with which a software item
can evolve while preserving its design). In general, predicting the quality of OO
software is a complex task. Although many predictive models are proposed in
the literature, we remain far from having reliable tools that can be applied to real
industrial systems. The main obstacle for building reliable predictive tools for real
industrial systems is the lackof representative samples. Unlike other domains
where such samples can be drawn from available large repositories of data, in
OO software the lack of such repositories makes it hard to generalize, to validate
and to reuse existing models. Since universal models do not exist, selecting an
appropriate quality model is a difficult, non-trivial decision for a company. In this
paper, we propose two general approaches to solve this problem. They consist
of combining/adapting a set of existing models. The process is driven by the
context of the target company. These approaches are applied to OO software
stability prediction.

1 INTRODUCTION

Software quality assessment has become an increasingly important field. This fact is due
to the determining role of software in today’s world. The complexity caused by the emer-
gence of new paradigms of object oriented (OO) design and programming makes the task,
paradoxically, more important and more difficult. Indeed, OO software products are be-
coming more complex which makes their evolution effort and time consuming. In this
respect, it has become important to develop tools that allow assessing the quality and par-
ticularly the stability of OO software (i.e., the ease with which a software item can evolve

Cite this article13 as follows: S. Bouktif, et al.: ”Improving Rule Set Based Software
Quality Prediction: A Genetic Algorithm-based Approach”, in Journal of Object Tech-
nology, vol. 3, no. 4, April 2004, Special issue: TOOLS USA 2003, pages 227–241,
http://www.jot.fm/issues/issue 2004 04/

http://www.jot.fm/issues/issue_2004_04/

IMPROVING RULE SET BASED SOFTWARE QUALITY PREDICTION: A GENETIC ALGORITHM-BASED APPROACH

while preserving its design). Although many software quality models are proposed in the
literature (see, for example, the study presented in [2]), OO software quality assessment
remains unaccessible. The lack of reliable data for conducting empirical studies is one
of the important reasons that explain this situation. In most of the domains where pre-
dictive models are built (such as sociology, medicine, finance, and speech recognition),
researchers are free to use large data repositories from which representative samples can
be drawn. In the area of OO software, however, such repositories are rare. The lack of
data makes it hard to generalize, to validate and to reuse existing models. Since univer-
sal models do not exist, selecting an appropriate quality model is a difficult, non-trivial
decision for a company.

An ideal predictive model can be seen as the mixture of two types of knowledge:
common knowledge of the domain and context specific knowledge for a company. In the
existing models, one of the two types is often missing. On the one hand, theoretical mod-
els [2] are designed to cover the common domain knowledge. Their application requires
some adaptation/calibration to the particular context of a company. On the other hand,
empirical models [4] contain the knowledge that was abstracted from a context-specific
data set.

In this paper, we propose two genetic algorithm-based approaches to solve this prob-
lem. They consist in combining or adapting existing models (which we callexperts). The
process is driven by the context of the target company. These approaches are implemented
for decision tree models and applied to OO software stability prediction.

The remainder of this paper is organized as follows: Section2 describes the prob-
lem. In Section 3, we give an overview of the principles of genetic algorithms. The
combination and the adaptation approaches are described in detail in Sections4 and 5.
Experimentation and discussion are given in Section6.

2 PROBLEM STATEMENT

Most of the software quality factor (e.g., maintainability, reusability, reliability, stability),
can not be measured until the software system has been used for a certain time. This fact
motivated a wide range of studies aiming at an early prediction of these factors from some
measurable software characteristics such as coupling, cohesion, and size [7]. Within this
trend, a large number of OO metrics have been proposed in the literature (see [2],[1],[5]
and [9]). In this paper, we are specifically interested in the prediction of OO software sta-
bility. During its operation time, a software undergoes various changes triggered by error
detection, evolution in the requirements or environment changes. As a result, the behavior
of the software gradually deteriorates as modifications increase. This quality slump may
go as far as the entire software becoming unpredictable [11]. Consequently, there is a
consensus that the software that is intended to last must remain stable in spite of require-
ment evolution. There are two ways of achieving this goal. Upstream, we can integrate
the stability rules in the design phase as it is proposed in [10]. Downstream, a stability
prediction model can be used to decide, after a certain number of versions, whether a

228 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

2 PROBLEM STATEMENT

major refactoring is necessary to reduce the implementation cost of future requirements.
Our current work is founded on this second belief. Hence, we study the prediction of the
stability at the class level in OO software sytems. The key assumption in our study is that
a class is stable whenever its interface remains valid between versions. Letc be a class
andI(ci) be the interface ofc in versioni (public and protected, local and inherited meth-
ods). The level of stability ofc can be measured by comparingI(ci) to I(ci+1) (following
version). It represents the percentage ofI(ci) that is included inI(ci+1)1. Formally

ENS(ci −→ ci+1) =
#(I(ci+1)∩ I(ci))

#I(ci)
.

Our hypothesis is that the stability of a class interface depends on the design (structure)
of the class and the stress induced by the implementation of new requirements between
the two versions. The predictive model will take the form of a functionf that takes as
input a set of structural metrics(m1(ci),m2(ci), ...,mn(ci)) and an estimation of the stress
St(ci −→ ci+1) and produces as output a binary estimation of the stabilityENS(c) =
ENS(ci −→ ci+1) (1 for stable or−1 for unstable). Formally

ENS(ci −→ ci+1) = f (m1(ci),m2(ci), ...,mn(ci),St(ci −→ ci+1)).

In this work, the stressSt(ci −→ ci+1) represents the estimated percentage of added meth-
ods inc between the two versions. Formally

St(ci −→ ci+1) =
#(I(ci+1)− I(ci))

#I(ci+1)
.

The following is an example of a decision tree model (classifier) that predicts the stabil-
ity of a classc using as input the two structural metricsCoh(c) (class cohesion metric)
andNPPM(c) (number of public and protected methods), and the estimation of the stress
(St(c) = St(ci −→ ci+1)).

Rule 1:St(c)≤ 4%⇒ ENS(c) = 1
Rule 2:NPPM(c)≤ 19 andSt(c)≤ 30%⇒ ENS(c) = 1
Rule 3:NPPM(c) > 3 andSt(c) > 30%⇒ ENS(c) =−1
Rule 4:Coh(c)≤ 35% andNPPM(c) > 19 andSt(c) > 4%⇒ ENS(c) =−1
Default class:ENS(c) = 1.

This kind of classifiers are built using a data setDn = {(x1,y1), . . . ,(xn,yn)} of n
examplesor datapointswherexi ∈ Rd is anobservation vectorof d attributes, andyi ∈
C = {c1, ...,ck} a finite set of labels in the particular domain of our application, namely
class stability. In this particular domain, an examplexi represents a class. The attributes of
xi are structural metrics and stress estimation. The classification labelyi of xi represents
the software quality factor to be predicted by the classifier - stability of a class, in our
case. Henceyi is a binary variable that takes the value 1 when the class is stable and
−1 otherwise. The distribution of the data in the data set is unknown. The classifier

1We consider a deprecated method as if it is removed.

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 229

IMPROVING RULE SET BASED SOFTWARE QUALITY PREDICTION: A GENETIC ALGORITHM-BASED APPROACH

has a prediction accuracy rate that can be measured using the correctness of the classifier
(the percentage of cases correctly classified) or its J-index (the average correctness per
classification label). Our objective is to maximize the accuracy. For this, we are proposing
two genetic algorithm-based approaches - one that combines different expertsf1, f2, ..., fN
and another one that adapts a single expertfi to a set of data.

3 THE PRINCIPLE OF GENETIC ALGORITHMS

Genetic Algorithms (GA) were introduced in the late 1960’s by John Holland [8]. They
are based on the Darwinian theory of evolution whereby species compete to survive and
the fittest get a higher chance to remain until the end and produce progeny. Typically,
a GA starts with a population of individuals (chromosomes). Each individual is formed
of genes and attributed a fitness value that measures how well it competes with the other
chromosomes in the population. Roughly speaking, the process of evolution consists
of passing from one population of chromosomes to the next by applying some genetic
operators three of which arecrossover, mutationandselection. During crossover, two
chromosomes are selected, they exchange some of their genes giving birth to two other
chromosomes. Mutation consists of changing randomly one or more genes in a chromo-
some. Both operators occur with a certain probability. Usually, the crossover operator
occurs with a probability that is much higher than that at which mutation occurs. It is
very possible that no crossover happens between a pair of chromosomes in which case
the offsprings are exact copies of their parents. The offsprings resulting from crossover
and the mutated chromosomes are copied to the next generation. The process is repeated a
certain number of times or until a certain criteria is met. It is important to point out that a
chromosome is selected to produce progeny with a certain probability that is proportional
to its fitness.

4 A GENETIC ALGORITHM FOR COMBINING RULE SETS

This algorithm is designed specifically to combine rule sets into one final classifier. To ap-
ply a GA to this specific problem, elements of the generic algorithm must be instantiated
and adapted to the problem. In particular, the solutions must be encoded into chromo-
somes and the two operators (crossover and mutation) and the fitness function must be
defined. In the rest of this section, we present the implementation of each of these ele-
ments for the algorithm.

Model Encoding

A decision tree is a complete binary tree where each inner node represents a yes-or-no
question, each edge is labeled by one of the answers, and terminal nodes contain one of
the classification labels from the setC . The decision making process starts at the root of

230 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

4 A GENETIC ALGORITHM FOR COMBINING RULE SETS

the tree. Given an input vectorx, the questions in the internal nodes are answered, and the
corresponding edges are followed. The label ofx is determined when a leaf is reached.

LCOMB

NPPMstable

stableinstable

<=16 >16

>10<=10

LCOMB

NPPMstable

stableunstable

<=16 >16

>10<=10

Figure 1: A decision tree for stability prediction.

If all the questions at the inner nodes are of the form “Isx(j) > α?” (as in the tree
depicted in Figure1), the decision regions of the tree can be represented as a set of iso-
thetic boxes (boxes with sides parallel to the axes) in ann-dimentional space (n being
the number of metrics used in the decision tree). Figure2 shows this representation of
the tree in Figure1. To represent the decision trees as chromosomes in the GA, we
enumerate these decision regions in a vector. Formally, each gene is a (box,label) pair
where the boxb =

{
x ∈ Rd : `1 < x(1) ≤ u1, . . . , `d < x(d) ≤ ud

}
is represented by the

vector
(
(`1,u1), . . . ,(`d,ud)

)
, and a vector of these (box,label) pairs constitutes a chro-

mosome representing the decision tree. To close the opened boxes at the extremities of
the input domain, for each input variablex(j), we define lower and upper boundsL j and
U j , respectively. For example, assuming that in the decision tree of Figure1 we have
0 < NPPM(c) ≤ 100 and 0< LCOMB(c) ≤ 50, the tree is represented by the nested
vector (

(0,10),(16,50);−1
)
,(

(10,100),(16,50);1
)
,(

(0,100),(0,16);1
)

 .

instable

stable

LCOMB

NPPM

16

10

unstable

stable

LCOMB

NPPM

16

10

Figure 2: A two-dimensional example of decision tree output regions.

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 231

IMPROVING RULE SET BASED SOFTWARE QUALITY PREDICTION: A GENETIC ALGORITHM-BASED APPROACH

The Crossover Operator

A standard way to perform the crossover operation between the chromosomes is to cut
each of the two parent chromosomes into two subsets of genes (boxes in our case). Two
new chromosomes are created by interleaving the subsets. If we apply such an operation
in our problem, it is possible that the resulting chromosomes can no longer represent well-
defined decision functions. Two specific problems can occur. If two boxes overlap, we
say that the model isinconsistent. In this case, the model represented by the chromosome
is not even a function. The second problem is when the model isincomplete, that is,
certain regions in the input domain are not covered by any box. Figure3 illustrates these
two situations.

Parent1 Parent2

Subset1 of Parent1 (S11) Subset2 of Parent1 (S12)

Subset1 of Parent2 (S21) Subset2 of Parent2 (S22)

Offspring1 (S11+ S21)

Inconsistency Incompleteness

Offspring2 (S12+ S22)

Parent1 Parent2

Subset1 of Parent1 (S11) Subset2 of Parent1 (S12)

Subset1 of Parent2 (S21) Subset2 of Parent2 (S22)

Offspring1 (S11+ S21)

Inconsistency Incompleteness

Offspring2 (S12+ S22)

Figure 3: Problems when using standard crossover.

To preserve the consistency and the completeness of the offspring, we propose a new
crossover operator inspired by the operator defined for grouping problems [6]. To obtain
an offspring, we select a random subset of boxes from one parent and add it to the set
of boxes of the second parent. The size of the random subset isv times the number of
boxes of the parent wherev is a parameter of the algorithm. By keeping all the boxes of
one of the parents, completeness of the offspring is automatically ensured. To guarantee
consistency, we make the added boxes predominant (the added boxes are “laid over” the
original boxes). Figure4 illustrates the new crossover operator.

A level of predominanceis added as an extra element to the genes. Therefore, each
gene is now a three-tuple (box, label, level). The boxes of the initial populationP0 have
level 1. Each time a predominant box is added to a chromosome, its level is set to 1 plus
the maximum level in the hosting chromosome. To find the label of an input vectorx (a

232 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

4 A GENETIC ALGORITHM FOR COMBINING RULE SETS

Parent1 Parent2

Subset of Parent1 (S1) Subset of Parent2 (S2)

Offspring1 (parent1+ S2) Offspring2 (Parent2+ S1)

Parent1 Parent2

Subset of Parent1 (S1) Subset of Parent2 (S2)

Offspring1 (parent1+ S2) Offspring2 (Parent2+ S1)

Figure 4: Crossover that preserves consistency and completeness.

software element), first we find all the boxes that containx, and assign tox the label of
the box that have the highest level of predominance. This scheme is similar, in spirit, to
rule systems where rules have priorities that are used to resolve conflicts among them.

The Mutation Operator

Mutation is a random change in the genes that happens with a small probability. In our
problem, the mutation operator randomly changes the label of a box. In software quality
prediction, the output spaceC is usually an ordered setc1, . . . ,ck of labels. With proba-
bility pm, a labelci is changed toci+1 or ci−1 if 1 < i < k, to c2 if i = 1, and tock−1 if
i = k.

In general, other types of mutations are possible. For example, we could change the
size of a box, or we could set the label of a box to the label of an adjacent box. The main
reason of our choice of the mutation operator is its simplicity.

The Fitness Function

To measure the fitness of a decision functionf represented by a chromosome, one could
use thecorrectness function

C(f) = ∑k
i=1nii

∑k
i=1∑k

j=1ni j
,

whereni j is the number of training vectors with real labelci classified asc j (Table1). It
is clear thatC(f) = 1−L(f) whereL(f) is the training error.

Software quality prediction data is oftenunbalanced, that is, software components
tend to have one label with a much higher probability than other labels. For example, in
our experiments we had many more stable than unstable classes. On an unbalanced data
set, low training error can be achieved by the constant classifier functionfconstthat assigns

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 233

IMPROVING RULE SET BASED SOFTWARE QUALITY PREDICTION: A GENETIC ALGORITHM-BASED APPROACH

predicted label
c1 c2 . . . ck

c1 n11 n12 . . . n1k

real c2 n21 n22 . . . n2k

label
...

...
...

...
...

ck nk1 nk2 . . . nkk

Table 1: The confusion matrix of a decision functionf . ni j is the number of training
vectors with real labelci classified asc j .

the majority label to every input vector. By using the training error for measuring the
fitness, we found that the GA tended to “neglect” unstable classes. To give more weight
to data points with minority labels, we decided to use Youden’sJ-index[13] defined as

J(f) =
1
k

k

∑
i=1

nii

∑k
j=1ni j

.

Intuitively, J(f) is the average correctness per label. If we have the same number of
points for each label, thenJ(f) =C(f). However, if the data set is unbalanced,J(f) gives
more relative weight to data points with rare labels. In statistical terms,J(f) measures the
correctness assuming that the a priori probability of each label is the same. Both a constant
classifierfconstand a guessing classifierfguess(that assigns random, uniformly distributed
labels to input vectors) would have a J-index close to 0.5, while a perfect classifier would
haveJ(f) = 1. On the other hand, for an unbalanced training set,C(fguess) ' 0.5 but
C(fconst) can be close to 1.

5 A GENETIC ALGORITHM FOR ADAPTING A RULE SET

This is an adaptive approach whereby one rule set is evolved into another by adapting
it to a training set (context). This approach will be compared to the combining one. In
this section, we will implement the different elements of GA, as it is done in Section4,
according to the aspects of the problem of adapting a rule set.

Chromosome Encoding and Fitness Function

We start with one rule set which constitutes the initial population of chromosomes, each
rule of the rule set being a chromosome and each condition in the rule as well as the clas-
sification label being a gene. For example, the following rule set constitutes a population
of chromosomes where the first one is formed of four genes, each of the first three encod-
ing a condition and the last gene encoding the classification label.

Rule1:NOC(c) < 6 andCUB(c) > 2 andNMI(c) > 1⇒ ENS(c) = 1

234 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

5 A GENETIC ALGORITHM FOR ADAPTING A RULE SET

Rule2:NOC(c) < 8 andCOH(c) > 1⇒ ENS(c) =−1
Default class:ENS(c) = 1.

The default classification in the rule set is replaced with one or more explicit rules. Each
chromosomei is attributed a fitness valuef r(i) = C(i)∗ t(i) whereC(i) is the correctness
of the rule that chromosomei encodes (it is equal to the number of cases that the rule
correctly classifies divided by the total number of cases that the rule classifies) andt(i) is
the fraction of cases that the rule classifies in the training set (number of cases that the rule
classifies divided by the total size of the training set). The weightt(i) allows to give rules
that cover a large set of training cases, a higher chance of being selected. Correctness is
defined in more detail in Section4.

The Genetic Operators

The process of evolution starts by selecting two chromosomes according to theroulette-
wheeltechnique [8], whereby one can imagine a roulette wheel where all chromosomes
are placed. Each chromosome is assigned a portion of the wheel that is proportional to
its fitness. A marble is thrown and the chromosome where the marble halts is selected.
A random cut point is generated for each chromosome in the selected pair and two off-
springs are generated. The first one receives the genes from its first parent up to the cut
point along with the genes of its second parent starting at the cut point. The second off-
spring combines the first part of the second parent along with the second part of the first
parent. For example, applying crossover to the chromosomes shown above (Rule1 and
Rule2) and defining the first cut point to be at the second gene in the first parent and the
second cut point to be at the first gene of the second parent, the two offspring resulting
from this operation are:

Rule3:NOC(c) < 6 andNOC(c) < 8 andCOH(c) > 1⇒ ENS(c) =−1 (offspring 1)
Rule4:CUB(c) > 2 andNMI(c) > 1⇒ ENS(c) = 1 (offspring 2).

By allowing chromosomes within a pair to be cut at different places, we allow for a
wider variety with respect to the length of the chromosomes (and hence, the rules that
they encode). Before being thrown in the next generation, the chromosomes are mutated
with a certain probability. Mutation of a gene consists of changing the value to which the
attribute encoded in the gene is compared to a value chosen randomly from a predefined
set of values for the attribute (or class label, in case the last gene is mutated). For example,
the second offspring shown above (Rule 4) can be mutated by changing the value in the
second gene to 2.5 and the chromosome becomes:

Rule4:CUB(c) > 2 andNMI(c) > 2.5⇒ ENS(c) = 1 (offspring 2 mutated).

The new chromosomes are then scanned and trimmed to get rid of any redundancy in
the conditions that form the rules that they encode. For example, offspring 1 is trimmed

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 235

IMPROVING RULE SET BASED SOFTWARE QUALITY PREDICTION: A GENETIC ALGORITHM-BASED APPROACH

into the rule:NOC(c) < 6 andCOH(c) > 1⇒ ENS(c) =−1.

Inconsistent rules (for example,NOC(c) > 4 andNOC(c) < 2⇒ ENS(c) = 1) are
attributed a fitness value of 0 and will eventually die. Our algorithm maintains a fixed
size of population throughout the process of evolution. In order to ensure this,elitism is
performed when the population size is odd. Elitism consists of copying one or more of the
best chromosomes from one generation to the next. This ensures that the best individuals
are not lost during the process of evolution. After crossover and mutation are performed,
the GA checks the flag for elitism. If this is ON, the best chromosome in the current
generation is selected and thrown in the next generation, if the flag is OFF, a chromosome
is chosen randomly and thrown in the next generation. If the size of population is even,
no elitism takes place.

Combining the Rules into One Rule Set

Before passing from one generation of chromosomes to the next, the GA evaluates how
well the rules perform when they are combined together into one rule set. For this, a
rule set is formed out of these rules and attributed a default classification label. This is
the majority classification label in the training set. The rule set is then evaluated on the
training set by computing its J-index. If the rule set is at least as good as the one formed
in the previous population, it is kept, otherwise, it is discarded and the previous rule set
replaces it. This way, we ensure that the performance of the rule set on the training data
does not deteriorate. J-index is defined in more detail in Section4. The GA runs for a
pre-determined number of iterations. At the end, the resulting rule set is compared to the
initial rule set by computing the J-index of both on a set of unseen data.

6 EXPERIMENTATION

Experimental Settings

In order to empirically validate our approaches, we constructed a ”semi-real” environ-
ment in which the ”in-house” data set is a real software system with several versions,
but the experts are ”simulated”: they are decision tree classifiers trained on independent
software system data. To imitate the heterogeneity of real life experts, each expert was
trained on a different sub-set of metrics and on a different software system. Although we
are aware of the limitations of this model, we found that it simulated reasonably well a
realistic situation and yielded some interesting results. To build the experts (that simulate
the existing models), we use the stress (c.f. Section2) plus 18 structural metrics that be-
long to one of the four categories of coupling, cohesion, inheritance, and complexity (see
Table2). The detailed definitions of these metrics and the predictive models where they
were used can be found in [5],[2],[14],[4]and [3]. The metrics were extracted from 11 OO
systems (see Table3). These systems were used to ”create” 40 experts in the following

236 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

6 EXPERIMENTATION

way: First, we formed 15 subsets of the 19 software metrics by combining two, three,
or four of the metric categories in all the possible ways, and created 15 x 11 = 165 data
sets. Then, we trained a decision tree classifier on each data set using the C4.5 algorithm
[12]. We retained 40 decision trees by eliminating constant classifiers and classifiers with
training error more than 10%. The company specific context is represented by standard
JAVA API2. The four first major versions were used. We created a data setDn of 2920
data vectors using the classes in the four versions (see Table4).

Name Description

Cohesion metrics
LCOM lack of cohesion methods
COH cohesion
COM cohesion metric
COMI cohesion metric inverse

Coupling metrics
OCMAIC other class method attribute import coupling
OCMAEC other class method attribute export coupling
CUB number of classes used by a class

Inheritance metrics
NOC number of children
NOP number of parents
DIT depth of inheritance
MDS message domain size
CHM class hierarchy metric

Size complexity metrics
NOM number of methods
WMC weighted methods per class
WMCLOC LOC weighted methods per class
MCC McCabe’s complexity weighted meth. per cl.
NPPM number of public and protected meth. in a cl.
NPA number of public attributes

Table 2: The 18 software metrics used as attributes in the experiments.

For the algorithmic settings, as a meta-heuristic algorithm, the GA has several param-
eters chosen on an experimental basis. For the combining GA (Section4), the elitist
strategy was used: In each iteration, the entire population was replaced, except for a small
numberNe of the fittest chromosomes. The number of generationsT was set to 100.
The maximum number of chromosomes in a generation was set to 160 in order to have
a reasonable execution time. The values ofNe, pc (crossover probability),pm (mutation
probability), andv (proportion of the random subset of boxes used in the crossover op-
eration) change during the evolution of the number of created generationst as shown in

2Available at http://java.sun.com/api/index.html.

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 237

IMPROVING RULE SET BASED SOFTWARE QUALITY PREDICTION: A GENETIC ALGORITHM-BASED APPROACH

System Number of Number of
(major) versions classes

Bean browser 6(4) 388–392
Ejbvoyager 8(3) 71–78
Free 9(6) 46–93
Javamapper 2(2) 18–19
Jchempaint 2(2) 84
Jedit 2(2) 464–468
Jetty 6(3) 229–285
Jigsaw 4(3) 846–958
Jlex 4(2) 20–23
Lmjs 2(2) 106
Voji 4(4) 16–39

Table 3: The software systems used to train the experts.

JDK version Number of classes
jdk1.0.2 187
jdk1.1.6 583
jdk1.2.004 2337
jdk1.3.0 2737

Table 4: The software systems (context) used to combine/adapt the experts.

(Table 5). In the adaptating GA (Section5), elitism consists in choosing the best chro-
mosome and copying it to the next generation.The best value forT was found to be 100,
0.85 forpc and 0.2 forpm.

t 0–10 11–30 31–99

Ne 3 5 10
pc 0.65 0.65 0.60
pm 0.02 0.03 0.05
v 0.3 0.1 0.05

Table 5: Combining GA parameters.

Results

To accurately estimate the J-index of the trained classifiers, we used 10-fold cross vali-
dation. In this technique, the data set is randomly split into 10 subsets of equal size (292
points in our case). A decision function is trained on the union of 9 subsets, and tested on
the remaining subset. The process is repeated for all 10 possible combinations. Mean and
standard deviation values are computed for J-index on both the training and the test sam-
ples. Table6 shows our results. We used the simple selection of the best expert according

238 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

7 CONCLUSION

to the context (fbest) as a benchmark for evaluating our approaches. The final experts
resulting from the combination and the adaptation are called, respectively,fcombiningand
fadapting.

Training Test

fbest 66.50(0.50) 65.98(4.25)
J-indexJ(f) fadapting 67.21(0.90) 67.34(3.85)

fcombining 78.24(2.43) 76.86(5.06)

Table 6: Experimental results. The mean (standard deviation) percentage values of the
J-index.

The test results show that our approach of combining experts can yield significantly
better results than using individual models. The adaptation approach did not perform as
well as the combination, although it gave a slight improvement over the initial model
generated by C4.5. The main reason of this difference is the fact that each expert uses
only a subset of the software metrics and does not cover the complete common domain
knowledge as the combination approach does. We strongly believe that if we use more
numerous and real experts on cleaner and less ambiguous data, the improvement will be
more significant.

7 CONCLUSION

Assessing the quality of OO software is a complex task. As evidence, we can simply look
at the very few models that are concretely used in industry compared to the considerable
number of models proposed in the literature. The lack of reliable data for conducting seri-
ous empirical studies is, in our opinion, the main obstacle to obtaining satisfactory results
in this domain. Moreover, even when a predictive model is theoretically sound, it is rare
that it is adapted to the context of a specific company. To circumvent these two problems,
in this paper, we propose, two evolutionary approaches for combining and adapting ex-
isting OO software quality predictive models to a particular context. In the case of the
combination approach, the resulting model can be interpreted as a ”meta-expert” that se-
lects the best expert for each given case. This notion corresponds well to the ”real world”
in which individual predictive models, coming from heterogeneous sources, are not uni-
versal and depend largely on the underlying data. In the case of adaptation approach,
the resulting model can be seen as a calibrated model. Using these two approaches, we
conducted experiments on the prediction of Java class stability. The preliminary results
show that the combination of models can perform significantly better than simply choos-
ing an existent one. For the adaptation approach, we cannot draw a final conclusion
because the improvement is not statistically significant. Issues of future research include
the evaluation of the approaches on real experts proposed in the literature (e.g., default
estimation models). For the adaptation approach, alternative local search algorithms (e.g.,
tabu search and simulated annealing) will be investigated.

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 239

IMPROVING RULE SET BASED SOFTWARE QUALITY PREDICTION: A GENETIC ALGORITHM-BASED APPROACH

REFERENCES

[1] J. Bieman and B.-K. Kang. Cohesion and reuse in an object-oriented system.ACM Symp.
Software Reusability, 1995.

[2] L. Briand, P. Devanbu, and W. Melo. An investigation into coupling measures for C++. In
Proceedings of the 19th International Conference on Software Engineering, 1997.

[3] L. Briand and J. Ẅust. Empirical studies of quality models in object-oriented systems. In
M. Zelkowitz, editor,Advances in Computers. Academic Press, 2002.

[4] L. Briand, J. Ẅust, J. W. Daly, and V. Porter. Exploring the relationships between design
measures and software quality in object-oriented systems.Journal of Systems and Software,
51:245–273, 2000.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.IEEE
Transactions of Software Engineering, 20(6):476–493, 1994.

[6] E. Falkenauer.Genetic Algorithms and Grouping Problems. John Wiley & Sons, 1998.

[7] N. E. Fenton and N. Ohlsson. Quantitative analysis of faults and failures in a complex
sofware system.IEEE Transactions on Software Engineering, 26(8):797–814, 2000.

[8] J. H. Holland.Adaptation in Natural Artificial Systems. University of Michigan Press, 1975.

[9] W. Li and S. Henry. Object-oriented metrics that predict maintainability.Journal of Systems
and Software, 23(2):111–122, 1993.

[10] R. Martin. Stability. c++ report. 9(2), 1997.

[11] D. Parnas. Software aging. In16th International Conference on Software Engineering,
1994.

[12] J. Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[13] W. J. Youden. How to evaluate accuracy.Materials Research and Standards, ASTM, 1961.

[14] H. Zuse.A Framework of Software Measurement. Walter de Gruyter, 1998.

ABOUT THE AUTHORS

Salah Bouktif is a Ph.D. student at the department of computer science
and operational research of the University of Montreal. His research
interests relate to the software quality, metrics and software prediction
models. Salah can be reached atbouktifs@iro.umontreal.ca.

Danielle Azar (dazar@cs.mcgill.ca) is a Ph.D. candidate in the School
of Computer Science at McGill University in Montreal, Canada. Her
main areas of interest include genetic algorithms and their application in
software engineering, particularly in the optimization of software quality
estimation models.

240 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

mailto:bouktifs@iro.umontreal.ca
mailto:dazar@cs.mcgill.ca

7 CONCLUSION

Houari Sahraoui received a Ph.D. in Computer Science from Pierre
& Marie Curie University, Paris in 1995. He is currently an associate
professor at the department of computer science and operational re-
search, University of Montreal where he is leading the software engi-
neering group. His research interests include object-oriented software
quality and software reverse and re-engineering. He can be reached at
sahraouh@iro.umontreal.ca.

Balázs Kégl received the Ph.D. degree in computer science (with hon-
ors) from Concordia University, Montreal, Canada, in 1999. His is cur-
rently with the Department of Computer Science and Operational Re-
search at the University of Montreal as an assistant professor. His re-
search interests include statistical pattern recognition, machine learning,
and image processing. He can be reached atkegl@iro.umontreal.ca.

Doina Precup received her PhD in Computer Science from the Uni-
versity of Massachusetts, Amherst,in 2000. In July 2000 she joined the
School of Computer Science at McGill University. Doina Precup’s re-
search interests lie mainly in the field of machine learning. She is es-
pecially interested in the learning problems that face a decision-maker
interacting with a complex, uncertain environment. She can be reached
atdprecup@cs.mcgill.ca.

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 241

mailto:sahraouh@iro.umontreal.ca
mailto:kegl@iro.umontreal.ca
mailto:dprecup@cs.mcgill.ca

