
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 3, March-April 2004

Cite this column as follows: John D. McGregor: “Software Product Lines”, in Journal of Object
Technology, vol. 3, no. 3, March-April 2004, pp. 65-74.
http://www.jot.fm/issues/issue_2004_03/column6

Software Product Lines
John D. McGregor, Clemson University and Luminary Software, U.S.A.

Abstract
The software product line approach is a strategy for producing software-intensive
products. The strategy encompasses organizational management, technical
management, and software engineering aspects of product production. Object
technology can make an important contribution to the success of a product line
organization. In this paper these contributions are described in terms of an example
product line.

1 INTRODUCTION

The software product line strategy for producing software-intensive products has
produced very promising results for early adopters of the approach. Hewlett-Packard, for
example, experienced a twentyfive-fold decrease in defects using a product line approach
[Toft00]. Cummins, Inc., the world’s largest manufacturer of large diesel engines,
reduced the effort needed to produce the software for a new engine from 250 person-
months to three person-months or less [Dager00].

The product line strategy is widely used in hard goods manufacturing but has only
recently been a major influence on software product development processes. A product
line approach seeks to achieve gains in productivity and time to market by designing a set
of products to have many parts in common. So this is, in a sense, yet another software
reuse scheme, but it is one that has proven effective in actual industrial experience. The
product line approach also seeks to identify and manage the variations among the
products.

The success of the software product line strategy is due, at least partially, to its
comprehensive nature. The software product line strategy defines specific tasks for the
organizational management, technical management, and software engineering aspects of
product production. However, its comprehensive nature also means that the effort to
initiate a software product line can be more than that required to adopt a new
programming language or change the design method being used.

The comprehensive nature of the product line strategy makes it an umbrella under
which a range of techniques and methods can be assembled. Agile development methods,

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_03/column6

SOFTWARE PRODUCT LINES

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

model-driven architectures, and generative programming can all be part of a successful
product line organization. In this column I will focus on how object technology can play
a major role in the specification, design and implementation portions of a software
product line.

In this column I will provide an overview of product line concepts. I will show how
object technology and a software product line product production strategy are mutually
supportive. I will use an example product line to illustrate the concepts that I describe in
this column.

2 OVERVIEW OF SOFTWARE PRODUCT LINES

A software product line is a set of software-intensive systems sharing a common,
managed set of features that satisfy specific needs of a particular market or mission, and
that are developed from a common set of core assets in a prescribed way, according to the
definition used by the Software Engineering Institute (SEI) [Clements01]. This definition
identifies the main roles in a product line organization. Core asset1 developers provide a
range of assets, such as architectures, specifications, and implementations, to product
developers for their use in producing products. Product line managers coordinate and
facilitate the work of these two groups as illustrated in Figure 1. Executives in the
organization set strategic goals such as producing more products more quickly and
allocate responsibility for achieving those goals.

Core asset
developers

Product developers

Management

Assets for products

Feedback on assets

Specify objectives
Identify products to
produce

Figure 1 - Roles in a software product line

The organization adopting the product line approach develops a business case that defines
objectives, such as increasing productivity, for the product line. The organization
identifies the set of products to be included in the product line using scoping techniques
that determine the areas of commonality among the products and the points at which the
products vary from one another. The products to be produced in the product line are
selected so that the objectives of the product line are achieved. If the goal is improved

1 A core asset is a resource that is used to produce multiple products.

OVERVIEW OF SOFTWARE PRODUCT LINES

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 67

productivity, products might be chosen so that variations among the products are
minimized and reuse of components is maximized.

Using the information from the scoping activity and considering the objectives
defined in the business case, the organization develops a product line architecture. This
architecture incorporates sufficient variation to encompass all of the products in the
product line. The architecture serves as the basic guide for specifying and acquiring the
other resources that will be used to create the products.

The core asset developers provide the resources needed to produce the selected
products. This includes the architecture, the system components that populate the
architecture, plans such as production plans and test plans, and templates for process
definitions. At points of variation among the products, multiple assets are designed and
implemented to cover the possible product permutations. I will discuss this more later.

The core assets of a product line can be more completely specified than traditional
reusable components. This is possible because they are designed to work for the specific
products in the product line. The assets can be produced for less cost than a similar asset
intended for general use in an unspecified environment.

The product developers select the appropriate assets and use these to produce the
products identified during product line scoping. Products are assembled quickly and
efficiently due to all of the planning and design done by the core asset developers. The
product developers may add product-specific features that are not shared by other
products and hence are not created using core assets. Product line organizations have
used a variety of techniques ranging from standard component integration techniques to
program generators to produce products from the assets.

The Software Engineering Institute has identified 29 practice areas that represent the
skills needed by an organization adopting the product line strategy. In the remainder of
this column I will describe only the high level activities of a product line organization
that uses object technology. If you want to know more about these practice areas visit the
SEI’s product line website at http://www.sei.cmu.edu/plp/plp_init.html.

3 CASE STUDY

Our example product line is operated by a fictitious organization, which has decided to
build several computer games. Some of the games will be given away as advertising for
the company, some will be products purchased by cell phone providers to run on their
wireless devices, and some will be customized for companies to give away at
conventions. In all there are 3 basic games in the product line but each game comes in
three variants: freeware, wireless device, and convention trinket. This provides the two
different dimensions of variation shown in Figure 2. The first is the difference between
the games Brickles, Pong, and Bowling. The second dimension is the different
environment and purpose for the games.

http://www.sei.cmu.edu/plp/plp_init.html

SOFTWARE PRODUCT LINES

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

Brickles

Pong

Bowling

freeware wireless trinket

Figure 2 - Product matrix

The product line is being implemented along the multiple different games dimension

first. An initial version of the freeware variant of each game has been completed as
indicated by the shaded area in Figure 2. The example can be accessed at
http://www.cs.clemson.edu/~johnmc/productLines/example/frontPage.htm. In the next
section I will use this example to illustrate how object technology can be used by a
product line organization.

4 PRODUCT LINES AND OBJECT TECHNOLOGY

Object technology provides design and implementation techniques that contribute to a
software product line strategy. Object modeling techniques support the planning, scoping,
requirements management, and architecture processes of the product line. Detailed object
design and implementation techniques provide several mechanisms for managing
variation among products.

The Unified Modeling Language (UML) [OMG03] provides continuity through all
platform independent models (PIMs) [OMG01] for a product. The abstraction possible in
a UML model supports the development of high-level models that encompass all
products in the product line.

Figure 3 illustrates possible relationships among some of the models used in a
product line. Product developers begin each product-specific model with the appropriate
product line model.

http://www.cs.clemson.edu/~johnmc/productLines/example/frontPage.htm

PRODUCT LINES AND OBJECT TECHNOLOGY

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 69

Legend

Product Line
Product line use

case model

Product line
architecture

Product line
detailed design Product A

Product use case
model

Product
architecture

Product detailed
design

Product B
Product use case

model

Product
architecture

Product detailed
design

derived from

Product line
implementation

Product
implementation

Product
implementation

Figure 3 - Modeling dependencies

Use cases provide support early in the life of the product line for developing the business
case for the product line and scoping the product line. These activities take place before
detailed requirements are available. Product line planners describe products at a high
level using abstract use cases. Core asset developers later specialize the abstract use cases
to produce concrete use cases.

Commonality analysis examines the similarities among use cases and aids in
developing a product line scope that optimizes the amount of reuse that is possible across
products. Commonality analysis often identifies additional abstract use cases that cover

SOFTWARE PRODUCT LINES

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

similar uses in several products. It also identifies use cases that are included in, and thus
common to, several other use cases.

The use case model for the product line example, shown in Figure 4, exhibits the
layered structure. The abstract use case “Play game” applies to all products and there is a
concrete use case for each different game. Uses such as “Exit game” or “Save game” are
also represented at an abstract level. The bottom layer is used to describe regions of
commonality among products including a common initialization use and the animation
loop common to all of the games.

 Figure 4 Example Use Case diagram

arcade game

rules action qualities services configuration

realisticnatural
interaction graphics

display mouse driver keyboard
driver

Figure 5 - Feature analysis of the selected games

PRODUCT LINES AND OBJECT TECHNOLOGY

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 71

Management of the variability among the products is one of the key factors in a
successful product line. Object-oriented techniques support variability management
through a variety of techniques including domain and feature analysis, inheritance and
polymorphism. The UML provides a comprehensive notation that can be used to
represent many aspects of variability.

Domain analysis [Prieto-Diaz87] and feature analysis [Kang90] provide the data for
commonality and variability analysis of the products in the product line. The intention is
to decompose the concepts involved in the products to a level of granularity where it is
possible to sharply define the precise differences between the products. The more well
specified the differences, the more well defined the mechanisms that provide these
differences.

Figure 5 the top-level feature model for the example product line is shown. This
analysis provides another view of the commonalities and variabilities among products.
Items near the top of the feature tree represent high-level features shared by many
products. The further down the feature tree the more the information represents variations
among the products. For example, only the Bowling game can have a photo-realistic
implementation since it is the only game that represents a real situation.

Core asset developers must be able to develop assets that bind variations at the
appropriate time given the goals of the product line. Inheritance provides design-time
variability binding by capturing the specialization relationships among concepts. Based
on information from the domain analysis, commonalities among a set of concepts are
elevated to an abstract level. The variations are then represented in subclasses of the
abstract class.

One example of the use of inheritance to handle the variability among products is the
definition of puck and bowling ball classes as subclasses of MovableSprite. A partial
inheritance hierarchy is shown in Figure 6. The MovableSprite class was created to
recognize that all of the products have graphical entities that move as part of the game.
The mechanism for moving the entities varies across and within games.

SOFTWARE PRODUCT LINES

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

Figure 6 MovableSprite inheritance hierarchy

Inclusion polymorphism, made possible by the inheritance relationship among classes,
provides a runtime variability binding mechanism. Choices among the subclasses of the
abstract class can be made at design time using coding, at configuration time through a
properties file, or at runtime through menu selections or classloaders.

Inclusion polymorphism is utilized to design the GameBoard class of the example
product line. GameBoard is a container that holds the visible components of a game. The
GameBoard instance for a specific game is configured at runtime by adding a specific
event handler through the constructor and through adding various Sprite objects to the
container using the add methods shown in the class specification in Figure 7. The
parameters to the methods of GameBoard class are defined at a sufficiently abstract level
for the class to be used in all products with no alterations.

Parametric polymorphism provides a design time mechanism for varying class
definitions. For example, C++ templates capture commonality in the template definition.
The parameters to the template provide the variation in behavior. Unlike inclusion
polymorphism, where parameters are resolved at runtime, template parameters are
resolved at coding time. Parametric polymorphism is most often used to provide specific
types in a class definition.

PRODUCT LINES AND OBJECT TECHNOLOGY

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 73

 GameBoard(Point p, Size s,EventHandlerDefinitions ehd)
 void startMovement()
 void stopMovement()
 void setSpeed(int newValue)
 int getSpeed()
 void tick()
 void addMovablePiece(IComponent ic, String s)
 void addMovablePiece(IComponent ic)
 void removeMovablePiece(IComponent ic)
 void addStationaryPiece(IComponent ic, String s)
 void addStationaryPiece(IComponent ic)
 void removeStationaryPiece(IComponent ic)
 void resetList()
 boolean isMember
 boolean isMoving

Figure 7 GameBoard specification

The current implementation of the example product line is in a language that does not
support templates so no parametric polymorphism is used. However, for most of the
variability in this product line, this would not be an appropriate mechanism anyway. For
example, the GameBoard component could not be identical across all of the products if a
template mechanism were used because of the early binding time of templates. The
instances of GameBoard vary in the number of items it contains as well as the type of
each of those items.

I have illustrated that object technology’s support for abstraction and variation help
achieve the goals of software product lines. The techniques used to develop quality
object-oriented programs provide the variety of binding times for definitions necessary to
construct a successful product line. Many of the product lines that I have participated in
or observed have used object technology to great advantage.

5 SUMMARY

The software product line strategy provides benefits, such as reduced time to market and
improved productivity, to the adopting organization. Object technology contributes to
realizing those benefits. Techniques such as domain analysis and use case modeling
facilitate the identification of commonalities among products so that a very high
percentage of each product has been used in other products. This results in higher
productivity. Relationships such as inheritance and inclusion and parametric
polymorphism provide mechanisms for accommodating variations among products. The
implementations of these relationships facilitate the integration and adaptation of
components. This reduces the time required to bring a product to market.

SOFTWARE PRODUCT LINES

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

REFERENCES

[Clements01] Paul Clements and Linda Northrop: Software Product Lines: Practices
and Patterns, Addison-Wesley, 2001.

[Dager00] James C. Dager: “Cummin’s Experience in Developing a Software
Product Line Architecture for Real-time Embedded Diesel Engine
Controls”, in Software Product Lines: Experience and Practice, Kluwer
Academic Academic Publishers, 2000.

[Kang90] Kyo C. Kang; Sholom G. Cohen; James A. Hess; William E. Novak; and
A. Spencer Peterson: Feature-Oriented Domain Analysis Feasibility Study
(CMU/SEI-90-TR-21, ADA235785). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1990.

[OMG01] Object Management Group: Model Driven Architecture, Doc #
ormsc/2001-07-01, Object Management Group, 2001.

[OMG03] Object Management Group: OMG Unified Modeling Language
Specification Version 1.5, Object Management Group, 2003.

[Prieto-Diaz87]Reuben Prieto-Diaz: “Domain Analysis for Reusability”, in Proceedings
of COMPSAC 87, October 1987.

[Toft00] Peter Toft, Derek Coleman, and Joni Ohta: “A Cooperative Model for
Cross-Divisional Product Development for a Software Product Line”, in
Software Product Lines: Experience and Practice, Kluwer Academic
Academic Publishers, 2000.

About the author
Dr. John D. McGregor is an associate professor of computer science at Clemson
University and a partner in Luminary Software, a software engineering consulting firm.
His research interests are software product lines and component-base software
engineering. His latest book is A Practical Guide to Testing Object-Oriented Software
(Addison-Wesley 2001). Contact him at johnmc@lumsoft.com.

mailto:johnmc@lumsoft.com

