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1 INTRODUCTION 

This is the eleventh article in a regular series on object-oriented type theory, aimed 
specifically at non-theoreticians. In the Theory of Classification, we have so far considered 
the typeful aspect of classes [1, 2] and their implementation aspect [3, 4] separately. We 
have been concerned to point out how the notion of classification has a fully formal 
interpretation [2], in which, at the typeful level, a class is distinct from a type [1]. Likewise, 
we have explored the implementation level, in order to understand the operation of 
inheritance on objects [3] and give a precise meaning to the pseudo-variables self [3] and 
super [4] in different object-oriented languages. 

Eventually, we must link the type and implementation aspects together, since this is 
how type rules are properly presented [5]. In a type rule, the aim is to be able to derive the 
resulting type of some expression, given the types of the values that make up this 
expression. We would like to show, for example, that the result of extending an object with 
extra fields is itself a well-typed expression. To do this, we must somehow attach the class-
type information to the object-values. Furthermore, we introduced a special operator ⊕ to 
model inheritance [3]. We must also show that inheritance itself is a well-typed operation. 
This will involve examining the types of the objects that we pass as operands to ⊕, which 
was defined in a polymorphic way. 

We started with a calculus of class-types [1, 2] and developed a separate, but related, 
calculus of object-values [3, 4]. In this article, we seek to develop a calculus of typed 
objects, in which the type information is attached to the object information. With this, we 
shall be able to infer the types of object definitions created via inheritance. 
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2 LINKING VALUES AND SIMPLE TYPES 

To introduce the new typed calculus, we shall review the different λ-calculus styles 
presented so far. Imagine a functional language (like Lisp, ML, or the functional subset of 
C) in which we want define our own negate function to flip the sign of a number. In the 
untyped λ-calculus, we can define negate as follows: 

negate = λx.(-x) 
since it takes an argument x and returns a body, in which x is negated using primitive minus 
“-” (which we assume exists already). What is the type of this function? So far, this is not 
specified – we could be negating an Integer, a Real or even a Natural (unsigned!) number, 
or worse still, something which is not even a number. Let us further assume that we want 
negate to apply to Integers, rather than any of the other types. To assert this, we give 
negate a type signature and attach type information to the implementation of the function: 

negate : Integer → Integer 
= λ(x : Integer).(-x) 

The type declaration says that negate takes an Integer and returns an Integer result. On the 
next line, the implementation is given in the simply typed λ-calculus, in which λ(x : 
Integer) declares again that the argument x is of the Integer type. In this style of writing, we 
don’t bother to annotate the type of the function body explicitly, since the result type was 
declared beforehand. It could also be inferred using other type rules for “-”, which are not 
shown here. 

The main thing to note is the style of declaration. A typed function is always declared 
by giving its type signature, then defining its implementation, in which type information is 
attached to the argument variables. We first discussed this in the earlier article [1]. 

3 LINKING VALUES AND POLYMORPHIC TYPES 

We now want to generalise the typing of negate, to indicate that it can flip the sign of all 
kinds of numeric types. The polymorphic typed λ-calculus allows us to define functions 
that accept both type- and value-arguments. We could define a very general version of 
negate as follows: 

negate : ∀τ. τ → τ 
= λτ.λ(x : τ).(-x) 

This is rather more general than we actually want. In the type signature, it says that negate 
is defined for all types τ, then accepts an argument in this type τ and returns a result of the 
same type. We shall fix this later, so that negate only applies to signed, numeric types. For 
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the moment, note how the implementation is prefixed with an extra type parameter: λτ. 
This says that negate accepts an actual type argument, followed by a value in this type. 
This means that we have to apply negate to two arguments, first a type, then a value of that 
type: 

negate [Integer] (3 : Integer)  ⇒  -3 
negate [Real] (2.1 : Real)  ⇒  -2.1 

To distinguish type-application from value-application, we conventionally use [] to supply 
type arguments and () to supply value arguments. Type-application is equivalent to 
instantiating the type of the function. This follows naturally from the rules of λ-calculus: 
by applying negate to a type Integer, you substitute the actual type for the parameter: 
{Integer/τ} in the function body. The body is everything to the right of λτ. So, the value 
returned after type-application is identical to a simply-typed version of the function (like 
that shown above): 

negate [Integer]  ⇒  λ(x : Integer).(-x) 
negate [Real]  ⇒  λ(x : Real).(-x) 

in which the type of x is now fixed. This typed function may now be applied to a value of 
the appropriate type. 

In the theoretical model, we always have to supply the desired type of the function, 
before we can apply it to a value of this type. We cannot perform type-inference in the 
style: negate (3 : Integer), because this breaks the convention on the ordering of arguments 
in the declaration. The main thing to note is that the type parameter is always introduced 
before the value argument, so these arguments are always supplied in this order. We first 
discussed this idea in [1]. 

4 TYPE PARAMETERS AND KINDS 

Since we are now dealing with a typed calculus, what is the “type” of the parameter τ? 
Technically, type variables like τ also have a meta-type, known as a kind. This is the “next 
level up” in the type system. We could show the meta-type of variables like τ by 
introducing them in a style in which the kind is explicit: λ(τ :: TYPE), to indicate that τ is a 
type parameter which can range over all types in the set TYPE. However, since the second 
order, polymorphic typed λ-calculus only has one main kind (the set of all simple types, 
TYPE), we shall later omit mentioning TYPE explicitly. For a discussion of orders of 
calculus, see the earlier article [1]. 

Above, we noted that we wanted to restrict the type of the negate function, such that it 
applied only to the signed, numeric types. This can be done by filtering the set of possible 
types in TYPE to those of interest. Let us assume that there is a type-filtering function 
Filter-Signed that returns true only if the type is a numerical, signed type. We can define a 
signed, numerical subset of all types: 
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SIGNED = { τ :: TYPE | Filter-Signed[τ] } 
This defines SIGNED as “all those types τ, for which Filter-Signed[τ] is true”. It should be 
clear that SIGNED ⊆ TYPE. We can then express the type of negate as: 

negate : ∀(τ :: SIGNED). τ → τ 
= λ(τ :: SIGNED).λ(x : τ).(-x) 

In the definition of negate, the type variable τ ranges only over those types in the SIGNED 
subset. Restrictions like this are extremely useful in object-oriented programming, where 
we wish polymorphic methods to apply only to certain sets of types. A set of types sharing 
some common structure is a class [1, 2] in our Theory of Classification. 

5 GENERATORS USED AS CLASS TYPE-FILTERS  

In earlier articles [1, 2] we introduced the notion of a function bound, often abbreviated to 
F-bound [6, 7], to describe a similar restriction. Literally, a bound means a restriction, and 
a function bound is a restriction expressed using a function. Let us define a type function, a 
record type generator, for a simple class of two-dimensional Cartesian Points: 

GenPoint = λσ.{x : → Integer, y : → Integer, equal : σ → Boolean} 
This expresses the interface of a family of Point-like types that have at least the three 
methods x, y and equal. The generator parameterises the self-type σ, which eventually 
could stand for different types of Point, such as a Point3D [4] or a HotPoint (a selectable 
Point, see below). We can use this type generator as a filter to restrict the polymorphic 
application of these methods to only those types which could be considered at least “some 
kind of Point”. 

Recall that the typeful notion of a class is a group of (possibly recursive) types sharing 
a minimum common structure. We may express the class of Points as: ∀(τ <: GenPoint[τ]), 
because it restricts the types over which τ can range to those types which are a subtype of 
the instantiated generator GenPoint[τ]. Earlier, we found that an extended interface is a 
subtype [2, 8], so this captures precisely the object-oriented notion of families of object-
types that share a minimum common set of methods. We may now give the methods x, y 
and equal a type signature which restricts their applicability to the class of Points: 

∀(τ <: GenPoint[τ]). τ.x : → Integer 
∀(τ <: GenPoint[τ]). τ.y : → Integer 
∀(τ <: GenPoint[τ]). τ.equal : τ → Boolean 

These type signatures say that the methods are selected only from those types τ which 
satisfy the membership criteria of the Point class. Note in passing how the equal method is 
a binary method, accepting another argument of the same type as the owning object itself. 
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We shall be interested to see how the type of a binary method evolves, when inheritance 
comes into play. 

Formally, an F-bound is always expressed using a subtyping constraint: ∀(τ <: G[τ]), 
for some type generator function G. For comparison with the previous section, this can be 
thought of as a type filtering constraint: ∀(τ | F[τ]), where F is defined as: F = λτ.(τ <: 
G[τ]).

6 LINKING OBJECTS AND CLASS-TYPES 

We are about to define a typed object generator for a class of Points. We introduced type 
generators in [1] and object generators in [3]. This time, we are going to attach type 
information to the object generator for a Point instance at the co-ordinate <2, 3>. We 
proceed exactly as in the sections above, by first declaring the type signature, then giving 
the full typed definition: 

genAPoint : ∀(τ <: GenPoint[τ]) . τ → GenPoint[τ] 
= λ(τ <: GenPoint[τ]). λ(self : τ). 
  { x a 2, y a 3, equal a λ(p : τ).(self.x = p.x ∧ self.y = p.y) } 

At first sight, this may look rather daunting! In fact, it is no more complex than the style of 
typed definitions given above. To motivate this structure, we shall build up to it more 
slowly. 

Recall that an untyped object generator [3] is a function of self, whose body is a record 
describing the method implementations of an object instance. Our first version of the 
generator (omitting all details of the actual methods) is: 

gen1 = λself.{…} 
If we wish to add types to this, we must prefix the value-argument λself with a type-
argument, λσ, where σ stands for the type of self. We shall also attach the σ type explicitly 
to the self-variable. Our second version is a universally-typed generator: 

gen2 = λσ.λ(self : σ).{…}  
in which σ still ranges over all types in the universe of types. We want to restrict σ so that 
it ranges over only those types in the class of self. To do this, we must have a separate type 
generator Gen, which has a type-shape matching the value-shape of the object generator, 
gen. We can then use it as a filter on the type parameter σ, giving a third, F-bounded 
version of the generator: 

gen3 = λ(σ <: Gen[σ]).λ(self : σ).{…}  
This is now in the same form as the typed object generator genAPoint, above. To see the 
correspondence, note how the second line in the definition of genAPoint introduces first a 
self-type parameter: λ(τ <: GenPoint[τ]), then the self-argument: λ(self : τ), followed on the 
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third line by the record-body, representing the implementation of the Point instance. This 
follows the general form of second-order typed definitions: first, we introduce the type 
parameter, then the value parameter, then the body of the function. 

The type signature for genAPoint also deserves some discussion. It says that 
genAPoint is well-defined for all types τ in the class of Points: ∀(τ <: GenPoint[τ]), and 
then that it accepts a value (ie an actual value for the self-argument) in the type τ and 
returns a record-body having the type GenPoint[τ]. This does in fact accurately describe the 
type of the record body. If we supply some standard p:Point as the self-argument, we get a 
result with the type: GenPoint[Point]1. If we supply some more more specific hp:HotPoint 
as the self-argument, we get a result with the “truncated” type: GenPoint[HotPoint]. By 
“truncated”, we mean a type that looks like a HotPoint, but with only those methods that 
were listed in the Point-interface. 
                                                           
1 Readers following this series will recall that GenPoint[Point] is a fixpoint of the generator, ie that Point = 
GenPoint[Point], so we could equally say that the result is of the exact type Point. 

7 STRONGLY TYPED INHERITANCE 

To study the workings of inheritance when types are added, we shall attempt to extend the 
typed object generator for a Point to yield a typed object generator for a HotPoint, a 
selectable kind of point. As before, we shall first provide a type generator for the HotPoint 
type (we shall need this later to express F-bounds). GenHotPoint can be defined by 
extension, based on the GenPoint type generator. The additional fields include the types of 
the new method selected and redefined method equal (which, in a HotPoint, must also 
compare selected states): 

GenHotPoint = λτ.( GenPoint[τ] ∪ { equal : τ → Boolean, selected : → Boolean } ) 
The simplified form of this type generator is well-formed, after computing the union of 
fields: 

= λτ.{x : → Integer, y : → Integer, equal : τ → Boolean, selected : → Boolean } 
The only interesting consideration is what happens with GenPoint[τ]. This causes a 
substitution of type parameters in the body of GenPoint: {τ/σ}, and has the consequence 
that all references to the self-type are uniformly changed to τ, before the union of fields is 
computed. This means that the identically-typed equal method type appears twice, once on 
either side of the ∪ operator, but only one copy is retained after the union. 

We are now about to define a typed object generator for an instance of HotPoint, at the 
coordinate <2, 3> and whose selected state = true. We shall attempt to derive this by 
inheritance, in accordance with the model given in the earlier articles [3, 4]. This time, 
however, we shall be careful to attach type information, in the style presented above, to all 
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parts of the definition. First, we give the type declaration, then the full definition of 
genAHotPoint: 

genAHotPoint : ∀(σ <: GenHotPoint[σ]). σ → GenHotPoint[σ] 
= λ(σ <: GenHotPoint[σ]). λ(self : σ). ( λ(super : GenPoint[σ]). 
  (super  ⊕  { equal → λ(q : σ).(super.equal(q) ∧ self.selected = q.selected), 
    selected a true } ) 
  genAPoint [σ] (self) ) 

This looks fabulously complicated! However, if you mentally put on one side the whole 
body expression inside the bold parentheses, the prequel leading up to it is in exactly the 
same form as all our other definitions. First, the type signature of genAHotPoint is given. 
Then, on the second line, its full definition is given, starting with the type parameter σ and 
value parameter self, followed by the body (everything contained within the bold 
parentheses). 

Looking now at the body expression, this is exactly the construction we used to 
explain super-method combination in the previous article [4], except that types have now 
been attached to all value parameters. The body is a nested function application that first 
binds super, then performs a record combination using the ⊕ operator [3]. We shall want to 
simplify this (viz evaluate the combination expression), to assure ourselves that we have in 
fact defined a suitable generator for a HotPoint instance. However, we must first establish 
whether the body expression is properly typed. 

8 TYPE SOUNDNESS OF SUPER 

We first want to satisfy ourselves that the binding of super is type-sound. From the 
previous article [4] we learned that super is an adapted form of the parent object, in which 
self-reference is redirected to refer to the child2. Does our typed model reflect this 
faithfully? 

The type and binding of super 

At the start of the body, the super variable is declared with the type: λ(super : 
GenPoint[σ]). So, the type of super is structurally “like” the type of the parent Point, except 
that, within this structure, the self-type is replaced by σ, which is the new self-type of the 
child. GenPoint[σ] is a “truncated type” in which the self-type refers to a HotPoint, but 
which offers only those methods available to a Point. You can think of a generator as a 
mask, and GenPoint[HotPoint] “masking out” all the methods of HotPoint, that were not in 
the interface of a Point (viz in the body of the GenPoint-generator). This is the appropriate 

                                                           
2 We restrict ourselves in this article to explaining the more sophisticated model of inheritance, in which self 
and the self-type evolve. This is, after all, the more interesting, relatively novel concept that needs 
explanation. 
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type to give to super, since it captures exactly the type of a “mofidied parent instance” in 
which self is redirected to refer to the child [4]. 

To understand what is happening inside the body expression above, notice how it 
consists of a super-function, λ(super : GenPoint[σ]).(…) which is applied to an object, 
denoting the value to bind to super, given right at the end of the body expression (mentally 
skip over the body of the super-function, which consists of the record-combination 
expression). This super-object is given at the end by the expression: genAPoint [σ] (self). 

The next question we must ask is: does the super-variable receive an object-value of 
the right type? We need to work out the type of the expression: genAPoint [σ] (self) and see 
if this corresponds to something with the declared type: GenPoint[σ]. The super-object is 
clearly constructed from the typed object generator genAPoint, after supplying a type 
argument σ and a value argument self : σ. The result of this is a record, the body of the 
generator genAPoint (see section 6 above). The type of the result was declared in the type 
signature: ∀(τ <: GenPoint[τ]). τ → GenPoint[τ], which says that, by supplying σ and self : 
σ, we obtain a result having the type: GenPoint[σ]. This is exactly the type of object 
expected for super, above. 

However, before we assume this happy outcome, we should check first whether it is 
actually type-safe to apply the generator to the type parameter σ, and value parameter self : 
σ Are these suitable types and values for this generator? 

Rebinding type parameters 

We will look at the type substitution first. The generator genAPoint was declared to be safe 
with all types satisfying τ <: GenPoint[τ]. Technically, the application genAPoint[σ] is 
simply a matter of substituting one type parameter for another: {σ/τ}. All type parameters 
have the same kind, TYPE, so this should not be a problem. However, a more subtle thing 
is happening. By substituting {σ/τ}, we are changing the restriction on the types which 
may instantiate the parameter. The parameters implicitly carry attached type constraints 
(from the F-bounds), so we have to worry about whether changing these makes a formal 
difference. 

Although we cannot compare two type parameters directly, we can make a judgement 
about all the types which could possibly instantiate the respective parameters. Fortunately, 
it turns out that any type we could supply for σ will also satisfy the type constraint on τ. 
This is because of the point-wise subtyping condition between the two type generators: 

∀σ . σ <: GenHotPoint[σ]  ⇒  σ <: GenPoint[σ] 
which lies at the basis of the Classify rule in [2]. Because the type generators GenHotPoint 
and GenPoint stand in the right structural relationship, we can safely replace the self-type τ 
of the parent class by the self-type σ of the child class. 
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Rebinding value parameters 

We will now look at the value substitution. The second argument in genAPoint [σ] (self) is 
a self-reference that refers to a HotPoint instance, with the type: self : σ. The generator 
genAPoint was originally declared to accept a value parameter having the type: self : τ <: 
GenPoint[τ]. However, we have just replaced τ by a new parameter: σ <: GenHotPoint[σ], 
by applying the generator to this type: genAPoint[σ]. From section 3 above, we know that 
this has the effect of re-typing the body of the function. All former references to τ are now 
replaced by σ, so the value parameter self : τ has been modified to self : σ. We may 
therefore supply an actual argument of this type, directly. 

9 TYPE SOUNDNESS OF INHERITANCE 

We now want to satisfy ourselves that the record combination expression with ⊕, which 
models the extension of an object by inheritance, is itself type sound. This expression is the 
whole body of the super-function, which we skipped over, above: 
 super  ⊕  { equal → λ(q : σ).(super.equal(q) ∧ self.selected = q.selected), 
     selected a true } 
in which super is now bound, and refers to the super-object described in the previous 
section. Also, self refers to the self : σ introduced as the value parameter in the generator 
genAHotPoint. In order to understand whether the operator ⊕ is being applied to values of 
suitable types, we need to simplify the left-hand and right-hand operands until they have 
the form of object records. 

The base record 

The left-hand operand to ⊕ is super, and this is bound to the object genAPoint [σ] (self), 
which simplifies to a record, after σ and self : σ have been supplied as arguments: 

super = { x a 2, y a 3, equal a λ(p : σ).(self.x = p.x ∧ self.y = p.y) } 
To see where this came from, refer back to the body of the typed object generator 
genAPoint, given in section 6 above. The only difference is that we have substituted {σ/τ} 
and (self:σ/self:τ} as a result of instantiating the generator. One interesting thing to notice 
is that, in the “inherited” version of equal, both self and the compared argument p are now 
of the child-type, σ. 

The extension record 

The right-hand operand to ⊕ is a record of extra methods for a HotPoint, the fields 
contained in the braces {…}. The first is a redefinition of the equal method; the second is 
the new selected method (returning true for the instance we are defining). The body of 
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equal contains a super-method invocation. We would like to satisfy ourselves that this 
equal is in fact equivalent to a regular method, by simplifying the super-method invocation. 

The super-invocation has the form: super.equal(q). We know that q : σ from the 
immediately preceding declaration: λ(q : σ). Fortunately, the equal method selected from 
the body of the super-object (given above) expects an argument p : σ of exactly the same 
type. After substituting {q:σ/p:σ} in the body, we obtain the simplified result: 

super.equal(q : σ)  ⇒  self.x = q.x  ∧  self.y = q.y 
Checking this out, we know already that self : σ, so we are comparing a q and a self which 
have the same type. Now, we substitute this into the body of the redefined equal, in place 
of the original super-invocation (which we have now simplified away altogether [4]), to 
yield the form of a regular record of methods: 

{ equal → λ(q : σ).( self.x = q.x  ∧  self.y = q.y ∧ self.selected = q.selected), 
    selected a true } 

in which self and q are uniform throughout the body of equal, referring to different child-
instances, and are both of the same type, the child-type σ. 

The record combination 

The record combination expression, modelling the extension of an object by inheritance, 
has now been reduced to the form: 

{ x a 2, y a 3, equal a λ(p : σ).(self.x = p.x ∧ self.y = p.y) }   ⊕ 
{ equal → λ(q : σ).( self.x = q.x  ∧  self.y = q.y ∧ self.selected = q.selected), 
    selected a true } 

and it only remains to simplify ⊕. This was declared as a rather liberally-typed 
polymorphic operator [3], in the style of function override, accepting any two maps with 
the same domain-type, and yielding a map with this domain-type and a derived codomain-
type that was the union of the arguments’ codomains: 

∀α, β, γ . ⊕ : (α→β) × (α→γ) → (α→β∪γ) 
= λ(f:α→β).λ(g:α→γ). 
  { k a v | (k ∈ dom(f) ∪ dom(g)) ∧ 
   (k ∈ dom(g) ⇒ v = g(k)) ∧ 
   (k ∉ dom(g) ⇒ v = f(k)) } 

In a later article, we will reconsider this type signature, to better constrain the “legitimate” 
types of record arguments supplied in inheritance expressions. For the moment, let us note 
that the domain-type α will be bound to the type Label, from which we draw all the names 
of methods. The range-type β will be bound to a union of all the method-signature types of 
the base record; likewise γ is a union of all the method-signature types of the extension 
record. This seems to “lump together” all the different types in each union. However, the 
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definition of the operator ⊕ explains how individual fields are overridden, so we may 
obtain the detail from this. 

So, on the left-hand side, we have a base record with the (more detailed, record) type: 

{ x : → Integer, y : → Integer, equal : σ → Boolean} 
and on the right-hand side, we have an extension record with the type: 

{ equal : σ → Boolean, selected : → Boolean } 
and after combining the base and extra records according to the definition of ⊕ , we seem 
to obtain, experimentally speaking, a record with the type: 

{ x : → Integer, y : → Integer, equal : σ → Boolean, selected : → Boolean} 
Looking at the pooled method types: {Integer, σ → Boolean, Boolean} in the result, this 
does seem to be a union of {Integer, σ → Boolean} ∪ {σ → Boolean, Boolean}, as the 
type-signature of ⊕ declared. So, this is at least consistent, even if it is not yet very 
informative. 

The result of record combination is therefore the body of an extended generator, 
suitable for a HotPoint instance, in which equal is re-typed in terms of the child’s self-type 
σ, and the extra method selected is included. It is as if we had defined genAHotPoint from 
first principles, without inheritance, with the (simplified) form: 

genAHotPoint : ∀(σ <: GenHotPoint[σ]). σ → GenHotPoint[σ] 
= λ(σ <: GenHotPoint[σ]). λ(self : σ). { x a 2, y a 3,  
  equal → λ(q : σ).( self.x = q.x  ∧  self.y = q.y ∧ self.selected = q.selected), 
    selected a true } 

so demonstrating that strongly-typed inheritance is just a short-hand for defining larger 
objects by extension, but with all the relevant type information attached. 

10 CONCLUSION 

We have presented a model of strongly-typed object generators, in which the class-type 
information is attached to the object-information. We may now formally claim to have 
defined the notion of class from both the implementation and type perspectives, combined. 
A class is, from a concrete perspective, a family of objects that share a similar (but 
overridable) implementation strategy and, from an abstract perspective, a family of types 
that share a similar (minimum common) method interface. This provides a good foundation 
for developing further model interpretations of other object-oriented concepts, such as class 
hierarchies, abstract classes and interfaces. 

We also used the new typed calculus to present a model of strongly-typed inheritance. 
This combined two aspects of the sophisticated model of inheritance put forward 
previously in the Theory of Classification. Firstly, when a class inherits methods from its 
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parent, object self-reference is redirected to refer to a child instance [3, 4]. Secondly, the 
type signatures of inherited methods adapt, such that methods that referred to a parent-type 
now refer to a child-type [1, 2]. This is important in languages like Smalltalk and Eiffel, 
where binary methods like equal or plus may evolve under inheritance, but always apply to 
objects of the appropriate specific type. Attaching the self-type parameter σ to any other 
variable in the model exactly explains the novel typing construction in Eiffel, where a 
variable is declared to have the type “like current”. It anchors the type of the variable to the 
type of self. This is an extremely satisfying way of providing types for binary methods, 
which expect to receive another object with the same type as self. 

We also fulfilled a formal obligation to demonstrate that aspects of inheritance were 
type-sound. Super-method invocation was shown to be well-typed, yielding results as 
expected. We shall have to return to the typing of ⊕, in order to restrict the legitimate types 
of extra methods added to an object during inheritance, but our liberally-typed version of ⊕ 
works as intended with the object implementations shown. Technically, the definition given 
for ⊕ is an abbreviation of a more complete definition in the polymorphic typed λ-calculus, 
in which both type parameters and value parameters are supplied explicitly. We can think 
of our operator as a short-hand for expressing a type-instantiated version of the full-length 
combine function: 

combine = λσ.λτ.λ(base : σ).λ(extra : τ).(…) 
⊕ A,B = combine [A, B]  

which is instantiated for each pair of record types A, B that we wish to combine. 
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