
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 3, March-April 2004

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification, Part 11: Adding
Class Types to Object Implementations”, in Journal of Object Technology, vol. 3, no. 3, March-April
2004, pp. 7-19. http://www.jot.fm/issues/issue_2004_03/column1

The Theory of Classification
Part 11: Adding Class Types to Object
Implementations

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the eleventh article in a regular series on object-oriented type theory, aimed
specifically at non-theoreticians. In the Theory of Classification, we have so far considered
the typeful aspect of classes [1, 2] and their implementation aspect [3, 4] separately. We
have been concerned to point out how the notion of classification has a fully formal
interpretation [2], in which, at the typeful level, a class is distinct from a type [1]. Likewise,
we have explored the implementation level, in order to understand the operation of
inheritance on objects [3] and give a precise meaning to the pseudo-variables self [3] and
super [4] in different object-oriented languages.

Eventually, we must link the type and implementation aspects together, since this is
how type rules are properly presented [5]. In a type rule, the aim is to be able to derive the
resulting type of some expression, given the types of the values that make up this
expression. We would like to show, for example, that the result of extending an object with
extra fields is itself a well-typed expression. To do this, we must somehow attach the class-
type information to the object-values. Furthermore, we introduced a special operator ⊕ to
model inheritance [3]. We must also show that inheritance itself is a well-typed operation.
This will involve examining the types of the objects that we pass as operands to ⊕, which
was defined in a polymorphic way.

We started with a calculus of class-types [1, 2] and developed a separate, but related,
calculus of object-values [3, 4]. In this article, we seek to develop a calculus of typed
objects, in which the type information is attached to the object information. With this, we
shall be able to infer the types of object definitions created via inheritance.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_03/column1

THE THEORY OF CLASSIFICATION, PART 11:

ADDING CLASS TYPES TO OBJECT IMPLEMENTATIONS

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

2 LINKING VALUES AND SIMPLE TYPES

To introduce the new typed calculus, we shall review the different λ-calculus styles
presented so far. Imagine a functional language (like Lisp, ML, or the functional subset of
C) in which we want define our own negate function to flip the sign of a number. In the
untyped λ-calculus, we can define negate as follows:

negate = λx.(-x)
since it takes an argument x and returns a body, in which x is negated using primitive minus
“-” (which we assume exists already). What is the type of this function? So far, this is not
specified – we could be negating an Integer, a Real or even a Natural (unsigned!) number,
or worse still, something which is not even a number. Let us further assume that we want
negate to apply to Integers, rather than any of the other types. To assert this, we give
negate a type signature and attach type information to the implementation of the function:

negate : Integer → Integer
= λ(x : Integer).(-x)

The type declaration says that negate takes an Integer and returns an Integer result. On the
next line, the implementation is given in the simply typed λ-calculus, in which λ(x :
Integer) declares again that the argument x is of the Integer type. In this style of writing, we
don’t bother to annotate the type of the function body explicitly, since the result type was
declared beforehand. It could also be inferred using other type rules for “-”, which are not
shown here.

The main thing to note is the style of declaration. A typed function is always declared
by giving its type signature, then defining its implementation, in which type information is
attached to the argument variables. We first discussed this in the earlier article [1].

3 LINKING VALUES AND POLYMORPHIC TYPES

We now want to generalise the typing of negate, to indicate that it can flip the sign of all
kinds of numeric types. The polymorphic typed λ-calculus allows us to define functions
that accept both type- and value-arguments. We could define a very general version of
negate as follows:

negate : ∀τ. τ → τ
= λτ.λ(x : τ).(-x)

This is rather more general than we actually want. In the type signature, it says that negate
is defined for all types τ, then accepts an argument in this type τ and returns a result of the
same type. We shall fix this later, so that negate only applies to signed, numeric types. For

LINKING VALUES AND POLYMORPHIC TYPES

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 9

the moment, note how the implementation is prefixed with an extra type parameter: λτ.
This says that negate accepts an actual type argument, followed by a value in this type.
This means that we have to apply negate to two arguments, first a type, then a value of that
type:

negate [Integer] (3 : Integer) ⇒ -3
negate [Real] (2.1 : Real) ⇒ -2.1

To distinguish type-application from value-application, we conventionally use [] to supply
type arguments and () to supply value arguments. Type-application is equivalent to
instantiating the type of the function. This follows naturally from the rules of λ-calculus:
by applying negate to a type Integer, you substitute the actual type for the parameter:
{Integer/τ} in the function body. The body is everything to the right of λτ. So, the value
returned after type-application is identical to a simply-typed version of the function (like
that shown above):

negate [Integer] ⇒ λ(x : Integer).(-x)
negate [Real] ⇒ λ(x : Real).(-x)

in which the type of x is now fixed. This typed function may now be applied to a value of
the appropriate type.

In the theoretical model, we always have to supply the desired type of the function,
before we can apply it to a value of this type. We cannot perform type-inference in the
style: negate (3 : Integer), because this breaks the convention on the ordering of arguments
in the declaration. The main thing to note is that the type parameter is always introduced
before the value argument, so these arguments are always supplied in this order. We first
discussed this idea in [1].

4 TYPE PARAMETERS AND KINDS

Since we are now dealing with a typed calculus, what is the “type” of the parameter τ?
Technically, type variables like τ also have a meta-type, known as a kind. This is the “next
level up” in the type system. We could show the meta-type of variables like τ by
introducing them in a style in which the kind is explicit: λ(τ :: TYPE), to indicate that τ is a
type parameter which can range over all types in the set TYPE. However, since the second
order, polymorphic typed λ-calculus only has one main kind (the set of all simple types,
TYPE), we shall later omit mentioning TYPE explicitly. For a discussion of orders of
calculus, see the earlier article [1].

Above, we noted that we wanted to restrict the type of the negate function, such that it
applied only to the signed, numeric types. This can be done by filtering the set of possible
types in TYPE to those of interest. Let us assume that there is a type-filtering function
Filter-Signed that returns true only if the type is a numerical, signed type. We can define a
signed, numerical subset of all types:

THE THEORY OF CLASSIFICATION, PART 11:

ADDING CLASS TYPES TO OBJECT IMPLEMENTATIONS

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

SIGNED = { τ :: TYPE | Filter-Signed[τ] }
This defines SIGNED as “all those types τ, for which Filter-Signed[τ] is true”. It should be
clear that SIGNED ⊆ TYPE. We can then express the type of negate as:

negate : ∀(τ :: SIGNED). τ → τ
= λ(τ :: SIGNED).λ(x : τ).(-x)

In the definition of negate, the type variable τ ranges only over those types in the SIGNED
subset. Restrictions like this are extremely useful in object-oriented programming, where
we wish polymorphic methods to apply only to certain sets of types. A set of types sharing
some common structure is a class [1, 2] in our Theory of Classification.

5 GENERATORS USED AS CLASS TYPE-FILTERS

In earlier articles [1, 2] we introduced the notion of a function bound, often abbreviated to
F-bound [6, 7], to describe a similar restriction. Literally, a bound means a restriction, and
a function bound is a restriction expressed using a function. Let us define a type function, a
record type generator, for a simple class of two-dimensional Cartesian Points:

GenPoint = λσ.{x : → Integer, y : → Integer, equal : σ → Boolean}
This expresses the interface of a family of Point-like types that have at least the three
methods x, y and equal. The generator parameterises the self-type σ, which eventually
could stand for different types of Point, such as a Point3D [4] or a HotPoint (a selectable
Point, see below). We can use this type generator as a filter to restrict the polymorphic
application of these methods to only those types which could be considered at least “some
kind of Point”.

Recall that the typeful notion of a class is a group of (possibly recursive) types sharing
a minimum common structure. We may express the class of Points as: ∀(τ <: GenPoint[τ]),
because it restricts the types over which τ can range to those types which are a subtype of
the instantiated generator GenPoint[τ]. Earlier, we found that an extended interface is a
subtype [2, 8], so this captures precisely the object-oriented notion of families of object-
types that share a minimum common set of methods. We may now give the methods x, y
and equal a type signature which restricts their applicability to the class of Points:

∀(τ <: GenPoint[τ]). τ.x : → Integer
∀(τ <: GenPoint[τ]). τ.y : → Integer
∀(τ <: GenPoint[τ]). τ.equal : τ → Boolean

These type signatures say that the methods are selected only from those types τ which
satisfy the membership criteria of the Point class. Note in passing how the equal method is
a binary method, accepting another argument of the same type as the owning object itself.

GENERATORS USED AS CLASS TYPE-FILTERS

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 11

We shall be interested to see how the type of a binary method evolves, when inheritance
comes into play.

Formally, an F-bound is always expressed using a subtyping constraint: ∀(τ <: G[τ]),
for some type generator function G. For comparison with the previous section, this can be
thought of as a type filtering constraint: ∀(τ | F[τ]), where F is defined as: F = λτ.(τ <:
G[τ]).

6 LINKING OBJECTS AND CLASS-TYPES

We are about to define a typed object generator for a class of Points. We introduced type
generators in [1] and object generators in [3]. This time, we are going to attach type
information to the object generator for a Point instance at the co-ordinate <2, 3>. We
proceed exactly as in the sections above, by first declaring the type signature, then giving
the full typed definition:

genAPoint : ∀(τ <: GenPoint[τ]) . τ → GenPoint[τ]
= λ(τ <: GenPoint[τ]). λ(self : τ).
 { x a 2, y a 3, equal a λ(p : τ).(self.x = p.x ∧ self.y = p.y) }

At first sight, this may look rather daunting! In fact, it is no more complex than the style of
typed definitions given above. To motivate this structure, we shall build up to it more
slowly.

Recall that an untyped object generator [3] is a function of self, whose body is a record
describing the method implementations of an object instance. Our first version of the
generator (omitting all details of the actual methods) is:

gen1 = λself.{…}
If we wish to add types to this, we must prefix the value-argument λself with a type-
argument, λσ, where σ stands for the type of self. We shall also attach the σ type explicitly
to the self-variable. Our second version is a universally-typed generator:

gen2 = λσ.λ(self : σ).{…}
in which σ still ranges over all types in the universe of types. We want to restrict σ so that
it ranges over only those types in the class of self. To do this, we must have a separate type
generator Gen, which has a type-shape matching the value-shape of the object generator,
gen. We can then use it as a filter on the type parameter σ, giving a third, F-bounded
version of the generator:

gen3 = λ(σ <: Gen[σ]).λ(self : σ).{…}
This is now in the same form as the typed object generator genAPoint, above. To see the
correspondence, note how the second line in the definition of genAPoint introduces first a
self-type parameter: λ(τ <: GenPoint[τ]), then the self-argument: λ(self : τ), followed on the

THE THEORY OF CLASSIFICATION, PART 11:

ADDING CLASS TYPES TO OBJECT IMPLEMENTATIONS

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

third line by the record-body, representing the implementation of the Point instance. This
follows the general form of second-order typed definitions: first, we introduce the type
parameter, then the value parameter, then the body of the function.

The type signature for genAPoint also deserves some discussion. It says that
genAPoint is well-defined for all types τ in the class of Points: ∀(τ <: GenPoint[τ]), and
then that it accepts a value (ie an actual value for the self-argument) in the type τ and
returns a record-body having the type GenPoint[τ]. This does in fact accurately describe the
type of the record body. If we supply some standard p:Point as the self-argument, we get a
result with the type: GenPoint[Point]1. If we supply some more more specific hp:HotPoint
as the self-argument, we get a result with the “truncated” type: GenPoint[HotPoint]. By
“truncated”, we mean a type that looks like a HotPoint, but with only those methods that
were listed in the Point-interface.

1 Readers following this series will recall that GenPoint[Point] is a fixpoint of the generator, ie that Point =
GenPoint[Point], so we could equally say that the result is of the exact type Point.

7 STRONGLY TYPED INHERITANCE

To study the workings of inheritance when types are added, we shall attempt to extend the
typed object generator for a Point to yield a typed object generator for a HotPoint, a
selectable kind of point. As before, we shall first provide a type generator for the HotPoint
type (we shall need this later to express F-bounds). GenHotPoint can be defined by
extension, based on the GenPoint type generator. The additional fields include the types of
the new method selected and redefined method equal (which, in a HotPoint, must also
compare selected states):

GenHotPoint = λτ.(GenPoint[τ] ∪ { equal : τ → Boolean, selected : → Boolean })
The simplified form of this type generator is well-formed, after computing the union of
fields:

= λτ.{x : → Integer, y : → Integer, equal : τ → Boolean, selected : → Boolean }
The only interesting consideration is what happens with GenPoint[τ]. This causes a
substitution of type parameters in the body of GenPoint: {τ/σ}, and has the consequence
that all references to the self-type are uniformly changed to τ, before the union of fields is
computed. This means that the identically-typed equal method type appears twice, once on
either side of the ∪ operator, but only one copy is retained after the union.

We are now about to define a typed object generator for an instance of HotPoint, at the
coordinate <2, 3> and whose selected state = true. We shall attempt to derive this by
inheritance, in accordance with the model given in the earlier articles [3, 4]. This time,
however, we shall be careful to attach type information, in the style presented above, to all

STRONGLY TYPED INHERITANCE

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 13

parts of the definition. First, we give the type declaration, then the full definition of
genAHotPoint:

genAHotPoint : ∀(σ <: GenHotPoint[σ]). σ → GenHotPoint[σ]
= λ(σ <: GenHotPoint[σ]). λ(self : σ). (λ(super : GenPoint[σ]).
 (super ⊕ { equal → λ(q : σ).(super.equal(q) ∧ self.selected = q.selected),
 selected a true })
 genAPoint [σ] (self))

This looks fabulously complicated! However, if you mentally put on one side the whole
body expression inside the bold parentheses, the prequel leading up to it is in exactly the
same form as all our other definitions. First, the type signature of genAHotPoint is given.
Then, on the second line, its full definition is given, starting with the type parameter σ and
value parameter self, followed by the body (everything contained within the bold
parentheses).

Looking now at the body expression, this is exactly the construction we used to
explain super-method combination in the previous article [4], except that types have now
been attached to all value parameters. The body is a nested function application that first
binds super, then performs a record combination using the ⊕ operator [3]. We shall want to
simplify this (viz evaluate the combination expression), to assure ourselves that we have in
fact defined a suitable generator for a HotPoint instance. However, we must first establish
whether the body expression is properly typed.

8 TYPE SOUNDNESS OF SUPER

We first want to satisfy ourselves that the binding of super is type-sound. From the
previous article [4] we learned that super is an adapted form of the parent object, in which
self-reference is redirected to refer to the child2. Does our typed model reflect this
faithfully?

The type and binding of super

At the start of the body, the super variable is declared with the type: λ(super :
GenPoint[σ]). So, the type of super is structurally “like” the type of the parent Point, except
that, within this structure, the self-type is replaced by σ, which is the new self-type of the
child. GenPoint[σ] is a “truncated type” in which the self-type refers to a HotPoint, but
which offers only those methods available to a Point. You can think of a generator as a
mask, and GenPoint[HotPoint] “masking out” all the methods of HotPoint, that were not in
the interface of a Point (viz in the body of the GenPoint-generator). This is the appropriate

2 We restrict ourselves in this article to explaining the more sophisticated model of inheritance, in which self
and the self-type evolve. This is, after all, the more interesting, relatively novel concept that needs
explanation.

THE THEORY OF CLASSIFICATION, PART 11:

ADDING CLASS TYPES TO OBJECT IMPLEMENTATIONS

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

type to give to super, since it captures exactly the type of a “mofidied parent instance” in
which self is redirected to refer to the child [4].

To understand what is happening inside the body expression above, notice how it
consists of a super-function, λ(super : GenPoint[σ]).(…) which is applied to an object,
denoting the value to bind to super, given right at the end of the body expression (mentally
skip over the body of the super-function, which consists of the record-combination
expression). This super-object is given at the end by the expression: genAPoint [σ] (self).

The next question we must ask is: does the super-variable receive an object-value of
the right type? We need to work out the type of the expression: genAPoint [σ] (self) and see
if this corresponds to something with the declared type: GenPoint[σ]. The super-object is
clearly constructed from the typed object generator genAPoint, after supplying a type
argument σ and a value argument self : σ. The result of this is a record, the body of the
generator genAPoint (see section 6 above). The type of the result was declared in the type
signature: ∀(τ <: GenPoint[τ]). τ → GenPoint[τ], which says that, by supplying σ and self :
σ, we obtain a result having the type: GenPoint[σ]. This is exactly the type of object
expected for super, above.

However, before we assume this happy outcome, we should check first whether it is
actually type-safe to apply the generator to the type parameter σ, and value parameter self :
σ Are these suitable types and values for this generator?

Rebinding type parameters

We will look at the type substitution first. The generator genAPoint was declared to be safe
with all types satisfying τ <: GenPoint[τ]. Technically, the application genAPoint[σ] is
simply a matter of substituting one type parameter for another: {σ/τ}. All type parameters
have the same kind, TYPE, so this should not be a problem. However, a more subtle thing
is happening. By substituting {σ/τ}, we are changing the restriction on the types which
may instantiate the parameter. The parameters implicitly carry attached type constraints
(from the F-bounds), so we have to worry about whether changing these makes a formal
difference.

Although we cannot compare two type parameters directly, we can make a judgement
about all the types which could possibly instantiate the respective parameters. Fortunately,
it turns out that any type we could supply for σ will also satisfy the type constraint on τ.
This is because of the point-wise subtyping condition between the two type generators:

∀σ . σ <: GenHotPoint[σ] ⇒ σ <: GenPoint[σ]
which lies at the basis of the Classify rule in [2]. Because the type generators GenHotPoint
and GenPoint stand in the right structural relationship, we can safely replace the self-type τ
of the parent class by the self-type σ of the child class.

TYPE SOUNDNESS OF SUPER

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 15

Rebinding value parameters

We will now look at the value substitution. The second argument in genAPoint [σ] (self) is
a self-reference that refers to a HotPoint instance, with the type: self : σ. The generator
genAPoint was originally declared to accept a value parameter having the type: self : τ <:
GenPoint[τ]. However, we have just replaced τ by a new parameter: σ <: GenHotPoint[σ],
by applying the generator to this type: genAPoint[σ]. From section 3 above, we know that
this has the effect of re-typing the body of the function. All former references to τ are now
replaced by σ, so the value parameter self : τ has been modified to self : σ. We may
therefore supply an actual argument of this type, directly.

9 TYPE SOUNDNESS OF INHERITANCE

We now want to satisfy ourselves that the record combination expression with ⊕, which
models the extension of an object by inheritance, is itself type sound. This expression is the
whole body of the super-function, which we skipped over, above:
 super ⊕ { equal → λ(q : σ).(super.equal(q) ∧ self.selected = q.selected),
 selected a true }
in which super is now bound, and refers to the super-object described in the previous
section. Also, self refers to the self : σ introduced as the value parameter in the generator
genAHotPoint. In order to understand whether the operator ⊕ is being applied to values of
suitable types, we need to simplify the left-hand and right-hand operands until they have
the form of object records.

The base record

The left-hand operand to ⊕ is super, and this is bound to the object genAPoint [σ] (self),
which simplifies to a record, after σ and self : σ have been supplied as arguments:

super = { x a 2, y a 3, equal a λ(p : σ).(self.x = p.x ∧ self.y = p.y) }
To see where this came from, refer back to the body of the typed object generator
genAPoint, given in section 6 above. The only difference is that we have substituted {σ/τ}
and (self:σ/self:τ} as a result of instantiating the generator. One interesting thing to notice
is that, in the “inherited” version of equal, both self and the compared argument p are now
of the child-type, σ.

The extension record

The right-hand operand to ⊕ is a record of extra methods for a HotPoint, the fields
contained in the braces {…}. The first is a redefinition of the equal method; the second is
the new selected method (returning true for the instance we are defining). The body of

THE THEORY OF CLASSIFICATION, PART 11:

ADDING CLASS TYPES TO OBJECT IMPLEMENTATIONS

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

equal contains a super-method invocation. We would like to satisfy ourselves that this
equal is in fact equivalent to a regular method, by simplifying the super-method invocation.

The super-invocation has the form: super.equal(q). We know that q : σ from the
immediately preceding declaration: λ(q : σ). Fortunately, the equal method selected from
the body of the super-object (given above) expects an argument p : σ of exactly the same
type. After substituting {q:σ/p:σ} in the body, we obtain the simplified result:

super.equal(q : σ) ⇒ self.x = q.x ∧ self.y = q.y
Checking this out, we know already that self : σ, so we are comparing a q and a self which
have the same type. Now, we substitute this into the body of the redefined equal, in place
of the original super-invocation (which we have now simplified away altogether [4]), to
yield the form of a regular record of methods:

{ equal → λ(q : σ).(self.x = q.x ∧ self.y = q.y ∧ self.selected = q.selected),
 selected a true }

in which self and q are uniform throughout the body of equal, referring to different child-
instances, and are both of the same type, the child-type σ.

The record combination

The record combination expression, modelling the extension of an object by inheritance,
has now been reduced to the form:

{ x a 2, y a 3, equal a λ(p : σ).(self.x = p.x ∧ self.y = p.y) } ⊕
{ equal → λ(q : σ).(self.x = q.x ∧ self.y = q.y ∧ self.selected = q.selected),
 selected a true }

and it only remains to simplify ⊕. This was declared as a rather liberally-typed
polymorphic operator [3], in the style of function override, accepting any two maps with
the same domain-type, and yielding a map with this domain-type and a derived codomain-
type that was the union of the arguments’ codomains:

∀α, β, γ . ⊕ : (α→β) × (α→γ) → (α→β∪γ)
= λ(f:α→β).λ(g:α→γ).
 { k a v | (k ∈ dom(f) ∪ dom(g)) ∧
 (k ∈ dom(g) ⇒ v = g(k)) ∧
 (k ∉ dom(g) ⇒ v = f(k)) }

In a later article, we will reconsider this type signature, to better constrain the “legitimate”
types of record arguments supplied in inheritance expressions. For the moment, let us note
that the domain-type α will be bound to the type Label, from which we draw all the names
of methods. The range-type β will be bound to a union of all the method-signature types of
the base record; likewise γ is a union of all the method-signature types of the extension
record. This seems to “lump together” all the different types in each union. However, the

TYPE SOUNDNESS OF INHERITANCE

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 17

definition of the operator ⊕ explains how individual fields are overridden, so we may
obtain the detail from this.

So, on the left-hand side, we have a base record with the (more detailed, record) type:

{ x : → Integer, y : → Integer, equal : σ → Boolean}
and on the right-hand side, we have an extension record with the type:

{ equal : σ → Boolean, selected : → Boolean }
and after combining the base and extra records according to the definition of ⊕ , we seem
to obtain, experimentally speaking, a record with the type:

{ x : → Integer, y : → Integer, equal : σ → Boolean, selected : → Boolean}
Looking at the pooled method types: {Integer, σ → Boolean, Boolean} in the result, this
does seem to be a union of {Integer, σ → Boolean} ∪ {σ → Boolean, Boolean}, as the
type-signature of ⊕ declared. So, this is at least consistent, even if it is not yet very
informative.

The result of record combination is therefore the body of an extended generator,
suitable for a HotPoint instance, in which equal is re-typed in terms of the child’s self-type
σ, and the extra method selected is included. It is as if we had defined genAHotPoint from
first principles, without inheritance, with the (simplified) form:

genAHotPoint : ∀(σ <: GenHotPoint[σ]). σ → GenHotPoint[σ]
= λ(σ <: GenHotPoint[σ]). λ(self : σ). { x a 2, y a 3,
 equal → λ(q : σ).(self.x = q.x ∧ self.y = q.y ∧ self.selected = q.selected),
 selected a true }

so demonstrating that strongly-typed inheritance is just a short-hand for defining larger
objects by extension, but with all the relevant type information attached.

10 CONCLUSION

We have presented a model of strongly-typed object generators, in which the class-type
information is attached to the object-information. We may now formally claim to have
defined the notion of class from both the implementation and type perspectives, combined.
A class is, from a concrete perspective, a family of objects that share a similar (but
overridable) implementation strategy and, from an abstract perspective, a family of types
that share a similar (minimum common) method interface. This provides a good foundation
for developing further model interpretations of other object-oriented concepts, such as class
hierarchies, abstract classes and interfaces.

We also used the new typed calculus to present a model of strongly-typed inheritance.
This combined two aspects of the sophisticated model of inheritance put forward
previously in the Theory of Classification. Firstly, when a class inherits methods from its

THE THEORY OF CLASSIFICATION, PART 11:

ADDING CLASS TYPES TO OBJECT IMPLEMENTATIONS

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

parent, object self-reference is redirected to refer to a child instance [3, 4]. Secondly, the
type signatures of inherited methods adapt, such that methods that referred to a parent-type
now refer to a child-type [1, 2]. This is important in languages like Smalltalk and Eiffel,
where binary methods like equal or plus may evolve under inheritance, but always apply to
objects of the appropriate specific type. Attaching the self-type parameter σ to any other
variable in the model exactly explains the novel typing construction in Eiffel, where a
variable is declared to have the type “like current”. It anchors the type of the variable to the
type of self. This is an extremely satisfying way of providing types for binary methods,
which expect to receive another object with the same type as self.

We also fulfilled a formal obligation to demonstrate that aspects of inheritance were
type-sound. Super-method invocation was shown to be well-typed, yielding results as
expected. We shall have to return to the typing of ⊕, in order to restrict the legitimate types
of extra methods added to an object during inheritance, but our liberally-typed version of ⊕
works as intended with the object implementations shown. Technically, the definition given
for ⊕ is an abbreviation of a more complete definition in the polymorphic typed λ-calculus,
in which both type parameters and value parameters are supplied explicitly. We can think
of our operator as a short-hand for expressing a type-instantiated version of the full-length
combine function:

combine = λσ.λτ.λ(base : σ).λ(extra : τ).(…)
⊕ A,B = combine [A, B]

which is instantiated for each pair of record types A, B that we wish to combine.

REFERENCES

[1] A J H Simons, “The theory of classification, part 7: A class is a type family”, in
Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 13-22.
http://www.jot.fm/issues/issue_2003_05/column2.

[2] A J H Simons, “The theory of classification, part 8: Classification and inheritance”, in
Journal of Object Technology, vol. 2, no. 4, July-August 2003, pp. pp. 55-64.
http://www.jot.fm/issues/issue_2003_07/column4

[3] A J H Simons, “The theory of classification, part 9: Inheritance and self-reference”, in
Journal of Object Technology, vol. 2, no. 6, November-December 2003, pp. 25-34.
http://www.jot.fm/issues/issue_2003_11/column2

[4] A J H Simons, “The theory of classification, part 10: Method combination and super-
reference”, in Journal of Object Technology, vol. 3, no. 1, January-February 2004, pp.
43-53. http://www.jot.fm/issues/issue_2004_01/column4

http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2003_07/column4
http://www.jot.fm/issues/issue_2003_11/column2
http://www.jot.fm/issues/issue_2004_01/column4

CONCLUSION

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 19

[5] A J H Simons, “The theory of classification, part 2: The scratch-built typechecker”, in
Journal of Object Technology, vol. 1, no. 2, July-August 2002, pp. 47-54.
http://www.jot.fm/issues/issue_2002_07/column4

[6] P Canning, W Cook, W Hill, W Olthoff and J Mitchell, F-bounded polymorphism for
object-oriented programming, Proc. 4th Int. Conf. Func. Prog. Lang. and Arch.
(Imperial College, London, 1989), 273-280.

[7] W Cook, W Hill and P Canning, Inheritance is not subtyping, Proc. 17th ACM Symp.
Principles of Prog. Lang., (ACM Sigplan, 1990), 125-135.

[8] A J H Simons, “The theory of classification, part 4: Object types and subtyping”, in
Journal of Object Technology, vol. 1, no. 5, November-December 2002, pp. 27-35.
http://www.jot.fm/issues/issue_2002_11/column2

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Science, University of Sheffield, where he leads
object-oriented research in verification and testing, type theory and
language design, development methods and precise notations. He can be
reached at a.simons@dcs.shef.ac.uk.

http://www.jot.fm/issues/issue_2002_07/column4
http://www.jot.fm/issues/issue_2002_11/column2
mailto:a.simons@dcs.shef.ac.uk

