
Vol. 3, No. 4
Special issue: TOOLS USA 2003

Class-based Visibility from an MDA Perspec-
tive: From Access Graphs to Eiffel Code

G. Ardourel, LINA, University of Nantes, France
M. Huchard, LIRMM, Montpellier, France

Encapsulation is one of the main principles in object-oriented software construction.
Reducing software component coupling and enforcing interface definition facilitates
maintenance, reusability and incremental development, thus increasing software qual-
ity.
Encapsulation is usually supported by specific access control (visibility) mechanisms
as private or protected in Java and C++ or Eiffel’s exporting mechanism. These
mechanisms are often static and class-based, sometimes method-based, giving classes
the status of both the client and service provider. They help in hiding implementation
as well as capturing part of the domain rules on access rights.
We explore solutions for introducing design and implementation of class-based access
control from a Model-Driven Architecture (MDA) perspective. As UML proposes only
language-dependent solutions for access control representation, we consider extend-
ing UML with access graphs, a formalism previously introduced for comparing and
reasoning about static access rights.
In this paper, we describe the integration of AGATE, a suite of access graph based
tools dedicated to access control, in the MDA process. We focus on two access
control design tools operating at the Platform-Independent Model (PIM) level: the
Rule Adapter makes access graphs compliant with specific design rules while the Client
Discovery Module adds new relevant classes expressing client organization. Mapping
to a Platform-Specific Model (PSM) is illustrated with the Eiffel Access Graph Adapter
and rules for generating code from this PSM are presented.

1 INTRODUCTION

Encapsulation and the close notions of access control and visibility are key con-
cepts in object-oriented software construction [24, 7]. Reducing software component
coupling and enforcing interface definition facilitate maintenance, reusability and
incremental development, thus increasing software quality. In this paper, we prefer
the term “visibility”, used by UML, because “access control” also refers to run-time,
object-based security [21], while here we consider class-based, statically checked con-
trol of access to class features (attributes and methods). Like many other language
concepts, there are several views and implementations of visibility. Kinds of accesses
(like read/write) can be distinguished (in Eiffel [23]) or not (in Ada [31]/Smalltalk
[14]/Java [15]/C++[30]); access to features on pseudo-variables self or this can
be controlled differently than access to features on any variable. While C++ and

Cite this document as follows: G. Ardourel, M. Huchard: ”Class-based Visibility from an
MDA Perspective: From Access Graphs to Eiffel Code”, in Journal of Object Technol-
ogy, vol. 3, no. 4, April 2004, Special issue: TOOLS USA 2003, pages 177–195,
http://www.jot.fm/issues/issue 2004 04/article10

http://www.jot.fm/issues/issue_2004_04/article10

CLASS-BASED VISIBILITY FROM AN MDA PERSPECTIVE: FROM ACCESS GRAPHS TO EIFFEL CODE

x

z

y

<<can use>>

<<can use>>

<<can use>>

UML + Access Graphs
PIM

SOURCE
CODEx

z

y

<<can use>>

<<can use>>

<<can use>>

UML + Access Graphs
PSM

Rule Adapter
AGATE

Client Discovery
Module

AGATE
code
generation

Reengineering Tools:
extraction of access graphs
from Java/Eiffel

AGATE

<< Design Rules >>

Rule Adapter

<< Language Rules >>

AGATE

Figure 1: Class-based visibility tools in an MDA process

Java mainly propose the use of anonymous clients for a class 1, like its subclasses
or classes of the same package, Eiffel introduces a client clause where clients are
explicitly named classes. Eiffel visibility principles enlarge the range of potential
visibility use, by letting a class propose different “interfaces” based on the appli-
cation semantics. In UML, “interfaces” are also used to group externally visible
operations [7] but the visibility of operations in interfaces is always public, thus
without restricting accessibility to explicitly named clients.

The aim of MDA is to get system interoperability through standardization of the
design rather than through an unlikely standardization of implementation [27]. The
approach consists of first developing a “Platform Independent Model” (PIM) of the
application which only involves domain business modeling. This PIM is expressed
in UML using high-level core model features. Then the PIM is mapped (by hand
or automatically) to a “Platform Specific Model” (PSM) of the application still
expressed in UML, but integrating technical aspects of the target platform [29]. A
code generation step ends the process. This application construction approach gives
rise to many questions about object-oriented programming languages [10]: Have
these languages the right concepts for expressing a PIM and recognizing it in the code
after the mapping? Conversely, which programming language concepts are required
at the PIM level? Considering visibility in the framework of MDA demands, as for
other object orientation concepts, to clarify what is visibility independently from
specificities of target programming languages. But what shall the visibility standard

1If we except the C++ friend mechanism.

178 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

2 EXTENDING UML WITH ACCESS GRAPH NOTATION

be: Eiffel-like or UML/C++/Java-like visibility? Are boundaries between visibility
and security really clear when we consider modeling high-level requirements? This
is an important problem because security, defined at the PIM level as a pervasive
service [26], is not yet defined 2, precluding definitive distinction between high-level
visibility and access control security concepts.

To deal with the problem, we consider here that visibility at a PIM level has
to be based on a generalization of current programming language policies, thus
more rich than current UML proposals. Our proposal is twofold: first we introduce
a language-independent visibility model which has a graphical counterpart easy to
integrate into UML (access graphs); then, on the basis of the philosophy of the MDA
approach, tools that automate visibility model transformations are developed. These
tools, which are part of AGATE, a tool suite dedicated to access graph (stored as
XML data) manipulation [3], are sketched in Figure 1. The Rule Adapter makes
access graphs compliant with specific design rules. The Client Discovery Module
adds new relevant classes expressing client organization. Eiffel is used to illustrate
the mapping to a Platform-Specific Model (PSM) by using the Rule Adapter with
Eiffel visibility rules. Tools that can extract access graphs from Java or Eiffel source
code support additional reengineering processes.

Integration of a platform independent visibility concept in UML is outlined in
Section 2. PIM-to-PIM transformations, that help in refining the application model,
are presented in Section 3. PIM-to-PSM transformations, which map a PIM to a
target language, and code generation are illustrated in the case of Eiffel (Section 4).
Section 5 concludes the paper, giving the prospects of this work.

Library

removeBook(b:Book)
addBook(b:Book)

CensorBoard

PublisherAuthor

preferredTopics:String

Figure 2: A class diagram for library representation

2 EXTENDING UML WITH ACCESS GRAPH NOTATION

First, weaknesses of the UML notation for class-based visibility are pointed out.
Then we propose and illustrate an enhancement of the UML standard notation
based on UML extension mechanisms, namely stereotypes and tagged values.

Limits of UML visibility for class-based access control expression

UML considers four possibilities for visibility [25]: public, private, protected and
package, respectively denoted by +, -, # and ˜ specified before class features. The

2http://www.omg.org/mda/faq-mda.html

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 179

CLASS-BASED VISIBILITY FROM AN MDA PERSPECTIVE: FROM ACCESS GRAPHS TO EIFFEL CODE

semantics of these symbols are language dependent, and essentially borrowed from
Java and C++: potential clients of the features of a given class C are C, subclasses
(not explicitly named) of C, classes in the C package and any other class. This
policy drastically restricts the kinds of potential clients. As a drawback, access
constraints which would be based on the semantics of the domain classes cannot
be expressed. This problem is illustrated by the class diagram in Figure 2. In this
diagram, four classes related to the library domain are presented: Library, Author,
Publisher and CensorBoard. UML visibility notation cannot be used to express
two very simple kinds of statements:

• access limited to method receiver preferredTopics of an author can only be
mentioned in methods of Author and is only accessible on the method receiver
(often known as this or self);

• classes are explicitly clients of services from other classes in methods of
Author, methods addBook and removeBook can be invoked on any instance of
Library; in methods of Publisher, only the method addBook can be invoked
on any instance of Library; in methods of CensorBoard, only the method
removeBook can be invoked on any instance of Library.

Consider the first statement. In UML (basing our reasoning on Java and C++
language semantics), the first part (“preferredTopics of an author can only be
mentioned in methods of Author”) leads us to choose private directives (symbol −),
but the second part of the statement (“preferredTopics of an author can only be
applied to the method receiver”) is not fulfilled.

In the case of the second statement, we could try to use anonymous client classes
of UML (subclasses, classes of the same package, etc.) to simulate the expected
access rights. addBook and removeBook cannot be private because they can be
called by a method out of Library. addBook (respectively removeBook) cannot be
public, otherwise CensorBoard (resp. Publisher) could use it. Protected does not
apply here since there are no inheritance relations. If addBook and removeBook have
package visibility, Author, Publisher and Library need to be in the same package
to ensure access rights on addBook. Then Publisher automatically has access to
removeBook, which contradicts the initial hypotheses.

These statements are, from our standpoint, important for fine-grained interface
definition, and should really be expressed at the same abstraction level as static class
diagrams. They concern class description as they describe the range of possible class
collaborations.

Access Graph Diagrams

We have previously introduced Access Graph formalism [1, 4] to support language-
independent reasoning on access control in programming languages (Java, C++,
Eiffel, etc.). This formalism basically describes authorized accesses:

180 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

2 EXTENDING UML WITH ACCESS GRAPH NOTATION

Library

removeBook(b:Book)
addBook(b:Book)

Author

preferredTopics:String

Publisher

CensorBoard

<<can use>>

<<can use>>

<<can use>>

<<can use>>

{ acal={addBook,removeBook} }

{ aral={preferredTopics} }

{ acal={removeBook} }

{ acal={addBook} }

Figure 3: Access graph diagram

Stereotype BaseClass Parent Tags Constraints Description
can use Dependency N/A aral

acal
isInhS
isInhT

tag aral only on
loops; origin and
destinations of
the dependency
are classes

Dependencies of this
stereotype describe
which visibility (au-
thorized accesses) the
origin has on features
of the destination

Table 1: Stereotype definition

• receiver-level accesses, namely tuples (Cl, m, sa, p), where p is a feature acces-
sible in method m declared in Cl, on the receiver of m, and the access kind is
sa (taken among read/write/call/etc.); m is often omitted because usually all
methods of a class have the same access rights; when there is no ambiguity,
sa can also disappear, for example when there is only one kind of access right
for a feature (e.g. call for a method);
receiver-level access (Author, preferredTopic) would represent our first state-
ment;

• class-level accesses, tuples (C1, C2, m, sa, p) where m, declared in C1, has ac-
cess to p on an expression of type C2, the access kind being sa; as previously,
m and sa can be omitted in non-ambiguous situations;
class-level access (Author, Library, addBook) would represent part of our sec-
ond statement.

This formalism has a graphical counterpart which we already used in previous
work for the analysis of static access control in software [16]. The graphical form of
access graphs makes them relevant for introduction in UML using standard extension
mechanisms. Figure 3 shows the main elements of access graph diagrams (here
combined with the class diagram). A new stereotype << can use >> is attached
to dependencies, and tagged values describe authorized accesses.

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 181

CLASS-BASED VISIBILITY FROM AN MDA PERSPECTIVE: FROM ACCESS GRAPHS TO EIFFEL CODE

Table 1 details the stereotype while the tag definitions are given in Table 2.
The two tables respect the format suggested in [25]. The first two tag definitions
refer to access right representation: tag aral describes the authorized receiver-level
access list attached to a << can use >> dependency (necessarily a loop); tag acal
describes the authorized class-level access list. The third and fourth tags illustrate
possible diagram simplifications that can be done for readability’s sake: accesses
can be source inherited (tagged value isInhS=true), or target inherited (tagged
value isInhT=true).

Figure 4 presents a more detailed access graph diagram which will be used af-
terwards. Receiver-level access is omitted as we will focus, for simplicity’s sake, on
class-level accesses in the next sections. In this diagram, librarians can call addBook
and removeBook on library sections as well as on “book of the month” sections since
the access is target inherited (tagged value inhT for isInhT=true3). Only librar-
ians have this access to addBook, on “book of the month” sections, since adding
books to such sections has to be moderated. Publishers have access to method
addBook restricted to library sections, and this access is source inherited (tagged
value inhS for isInhS=true), for example science publishers also benefit from this
access to addBook in library sections. Authors and fantasy authors have access to
addBook and removeBook in library sections, but only to removeBook in “book of the
month” sections. Censor boards have only access to removeBook in library sections
and “book of the month” sections.

BookOfTheMonthSection CensorBoard

SciencePublisher

Publisher

FantasyAuthor

removeBook(b:Book)
addBook(b:Book)

LibrarySection

<<can use>>

<<can use>>

Author

<<can use>>

<<can use>>

Librarian

<<can use>>
{ acal={addBook,removeBook},inhT }

{ acal={addBook,removeBook}, inhS }

{ acal={addBook}, inhS }

{ acal={removeBook}, inhS }

{ acal={removeBook},inhT }

Figure 4: Detailed Access graph diagram for libraries

Several access dependencies can be drawn between two classes if this can improve
readability. This paper will not go into all the subtleties of the notation, but we
think that it is important to note that the fundamentals of access graphs are not
very far from a graphical translation of the client clause of Eiffel. A difference is

3As recommended for Boolean properties in UML [25] paragraph 3.17.2.

182 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

2 EXTENDING UML WITH ACCESS GRAPH NOTATION

Tag Stereotype Type Mult. Description
aral can use (m, sa, p)

where m is a
method, sa ∈
{call, read, write, ...},
and p is a feature.
When non-ambiguous,
m and sa can be omit-
ted.

* authorized

receiver-level access

list On loop concerning
class Cl, indicates that
the p —feature of Cl—is
accessible for access kind
sa through method m
—declared by Cl— and on
its receiver (e.g. in m the
code this.p is authorized
access)

acal can use (m, sa, p)
where m is a
method, sa ∈
{call, read, write, ...},
and p is a feature.
When non-ambiguous,
m and sa can be omit-
ted.

* authorized class-level

access list On edge
from C1 to C2, indicates
that the p —feature of
C2—is accessible for access
kind sa through method
m —declared by C1—
(e.g. in m the code inst.p,
where inst has type C2, is
authorized access)

isInhS can use Boolean 1 Source Inherited Writ-
ten on edge from C1 to
C2, indicates whether ac-
cess right extends or not
to subclasses C3 of C1 (the
source). Dependencies from
C3 to C2 with same tagged
values can be omitted.

isInhT can use Boolean 1 Target Inherited Writ-
ten on edge from C1 to
C2, indicates whether access
right extends or not to sub-
classes C3 of C2 (the target).
Dependencies from C1 to C3

with the same tagged values
can be omitted.

Table 2: Tag definition

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 183

CLASS-BASED VISIBILITY FROM AN MDA PERSPECTIVE: FROM ACCESS GRAPHS TO EIFFEL CODE

that Eiffel imposes a few limitations to the client clause that access graphs ignore:
mainly Eiffel imposes that accessibility is inherited [23], i. e. isInhS is always true.
This Eiffel restriction is certainly a good usual design rule, but we think that access
graph notation has to be general enough to take other languages that do not enforce
this rule into account. Further development of the access graph notation should
consider applying access dependencies to other elements or element groups [1], like
packages for example.

3 CONSTRUCTING THE PIM: TOOLS FOR CLASS-BASED VISIBIL-
ITY DESIGN

We consider access graph diagrams to express high-level, expert domain-based, de-
sign decisions like those presented about the library system. Like any design dia-
gram, access graph diagrams need to be elaborated from scratch, and then revised
several times before obtaining domain expert and designer approval. In this pro-
cess, tools that assist reflection about the artifacts are welcome. In the case of
access graph diagram design, we propose two kinds of such tools: a first proposal
is an automated access graph adaptation to general design rules selected by the de-
signer (the Rule Adapter); a second proposal involves adding new classes, relevant
abstractions of clients, which are integrated within the class hierarchy (the Client
Discovery Module). Designers are expected to use these automated tools and then
select and adapt the results that seem relevant.

The Rule Adapter

The Rule Adapter is a tool that transforms an access graph diagram according to
a design rule. The following rules are examples that will add some accesses to the
graphs:

• a subclass can have class-level access to at least all methods its super-classes
have access to.

• if a class has access to a method m in a class B, then it should have access to
the method m in every subclasses of B.

• a method beginning with “get” should be callable by the subclasses of the
class declaring it.

The first rule is a very useful one to apply when considering the extensibility
of classes, and is enforced in Eiffel. The second is called “preserving interfaces
when sub-classing” and ensures that dynamically allowed accesses are statically
allowed too. Java (using JDK 1.4) almost enforces this rule [2]. The third and last
one is an illustration of naming conventions that can be used when designing and

184 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

3 CONSTRUCTING THE PIM: TOOLS FOR CLASS-BASED VISIBILITY DESIGN

programming. Such conventions, while not specifically tied to access control, are
quite usual and necessary.

The following are some rules that can remove accesses:

• every method beginning with “getOwn...” should only be accessible at the
receiver-level,

• all attributes can be written by and only by the receiver.

These latter rules can be more problematic than the first ones because they re-
strict access, thus potentially prohibiting an operation that the access graph designer
thought necessary. When an access is removed upon applying a rule, a warning is
issued to notify the designer which design rule he initially broke. As our tools are
not currently integrated in case tools, there is no user interaction yet. Some useful
options in this case, besides automatic removal, could include:

• providing automatic replacement solutions (like set methods when attribute
writing is necessary),

• letting the user keep the access if he feels the rule is more harmful than useful in
this case while ensuring that the documentation will clearly state the anomaly.

In the Rule Adapter Tool, the rules are encoded in methods modifying the access
graph. We are currently working on defining a simple language that will be ex-
pressive enough to declare such rules and generate the corresponding checking and
modifying code.

The Client Discovery Module

The goal of the Client Discovery Module is to identify new classes which corre-
spond to presumably relevant potential clients and to correctly insert these classes
into the class hierarchy. These clients can be identified by an analysis of groups
of authorized accesses. For example, authors (including specializations), publish-
ers (including specializations) and librarians have all the access to addBook on li-
brary sections, suggesting the contributor notion. Our example was very simplified
and, in the general case, addBook would be found within a group of features cor-
responding to library section contribution, like listOfContributions(e:Entity),
conditionsForContributing, etc. This identification of groups of common accesses
can be done in a systematic way with the help of formal concept analysis (also known
as Galois lattice/concept lattice construction). We briefly review the foundations
of formal concept analysis applied in our context and explain how the tool works
with them. Note that this module can be directly applied when authorized accesses
are source inherited or from classes without subclasses, otherwise some adaptations
might be necessary.

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 185

CLASS-BASED VISIBILITY FROM AN MDA PERSPECTIVE: FROM ACCESS GRAPHS TO EIFFEL CODE

LibrarySection
Librarian
BookOfTheMonthSection

CensorBoard
SciencePublisher
Publisher
FantasyAuthor
Author

L
S|

ad
dB

oo
k

L
S|

re
m

ov
eB

oo
k

B
S|

re
m

ov
eB

oo
k

B
S|

ad
dB

oo
k

X X XX
X X X
X
X

X X

X X X X

Figure 5: A binary relation R describing authorized accesses for the library system

Galois lattices [6] are based on Galois connections very likely introduced in [8]
as a generalization of works of the mathematician E. Galois. Their use for concept
formation appears in [6] and they also have been disseminated under the name
of concept lattices, or formal concept analysis [32, 11]. They are used in several
domains such as knowledge representation, machine learning (conceptual clustering),
data mining, classification and software engineering for different purposes including
class hierarchy construction based on common features [12, 9, 13, 20, 19] and class
hierarchy analysis based on feature usage [28] or method call patterns [5].

Formal concept analysis works with a context composed of three parts:

• a set E of formal entities ; in our case the classes,

• a set F of formal attributes ; in our case the targets of authorized accesses,
that are generally the tuples (m, sa, p) for receiver-level accesses or the tuples
(C2, m, sa, p) for class-level accesses; simplified forms of accesses can also be
considered, for example reduced to p;

• a binary relation R which associates entities with their attributes (classes to
their authorized accesses).

Figure 5 shows such a context for our library example, with the simplified form of
access targets (reduced to properties). In this Figure, LS stands for LibrarySection
while BS replaces BookOfTheMonthSection.

Concepts are pairs (X, Y), where:

• X, the extent, is a subset of formal entities which are “covered” by the concept;

• Y , the intent, is a subset of formal attributes which are satisfied by all entities
of the concept.

186 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

3 CONSTRUCTING THE PIM: TOOLS FOR CLASS-BASED VISIBILITY DESIGN

In our case, a concept associates a group of classes with the accesses authorized for
all classes in the group. Each formal attribute will be composed of a class name and
a property name separated by | respectively called class part and property part.

Constructing the whole concept (Galois) lattice exhaustively gives us the con-
cepts together with an organization based on extent inclusion (or equivalently intent
containment). A simplified form of formal concept analysis which only produces a
relevant part of the lattice (namely the Galois sub-hierarchy) considers concepts
that can be obtained using one of the following processes [17].

• Let C be a class, consider A(C) as the accesses authorized to C as an
intent; to form the appropriate associated extent, we just have to pool all the
classes that also have A(C) accesses;
For example, let us consider the class Author. Author has access toA(Author) =
{LS|addBook,LS|removeBook, BS|removeBook} which is the intent of a con-
cept. We gather the classes which also have these accesses to obtain the
associated extent: {Author, FantasyAuthor, Librarian}.
({Author, FantasyAuthor, Librarian}, {LS|addBook,LS|removeBook, BS|remo-
veBook}) is a concept Ca.

• Let a be an access, consider C(a) as the classes that have a as an extent; the
appropriate corresponding intent is then obtained by gathering all the accesses
that share C(a) classes;
For example, let us consider the access (to) LS|removeBook. The classes which
have this access are C(a) ={Author, FantasyAuthor, CensorBoard, Librarian}.
These classes share not only LS|removeBook, but also BS|removeBook.
({Author, FantasyAuthor, CensorBoard, Librarian}, {LS|removeBook,BS|remo-
veBook}) is another concept Cb.

Some concepts are indifferently obtained by the first or the second item of the
process, but in some cases only one part of the process can lead to them [17]. As
noted before, they are organized by intent inclusion, for example Ca is a sub-concept
of Cb. The Galois sub-hierarchy (shown in Figure 6 for relation R) preserves the
more informative concepts: the least concept where a given class appears and the
highest concept where a given access is declared. It also has a node number bounded
by |E| + |F | which is very low compared to the node number of the whole lattice
in O(2min(|E|,|F |)). For our purpose, the main point is that the Galois sub-hierarchy
contains all possible groups of authorized accesses, thus revealing all potential client
abstractions (see Figure 6) which we can interpret as new classes.

As we want to smoothly insert the new classes into the current class hierarchy,
initial classes are linked to them in a simple way. An initial class is attached to the
least new classes that have it in their extent. For example, Author is attached as
a subclass of LSContributor+LS&BSErasers ; Librarian is assimilated to the lower
new class because the extent is reduced to {Librarian}. Transitivity edges are
removed. The resulting hierarchy, integrating client abstraction and current classes

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 187

CLASS-BASED VISIBILITY FROM AN MDA PERSPECTIVE: FROM ACCESS GRAPHS TO EIFFEL CODE

LS&BSErasers

Librarian

LSContributor+LS&BSErasers

({Author,FantasyAuthor,Publisher,SciencePublisher,Librarian}{LS|addBook})

({Librarian}{LS|addBook,LS|removeBook,BS|addBook,BS|removeBook})

LSContributor

({Author,FantasyAuthor,Librarian}{LS|addBook,LS|removeBook,BS|removeBook})

({Author,FantasyAuthor,CensorBoard,Librarian}{LS|removeBook,BS|removeBook})

Figure 6: Classes suggested by the Galois sub-hierarchy

is shown in Figure 7. On the access graph diagram, most accesses are shifted to
higher classes (client abstractions). This simplification (due to access factorization)
is the first advantage of the method. The second advantage is that the new concepts
can have a relevant meaning for the ongoing design and include features (attributes
or methods) in next design steps.

Figure 8 shows how the tool works: a pre-processing step extracts relevant access
information of the access diagram and constructs a binary relation; this binary
relation is processed by CERES [22, 18], a tool dedicated to Galois sub-hierarchy
construction; then a post-processing step exploits the Galois sub-hierarchy to insert
the new classes in the hierarchy and to factorize accesses, thus clarifying the access
diagram. Accesses are generated by creating can use dependencies linking the
concepts (interpreted as client classes) to the class part of the formal attributes of
their concept. The property part of the formal attributes is added in the acal tag
of the created dependency. This process is automatic in the current version of our
tools. User selection of classes to be integrated in the hierarchy is possible and will
be encouraged in future versions. For every concept class not selected by the user,
the accesses and inheritance links just have to be redistributed to their subclasses,
thus no data is lost.

4 PIM TO PSM TRANSFORMATION AND CODE GENERATION

In this section, we illustrate the mapping to a Platform-Specific Model with the Rule
Adapter using Eiffel language rules and code generation from the obtained PSM.

Mapping to a PSM

As seen in the previous section, access graphs are useful for expressing domain-based
and design-based platform-independent decisions concerning visibility. Then, these

188 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

4 PIM TO PSM TRANSFORMATION AND CODE GENERATION

SciencePublisher

Publisher

FantasyAuthor

Author

BookOfTheMonthSection

removeBook(b:Book)
addBook(b:Book)

LibrarySection

Librarian

<<can use>>
{ acal={addBook},inhS }

<<can use>>
{ acal={removeBook},inhT,inhS }

<<can use>>
{ acal={addBook}, inhS }

LSContributor+LS&BSErasers

LS&BSErasers

CensorBoard

LSContributor

Figure 7: A new class hierarchy with client abstractions and access factorization

decisions are mapped to a platform-specific model that integrates specific constraints
related to the target language. We will show here the mapping to an Eiffel-compliant
model because of the expressiveness and simplicity of Eiffel.

Some very simple rules4 must be verified for an access graph diagram to be
compatible with Eiffel:

1. Attributes can be read and written at the receiver-level.

2. Attributes can only be written at the receiver-level.

3. Methods can always be called at the receiver-level.

4. A property accessible by a class A is also accessible by subclasses of A.

5. When not otherwise specified, the clients of a feature f in a class B are also
clients of the feature f in subclasses of B.

As you can see, some of these rules where already mentioned in Section 3. Ap-
plying them for mapping to a platform-specific model does not differ from applying
them on the Platform-Independent Model. Thus, we also use the Rule Adapter as
the mapping tool.

Rules 1, 3, 4 5 only add accesses, but Rule 2 might remove some, and might
require user interaction, as noted in Section 3.

4A more detailed description of these rules in the access graph formalism can be found in [4].

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 189

CLASS-BASED VISIBILITY FROM AN MDA PERSPECTIVE: FROM ACCESS GRAPHS TO EIFFEL CODE

Binary Relation

Galois sub−hierarchyNew Hierarchy+Access Graph

Hierarchy +

LibrarySection
Librarian
BookOfTheMonthSection

CensorBoard
SciencePublisher
Publisher
FantasyAuthor
Author

L
S|

ad
dB

oo
k

L
S|

re
m

ov
eB

oo
k

B
S|

re
m

ov
eB

oo
k

B
S|

ad
dB

oo
k

X X XX
X X X
X
X

X X

X X X X

({Author,FantasyAuthor,Publisher,SciencePublisher,Librarian}{LS|addBook})

({Author,FantasyAuthor,CensorBoard,Librarian}{LS|removeBook,BS|removeBook})

({Librarian}{LS|addBook,LS|removeBook,BS|addBook,BS|removeBook})

({Author,FantasyAuthor,Librarian}{LS|addBook,LS|removeBook,BS|removeBook})
SciencePublisher

Publisher

FantasyAuthor

Author

BookOfTheMonthSection

removeBook(b:Book)
addBook(b:Book)

LibrarySection

Librarian

<<can use>>
{ acal={addBook},inhS }

<<can use>>
{ acal={removeBook},inhT,inhS }

<<can use>>
{ acal={addBook}, inhS }

LSContributor+LS&BSErasers

LS&BSErasers

CensorBoard

LSContributor

x

z

y

<<can use>>

<<can use>>

<<can use>> AGATE
preprocessing

FCA Tools
CERES

PostProcessing
AGATE

Access Graph

Figure 8: Tools for the Client Discovery Module

The example from Figure 7 contains only methods, thus rules 1 and 2 would
not be used. Rule 3 would add the tagged values aral={addBook,removeBook}
on arrows from LibrarySection and BookOfTheMonthSection to themselves. Rule
4 is already used by all can use dependencies because their tagged values have
the inhS tagged value. Rule 5 is already applied because the addBook feature has
its clients (LSContributor and Librarian) specified for both its owner classes,
and the removeBook feature also because of the inhT tagged value on the can use

dependency that targets it.

BookOfTheMonthSection CensorBoard

SciencePublisher

Publisher

FantasyAuthor

{ acal={addBook,removeBook},inhT inhS }

removeBook(b:Book)
addBook(b:Book)

LibrarySection

Author

<<can use>>

<<can use>>

Librarian

{ acal={addBook,removeBook}, inhS }

{ acal={removeBook}, inhS }

{ acal={addBook}, inhS }
<<can use>>

<<can use>>

<<can use>>

{ acal={removeBook},inhT inhS }

<<can use>>

<<can use>>
{ aral={addBook,removeBook}}

{ aral={addBook,removeBook}}

Figure 9: PSM: Access graph diagram for libraries in Eiffel

190 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

4 PIM TO PSM TRANSFORMATION AND CODE GENERATION

If the designer did not use the classes generated by the client discovery module,
he can still adapt its original graph (cf. Figure 4) to the Eiffel language. The
corresponding graph would be as shown in Figure 9.

Code generation

As stated in [27], “in a mature MDA environment, code generation will be substan-
tial, or, perhaps in some cases, even complete”. We will now describe the Eiffel code
generation process which is currently implemented in our tool.

Generating Eiffel code from the above PSM is rather straightforward. The
uniqueness principle advocated by B. Meyer [24] is very useful for such a trans-
formation since it ensures that there are not numerous different ways to achieve the
same thing, in our case visibility constraints.

The first step after adapting the graph to Eiffel is to generate a client clause
for each feature. If a feature is inherited without being redefined and changes its
visibility, then the export keyword is used to declare the client clause in the inherit
clause.

This client clause contains all classes that can have access to the feature. If the
inhS was not used in a can use dependency, then the corresponding client clause
should be simplified by removing all classes that have a superclass in the client clause
(e.g. a client clause containing {Author FantasyAuthor} is reduced to {Author}).

The code generated from the previous example is as follows :

class LIBRARY_SECTION

feature {LS_BSERASER} removeBook(b:BOOK) is

do

-- code

end;

feature {LSCONTRIBUTOR} addBook(b:BOOK) is

do

-- code

end;

end --LIBRARY_SECTION

class BOOK_OF_THE_MONTH_SECTION

inherit

LIBRARY_SECTION

export {LIBRARIAN} addBook

end

end --BOOK_OF_THE_MONTH_SECTION

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 191

CLASS-BASED VISIBILITY FROM AN MDA PERSPECTIVE: FROM ACCESS GRAPHS TO EIFFEL CODE

The current version of the tool only generates skeleton code concerning visibility,
but we plan on integrating it to a CASE tool and modifying the abstract syntax
tree of the corresponding code, if it exists.

An algorithm for generating Java code from access graphs is described in [1] but
has not yet been implemented. User interaction or automatic decision mechanism
are needed because some visibility constraints where the inhT tag is not used can
be encoded in different ways in Java.

5 CONCLUSION AND FUTURE WORKS

In this paper, we focused on visibility handling in the MDA process. We pro-
posed access graph diagrams, an UML extension for expressing precise visibility
constraints in models. Then we described two design tools operating on visibility at
the Platform-Independent Model (PIM) level: the Rule Adapter applies design rules
to the model while the Client Discovery Module detects new client classes which en-
hance the diagram and factorize potential collaborations. We illustrated the next
steps in the MDA process with the mapping to an Eiffel-Specific Model (Access
Graph Diagrams integrating Eiffel visibility rules) and Eiffel code generation.

This process has been tested using small-sized design diagrams. Since we cur-
rently do not have access graph design diagrams of realistic size, we plan to use our
reengineering tool to extract them from Eiffel or Java applications. We envision two
strategies: either using authorized accesses (which will be much more informative in
Eiffel than in Java) or using effective accesses (method calls or attribute accesses).

In future works, we plan to extend our graphical notation for visibility by admit-
ting groups of elements as source and target of << can use >> dependencies and
to develop a simple declarative language for expressing design rules.

Our tools are currently part of the AGATE platform, but we intend to integrate
them into a CASE tool to assist potential users in developing visibility constraints
in a seamless process.

ACKNOWLEDGEMENTS

The authors would like to thank Thérèse Libourel for fruitful discussions about UML
extensions and Jean Privat for his help in the development of Eiffel-specific tools.
CERES is the result of research supported by France Télécom R&D.

192 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

5 CONCLUSION AND FUTURE WORKS

REFERENCES

[1] G. Ardourel. Modélisation des mécanismes de protection dans les langages à
objets. PhD thesis, Université Montpellier 2, 2002.

[2] G. Ardourel and M. Huchard. Formalizing static access control via access
graphs: application to Java and Eiffel. Technical report, LIRMM UM2/CNRS,
2000. http://www.lirmm.fr/~ardourel/publis.html.

[3] G. Ardourel and M. Huchard. AGATE, Access Graph bAsed Tools for handling
Encapsulation. In ASE’2001 (International Conference Automated Software
Engineering), pages 311–314, 2001.

[4] G. Ardourel and M. Huchard. Access graphs: Another view on static access con-
trol for a better understanding and use. Journal of Object Technology, 1(5):95–
116, November 2002, http://www.jot.fm/issues/issue_2002_11/article1.

[5] G. Arevalo and T. Mens. Analysing Object-Oriented Application Frameworks
Using Concept Analysis. In J.-M. Bruel and Z. Bellahsène, editors, Advances
in Object-Oriented Information Systems - OOIS 2002 Workshops, number 2426
in LNCS, pages 53–63. Springer, 2002.

[6] M. Barbut and M. Monjardet. Ordre et Classification. Algèbre et Combinatoire,
volume 2. Hachette, 1970.

[7] S. Bennett, S. McRobb, and R. Farmer. Object-Oriented Systems Analysis and
Design using UML. Mc Graw Hill, 2002. Second Edition.

[8] G. Birkhoff. Lattice theory. AMS Colloquium Publication, vol. XXV, 1940.

[9] H. Dicky, C. Dony, M. Huchard, and T. Libourel. On automatic class inser-
tion with overloading. Special issue of Sigplan Notice - Proceedings of ACM
OOPSLA’96, 31(10):251–267, 1996.

[10] M. Eichberg. MDA and Programming Languages. In J. Bettin, Ghica van
Emde Boas, C. Cleaveland, and K. Czarnecki, editors, Workshop “Generative
Techniques in the context of Model-Driven Architecture”, OOPSLA 2002, nov
2002. http://www.softmetaware.com/oopsla2002/mda-workshop.html.

[11] B. Ganter and R. Wille. Formal Concept Analysis, Mathematical Foundations.
Springer-Verlag, 1999.

[12] R. Godin and H. Mili. Building and Maintaining Analysis-Level Class Hierar-
chies Using Galois Lattices. In Special issue of Sigplan Notice - Proceedings of
ACM OOPSLA’93, volume 28, pages 394–410, 1993.

[13] R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Arfi, and T. Chau. Design of
Class Hierarchies Based on Concept (Galois) Lattices. Theory and Application
of Object Systems, 4(2):117–134, 1998.

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 193

http://www.lirmm.fr/~ardourel/publis.html
http://www.jot.fm/issues/issue_2002_11/article1
http://www.softmetaware.com/oopsla2002/mda-workshop.html

CLASS-BASED VISIBILITY FROM AN MDA PERSPECTIVE: FROM ACCESS GRAPHS TO EIFFEL CODE

[14] A. Goldberg. Smalltalk-80: The Interactive Programming Environment. Com-
puter Science. Addison-Wesley Publishing Co., 1984.

[15] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification
Second Edition. Addison - Wesley, June 2000. http://java.sun.com/docs/

books/jls/.

[16] O. Gout, G. Ardourel, and M. Huchard. Access Graph Visualization: a step to-
wards better understanding of static access control. In Tom Mens, Andy Schürr,
Gabriele Taentzer, editors, proceedings of the International (ICGT 2002) Work-
shop on Graph-Based Tools (GraBaTs), Barcelona, Spain, October 7 - 8, 2002
Electronic Notes in Theoretical Computer Science, 72(2), Elsevier Science B.
V. http://www.elsevier.nl/locate/entcs/volume72.html

[17] M. Huchard, H. Dicky, and H. Leblanc. Galois lattice as a framework to specify
algorithms building class hierarchies. Theoretical Informatics and Applications,
34:521–548, January 2000.

[18] M. Huchard and H. Leblanc. Computing Interfaces in Java. In Proc. IEEE In-
ternational conference on Automated Software Engineering (ASE’2000), pages
317–320, 11-15 September, Grenoble, France, 2000.

[19] P. Valtchev, M. Rouane Hacene, M. Huchard, and C. Roume. Extracting for-
mal concepts out of relational data In Proceedings of Fourth International
Conference JIM’2003, September 3-6, 2003, Metz , France Pages 37-48, INRIA
publications, ISBN 2-7261-1256-0, 2003.

[20] M. Huchard, C. Roume, and P. Valtchev. When concepts point at other con-
cepts: the case of UML diagram reconstruction. In V. Duquenne, B. Ganter,
M. Liquiere, E. M. Nguifo, and G. Stumme, editors, FCAKDD 2002, Advances
in Formal Concept Analysis for Knowledge Discovery in Databases, Int. work-
shop ECAI 2002, pages 32–43, Lyon, juillet 2002. http://www.lattices.org/
FCAKDD2002.htm

[21] I. Joyner. Objects Unencapsulated, Java, Eiffel and C++. Prentice Hall, 1999.

[22] H. Leblanc. Sous-hiérarchies de Galois : un modèle pour la construction et
l’évolution des hiérarchies d’objets (Galois sub-hierarchies : a model for con-
struction and evolution of object hierarchies). PhD thesis, Université Montpel-
lier 2, 2000.

[23] B. Meyer. Eiffel, The Language. Prentice Hall - Object-Oriented Series, 1992.

[24] B. Meyer. Object-Oriented Software Construction. Professional Technical Ref-
erence. Prentice Hall, 2nd edition, 1997.

[25] Object Management Group. Unified Modeling Language Specification (UML),
September 2001. Version 1.4, http://www.omg.org/technology/uml/.

194 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

http://java.sun.com/docs/books/jls/
http://java.sun.com/docs/books/jls/
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.lattices.org/FCAKDD2002.htm
http://www.lattices.org/FCAKDD2002.htm
http://www.omg.org/technology/uml/

5 CONCLUSION AND FUTURE WORKS

[26] OMG Architecture Board MDA Drafting Team. Model Driven Architecture.
OMG document ormsc/2001-07-01, 2001.

[27] J. Siegel and the OMG Staff Strategy Group. Developping in OMG’s Model-
Driven Architecture. OMG document omg/2001-12-01, 2001.

[28] G. Snelting and F. Tip. Understanding class hierarchies using concept analysis.
ACM Transactions on Programming Languages and Systems, 22(3):540–582,
May 2000.

[29] R. Soley and the OMG Staff Strategy Group. Model Driven Architecture. OMG
document omg/2000-11-05, 2000.

[30] B. Stroustrup. The C++ programming language, Third Edition. Addison–
Wesley, 1997.

[31] S. T. Taft and R. A. Duff. The Ada 95 Reference Manual, volume 1246. Lecture
Notes in Computer Science, Springer-Verlag, 1997.

[32] R. Wille. Restructuring lattice theory: An approach based on hierarchies of
concepts. Ordered Sets, in I. Rivals (Eds), 23, 1982.

ABOUT THE AUTHORS

Gilles Ardourel is an assistant professor at the LINA (Lab. CNRS
& Science University of Nantes (ex-IRIN)). He received a PhD De-
gree in Computer Science from the University of Montpellier II in
2002. He is interested in object-oriented language design and model-
ing, primarily in the static access control subject. He can be reached
at ardourel@lina.univ-nantes.fr. See also http://www.sciences.univ-
nantes.fr/info/perso/permanents/ardourel/.

Marianne Huchard is an assistant professor at the LIRMM (Lab.
CNRS & Science University of Montpellier). Her research inter-
ests include various aspects of inheritance (conflict resolution based
on linearization methods, inheritance graph decomposition, formal
concept analysis based techniques for class hierarchy and UML
class diagrams restructuring) and static access control mechanisms.
She leads at the LIRMM a working group dedicated to object
orientation. She can be reached at huchard@lirmm.fr. See also
http://www.lirmm.fr/˜huchard.

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 195

mailto:ardourel@lina.univ-nantes.fr
http://www.sciences.univ-nantes.fr/info/perso/permanents/ardourel/
http://www.sciences.univ-nantes.fr/info/perso/permanents/ardourel/
mailto:huchard@lirmm.fr
http://www.lirmm.fr/~{}huchard

