
Vol. 3, No. 3, March–April 2004

Integrating BON and Object-Z

Richard Paige, Department of Computer Science, University of York, U.K.
Phillip J. Brooke, School of Computing, Communications, and Electronics,
University of Plymouth, U.K.

A significant limitation with object-oriented formal specification languages, such as
Object-Z, is that they lack development and management processes, which can be used
to guide the production of reliable, robust object-oriented systems. An integration of
an object-oriented methodology, BON, and Object-Z is presented in order to add an
industrially validated development process to Object-Z. An extensible CASE tool for
BON is also described that supports the integration with an Object-Z code generation
engine.

1 INTRODUCTION AND MOTIVATION

Object-Z [16] is a formal specification language for object-oriented (OO) systems.
Based on Z [19], it provides a rich collection of specification idioms for modelling OO
systems in a precise, unambiguous notation. Using the language’s formal semantics,
refinement rules have been defined that can be used for rigorously transforming
Object-Z specifications into programs, while at the same time generating a proof
that said programs satisfy the original specification [17].

There are significant limitations with languages such as Object-Z: their tools are
weak, providing little support for typical systems development tasks such as test-
ing, debugging, and verification and validation; there is limited support for the full
systems development process, showing how to take customer requirements, business
rules, and architectural constraints through to an executable system; and the lan-
guages themselves are often very different from those that are familiar to systems
developers, such as statecharts, use case diagrams, and UML in general. It is the
second of these points (and, to a lesser extent, the first) that we aim to address in
this paper: a development process is essential if a language like Object-Z is to be
considered a full-fledged methodology, to be applicable to solving industrial systems
engineering problems.

This paper shows how to integrate Object-Z with an existing OO methodology,
BON [22], effectively providing a risk-driven development process for Object-Z. It
shows how BON models can be used to produce Object-Z specifications, and how
Object-Z tools might be applied in the development process. It also demonstrates
tool support for the integrated methodology, via a CASE tool for BON that allows
for automatic generation of Object-Z specifications.

Cite this article as follows: Richard Paige, Phillip J. Brooke: ”Integrating BON and Object-Z”,
in Journal of Object Technology, vol. 3, no. 3, March–April 2004, pages 121–141,
http://www.jot.fm/issues/issues 2004 03/article4

http://www.jot.fm/issues/issue_2004_03/article4
http://www.jot.fm


INTEGRATING BON AND OBJECT-Z

BON and Object-Z each have the following properties:

• Object-Z and the BON modelling language provide the means for formally
documenting the properties of classes, via contracts. In this sense, the lan-
guages are compatible; thus, it is relatively straightforward to define a struc-
tural translation from BON to Object-Z, though technical details remain in
terms of a semantic translation. Effectively, integrating BON with Object-Z
is a lightweight means to providing a development process for Object-Z.

• Each approach has limitations, both at the language level and at the method-
ological level. We discuss this more in the sequel.

• Object-Z possesses integrations with complementary formal specification lan-
guages for modelling real-time and concurrent systems, e.g., Timed CSP [15].
BON provides a number of industrially applicable graphical modelling nota-
tions, and its tools support these notations as well as links to programming
languages, such as Java and Eiffel. In this sense Object-Z and BON are com-
plementary [12].

In this paper, we outline a tool-supported integration of BON and Object-Z, in
order to address the limitations of each approach. In the terminology of Stirewalt
and Dillon [20], the integration is both artifactual (it is done to exploit tools and
elements of the individual techniques) and effectual (it is done so as to carry out
tasks that could not be carried out with one or both of the separate techniques). We
briefly outline preliminary tool support for the integration via a CASE tool for BON
that automatically generates Object-Z specifications (in LATEX format). The tool
can thus be used to support a methodology that applies graphical object-oriented
modelling and use of Object-Z.

2 BACKGROUND

BON

BON is a method possessing a recommended process as well as a graphical language
for specifying OO systems. The process is iterative, risk-driven, and architecture-
centric. The language provides mechanisms for specifying classes and objects, their
relationships, and assertions (written in first-order predicate logic) for specifying the
behaviour of routines and invariants of classes. The fundamental construct in BON
is the class. Fig. 1 contains an example of a BON diagram for the interface of a
class CITIZEN . A class has a name, an optional class invariant, and zero or more
features. A feature may be an attribute (e.g., name), a query (e.g., single) – which
returns a value and does not change the system state – or a command (e.g., divorce),
which changes system state but returns nothing. In [22], attributes are treated as

122 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 3



2 BACKGROUND

Figure 1: Class CITIZEN

parameterless queries without assertions; we distinguish attributes to make it easier
to generate code (particularly Object-Z).

Preconditions and postconditions of features are indicated using ? and ! in
boxes, respectively. We have introduced a notion of a frame to BON class interfaces.
The ∆ clause, adopted from Z, specifies a bunch of attributes that may be changed
by the feature. Attributes are, by default, of reference type (except primitives such
as INTEGER). Aggregation relationships can be used to introduce value types. The
class invariant specifies properties that must be true before and after any client-side
call to a feature of the class.

BON class diagrams consist of one or more classes organized in clusters (drawn
as dashed rounded rectangles that may include classes and other clusters). Classes
and clusters interact via two general kinds of relationships. The relationships are
drawn in Fig. 2, which provides an example of a BON class diagram.

• Inheritance: Inheritance defines a subtyping relationship between a child and
parents. It is drawn from class CITIZEN to class PERSON in Fig. 2. The
behaviour of child classes must conform to the behavioural specifications of
their parents. To this end, BON permits only covariant adaptation of feature
signatures, precondition weakening, and postcondition strengthening.

• Client-supplier: there are two client-supplier relationships, association (drawn
between CITIZEN and EMPLOYER) and aggregation (drawn between CITIZEN
and CITIZENSHIP). Both relationships are directed from a client to a sup-
plier.

BON also provides notation for dynamic diagrams, showing the messages passed
between objects, in a manner akin to UML’s collaboration diagram [2]. Examples

VOL 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 123



INTEGRATING BON AND OBJECT-Z

Figure 2: BON class diagram notation

can be found in [14]. These diagrams, and others, are supported by the BON-CASE
tool [14].

The BON process

The BON development process is iterative, risk-driven, and idealised; compatibility
with the BON process is defined in terms of producing a required set of document
deliverables, including class diagrams, dynamic diagrams, scenarios and charts, etc.
Each task in the process has a set of input sources, produces a set of deliverables, and
is controlled by acceptance criteria, which take into account the risk of proceeding.
Each task may be iterated several times with feedback. The BON process is not use
case driven, but it is architecture-centric; use cases may be applied in the process’s
early stages. The process also emphasises using contracts to capture the behaviour
of modelling abstractions. The process is sketched in Fig. 3.

Task Description
1 Delineate system borderline.
2 List candidate classes.
3 Select classes and group into clusters.
4 Define classes and their features using class diagrams.
5 Sketch system behaviours using dynamic diagrams.
6 Define public features and contracts.
7 Refine system.
8 Factor out common behaviour.
9 Complete and review system.

Figure 3: The BON idealised process

Object-Z

Object-Z is a formal specification language for OO systems, based on Z [19]. It
provides a full range of OO specification constructs, including classes, attributes,
methods, contracts, polymorphism, information hiding, containment (aggregation),
parameterized classes, class union, and inheritance. It has a formal semantics and

124 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 3



2 BACKGROUND

tool support (particularly, via LATEX style files, the Wizard type checker [5], the
graphical editor Moby/OZ [8], and ZML [3], with ongoing work on embeddings
in Isabelle/HOL [17]). It has been integrated with several complementary formal
specification languages, such as Timed CSP [15]. It has also been used to formalize
parts of UML, and parts of the UML metamodel [6].

Fig. 4 provides an example of a class specified in Object-Z; it demonstrates most
of the fundamental Object-Z notation, and is taken from [4]. An Object-Z class
is introduced via a class schema. A visibility list specifies those features that may
be accessed by clients. Axiomatic definitions specify local functions and constants.
State attributes and state invariants follow. Then, an initial state may be speci-
fied; this is essential for grounding inductive arguments. Finally, operation schemas
defining methods of a class may appear. The syntax for predicates and expressions
is derived from standard Z, with some syntactic sugar and extra constructs that are
particularly suited for object-oriented specification.

A systematic approach to method integration

A systematic approach to integrating formal and semiformal methods was presented
in [9, 10]. The approach emphasises integrating modelling languages while providing
assistance in generalizing and linking processes. The usefulness of the approach
and the methods it produces has been validated on a number of case studies, e.g.,
[11, 13]. The method is based on the construction of heterogeneous languages [9],
and on defining relationships between tasks and deliverables in processes. We start
with a brief overview of heterogeneous languages and their construction, and then
discuss the steps of the method itself, which will indicate how relationships between
processes are to be defined.

Heterogeneous languages and bases

Modelling languages play a critical role in software development methods. Modelling
languages (which consist of a notation as well as a metamodel) play a key role in
how we integrate methods: we combine languages as the first step. A heterogeneous
language is composed from several different languages and is used to write heteroge-
neous specifications, which are composed from parts written in two or more different
modelling languages. A formal semantics for a heterogeneous specification can be
given by formally defining the meaning of the composition of partial specifications
in some language. In general, we may want to build a heterogeneous language from
several formal or informal languages. In this case, we can construct a heterogeneous
basis [9], a set of languages and translations between languages, which can be used
to give a formal semantics to heterogeneous specifications via translation to a ho-
mogeneous specification. This also allows semi-formal languages, such as data flow
diagrams or variants of object modelling languages, to be given an appropriate se-
mantics depending on the context in which they are used. This is consistent with

VOL 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 125



INTEGRATING BON AND OBJECT-Z

CreditCard

�(limit , balance, INIT ,withdraw , deposit ,withdrawAvail)

limit : N

limit ∈ {1000, 2000, 5000}

balance : Z

balance + limit ≥ 0

INIT
balance = 0

Withdraw
∆(balance)
amount? : N

amount? ≤ balance + limit
balance ′ = balance − amount?

Deposit
∆(balance)
amount? : N

balance ′ = balance + amount?

WithdrawAvail
∆(balance)
amount ! : N

amount ! = balance + limit
balance ′ = −limit

Figure 4: The Object-Z class CreditCard

126 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 3



2 BACKGROUND

the work of Baresi and Pezzé [1] on formalising families of languages, such as those
available in Structured Analysis.

Fig. 5 depicts an example of a heterogeneous basis; it is a substantial extension
of one presented in [9]. Translations between many of the languages are documented
in [9, 10, 11]. A mapping from Z to BON is given in [13].

Figure 5: Heterogeneous basis

In Fig. 5, the arrows represent translations that have been defined between the
languages. The arrow 7→ between languages represents a partial translation: there
may exist constructs in the source language that are inexpressible – and thus, are
not translated – in the target language; or, a translation of every construct in the
metamodel of the source language has not been presented or is currently unavail-
able. Translations are given in terms of the metamodel of a source language: each
construct that appears in the metamodel of the source language is mapped to a con-
struct or set of constructs in the metamodel of the target language. In this manner,
translations can be defined for text-based languages (they are expressed in terms of
abstract syntax trees), and for visual languages as well.

The approach

We recap the steps of the approach here for the sake of completeness; full details
are in [9].

1. Ensure complementarity of the methods. This step provides motivation
for the integration. Generally, methods may be complementary in terms of
their modelling languages, their processes, and their supplementary tools, but
other pragmatic rationales for integration may be provided as well [12].

2. Select a base method and choose invasive techniques. A base method
provides a process that is to be supported and complemented by other (inva-
sive) methods. Selecting a base method is aimed at assisting integrators in

VOL 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 127



INTEGRATING BON AND OBJECT-Z

determining the roles that the separate methods will play in the integrated ap-
proach. The processes of invasive methods augment, are embedded in, or are
interleaved with that of the base method. Overlaps between processes must
be reconciled. If a modelling language is being integrated with a methodology,
then process incompatibilities are a deprecated issue, and effectively all that
must be shown is how to use the new modelling language with the existing
process.

3. Construct or extend a heterogeneous basis. This is accomplished by
defining translations, or by adding languages from the base and invasive meth-
ods to an existing heterogeneous basis. At this point, a basis language can be
selected. This language is chosen from the heterogeneous basis and is used to
provide a formal semantics to heterogeneous specifications.

4. Define how the individual processes cooperate. It is informally de-
scribed how the processes of the methods are to work together in the new
method. Process cooperation can be specified using UML activity diagrams.
Two forms of cooperation are particularly common.

• Generalisation. The process of the base method is generalized to use
heterogeneous notations constructed from those of the base and invasive
methods. Effectively, notations are added to an existing method, and its
process is generalized to use the new notations.

• Interleaving of processes. Interleaving relationships between the pro-
cess of the base method and the processes of the invasive methods are
defined. A selection of different process interleavings are documented in
[9, 13]; the latter involves a link between Z and BON.

5. Guidance to the user. Hints and examples on how the integrated method
can be used is provided.

3 INTEGRATING THE BON METHODOLOGY AND OBJECT-Z

We now describe the integration of the BON methodology and Object-Z, following
the approach presented in the previous section. The integration will generalise the
BON process by adding Object-Z to it, by including use of Object-Z tools within the
process, and by integrating feedback from Object-Z tools and reasoning techniques
into the process. To carry this out, in part, we will show how to translate BON to
Object-Z.

Ensuring complementarity and compatibility

For any integration of languages or methods, it is critical to justify the complemen-
tary nature of the techniques, so as to justify the usefulness of the integration. BON

128 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 3



3 INTEGRATING THE BON METHODOLOGY AND OBJECT-Z

and Object-Z are complementary techniques in the following ways:

• BON provides graphical languages for modelling, whereas Object-Z is text-
based; these languages are supported by a CASE tool, which also supports
generation of a number of programming languages. The integration allows
developers to use all the graphical notations of the CASE tool, such as class,
collaboration, and use case diagrams, with Object-Z. The value of this should
not be underestimated: if Object-Z specifications can be generated by devel-
opers in a reasonably familiar way (e.g., in the same way as program code)
then adoption of Object-Z can be made easier.

• Object-Z currently provides richer tool support for analysis than does BON.
No full-fledged type checker currently exists for BON, and only a partial PVS
embedding of selected BON constructs exists for reasoning support. Inte-
grating the techniques will allow developers to use the Wizard typechecker,
as well as LATEX. With some additional work, it will be possible to use the
Isabelle/HOL embedding of Object-Z [17] and ZML [3].

• Object-Z provides a different set of constructs for modelling object-oriented
systems than BON, particularly: class unions, secondary variables, a richer
notion of inheritance, and schema operators. By contrast, BON provides a
notion of attachment and reattachment for reference attributes, constrained
genericity, and a richer notion of information hiding. The modelling languages
are thus complementary.

• BON is a methodology, whereas Object-Z is a modelling language. Integrating
BON and Object-Z adds development process support to Object-Z.

Selecting a base method and invasive technique

The base method in the integration will be BON, in part because it provides a
process that spans requirements analysis, through detailed design, generalization,
and validation. The BON process will be generalized with the use of Object-Z and
its tools. The invasive technique in this integration is Object-Z. The BON process
will be extended to make use of Object-Z specifications, and thereafter Object-Z
tools, in the generalization of the BON process.

Extending a heterogeneous basis

The next step is to combine the languages of the techniques of interest. We will
thus add Object-Z to the heterogeneous basis presented in Fig. 5. The extension will
occur by rigorously defining a translation from BON to Object-Z. The details of the
translation are quite long; we thus provide an overview here. The translation will

VOL 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 129



INTEGRATING BON AND OBJECT-Z

be presented in terms of the metamodels of BON and Object-Z; we show how each
meta-concept in BON can be mapped to one or more meta-concepts in Object-Z.

BON and Object-Z are both based on four key OO concepts, namely: classes, fea-
tures of classes, properties of features and classes, and relationships between classes.
We describe the translation in terms of these four basic concepts.

Translating classes

All BON classes (except primitives, two specific generic classes, and constrained
generic classes) are translated into Object-Z classes. Both BON and Object-Z sup-
port generic classes with an arbitrary number of parameters; these are also trans-
lated directly and recursively. A BON class may be annotated with stereotypes,
e.g., deferred, effective, reused, interfaced, persistent, and root. These stereotypes
are dropped in translation to Object-Z: the deferred stereotype is captured by the
Object-Z concept of a class; the effective, reused, external, and interfaced stereo-
types in BON are given only to aid the reader – these can be translated as comments.
The persistent stereotype indicates that instances of the BON class persist between
executions of the system. We translate this for now by adding a comment to the
resultant Object-Z class indicating that instances should persist. We envision fu-
ture extensions of the translation that make use of the interfaced stereotype, in
particular, for generating Mobile Object-Z specifications [21].

BON supports constrained generic classes; these classes are parameterized, but
the parameters are syntactically constrained to conform to specific interfaces. For
example, a generic class with parameter G might be constrained so that G conforms
to the COMPARABLE interface. Such constructs cannot be directly translated to
Object-Z, and so in translation the interface constraints are treated as comments.

BON built-in types (INTEGER, REAL, CHARACTER, STRING , BOOLEAN )
are mapped to their Object-Z equivalents (Z, R, CHAR, seqCHAR, B). The only
significant changes need to be made with BON generic sets and sequences, i.e.,
SET [G ] and SEQUENCE [G ]. These are translated recursively to P G and seqG ,
respectively, and their operations are translated to operators on sets and sequences.

Every BON class that is translated into Object-Z is a supertype of the Object-Z
class None. This is so that we mimic the lattice of types of BON in Object-Z, and
so that we can use Void references as in BON. Thus, each BON system, consisting
of classes S1, S2, . . . , Sn, produces the Object-Z class

None
S1
S2
. . .
Sn

Thereafter, None will be used as the type of a predeclared entity called Void ,

130 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 3



3 INTEGRATING THE BON METHODOLOGY AND OBJECT-Z

enabling an embedding of BON reference types in Object-Z.

Translating features

A feature in BON is either an attribute, a query, or a command. Attributes in BON
are translated into Object-Z attributes included in the state schema. BON does
not support secondary variables, thus all attributes are considered to be primary.
Each attribute in BON has a default initial value (e.g., INTEGERs have default
0, BOOLEAN s have default false). Thus, each attribute also generates a default
predicate that is added to the INIT schema in the corresponding Object-Z class.
BON differs from Object-Z in that reference attributes (e.g., spouse in Fig. 1) have
initial value Void . As well, any reference attribute in BON can be tested against
Void , or equated to Void . Void references are discussed further in the sequel.

In BON, all attributes of non-primitive type are potentially polymorphic; their
Object-Z translations must be potentially polymorphic as well. Thus, an attribute
a : A in BON is translated to a :↓ τ(A) in Object-Z (where τ(A) represents the
translation of class A).

Queries in BON are side-effect free functions. One might expect that these
should be translated to Object-Z operation schemas. However, it is commonplace in
BON to use queries in the specification of contracts; in a postcondition of a query,
command, or class invariant one might see a call to a query. It is not possible to
use Object-Z operation schemas as calls in the predicate part of other operation
schemas. Thus, we translate BON queries into Object-Z functions and specify them
as axiomatic definitions. Further technical details on this are in the next section.

Commands in BON can change the state of an object, but cannot return a value.
Consequently, they are translated to Object-Z operation schemas. Arguments to
the BON command are annotated with ? in Object-Z, and the command’s frame
is translated to an Object-Z ∆ list that is included in the corresponding operation
schema.

BON classes may also possess deferred features, which are routines that are to be
implemented by child classes. These may or many not possess contracts (we discuss
the translation of contracts in the next subsection). Whether or not a feature is
deferred in BON has no effect on its translation to Object-Z.

Each feature in BON has a list of client classes that have permission to access
the feature; the list may range from any client (public), to a select list, to no clients
(private). In translating this to Object-Z, we translate all non-private feature access
to inclusion in the Object-Z class’s projection list. Thus, only private features are
excluded from this list. This results in a loss of information since features that were
accessible only to selected clients are now accessible to all clients. This is not ideal,
but it is the only way to translate such BON constructs to Object-Z.

VOL 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 131



INTEGRATING BON AND OBJECT-Z

Translating contracts

A BON feature may have a precondition and postcondition, and a class may have
an invariant. As well, commands may possess a frame, indicating the attributes
that may be changed by the command. These constructs exist in Object-Z as well.
When mapping a routine’s pre- and postcondition into Object-Z, two approaches
are taken:

• queries: a BON query is translated to an Object-Z function, specified as an
axiomatic definition. The precondition and postcondition of the BON query
must be combined in the Object-Z specification. Since BON queries have no
side-effects, and their semantics is undefined if they are called with their pre-
condition unsatisfied, this translation is semantics-preserving. The translation
has one complexity (due to the semantics of functions in Z and Object-Z),
and an example will help to clarify the situation. Consider the following BON
query, imt (is-married-to), a routine of class CITIZEN .

imt(a : CITIZEN ) : BOOLEAN

require a 6= Void

ensure Result = (a = spouse)

The naive translation of imt into Object-Z would be to an axiomatic definition
that takes a CITIZEN as an argument, returns a boolean, and has a definition
that directly translates the BON postcondition into an Object-Z assertion.
However, Object-Z functions only apply on their domains. Thus, the following
translation must be used.

imt : CITIZEN 7→ B

∀ a : CITIZEN • ¬ (a = Void) ⇒ a ∈ dom imt
∀ a : CITIZEN • a ∈ dom imt ⇒ imt(a) = (a = spouse)

The first conjunct says that every a of type CITIZEN that satisfies the pre-
condition ¬ (a = Void) is in the domain of imt . The second conjunct says
that every a in the domain of imt , when applied to imt , generates the value
(a = spouse).

• commands: preconditions and postconditions of BON commands are conjoined
in the resulting Object-Z operation schema. The semantics of BON commands
is that if they are called with unsatisfied precondition, the behaviour of the
command is unspecified. Thus, the translation is semantics-preserving.

Some minor syntactic rewriting must be carried out during the translation of BON
assertions to Object-Z predicates. Much of this rewriting is straightforward (e.g.,

132 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 3



3 INTEGRATING THE BON METHODOLOGY AND OBJECT-Z

mapping BON boolean operators like and to ∧, and BON’s old expressions in
postconditions to Object-Z’s primed-unprimed expressions).

A BON class invariant can be mapped directly to an Object-Z state invariant.
Fig. 6 shows the Object-Z translation of the invariant of CITIZEN shown in Fig. 1.
This will be included in the state schema; separate lines are implicitly conjoined.

single ∨ spouse.spouse = self
#parents ≤ 2
∀ c ∈ children • ∃ p ∈ c.parents • p = self

Figure 6: Object-Z translation of CITIZEN invariant

Translating relationships

BON possesses three kinds of class relationships: inheritance, association, and ag-
gregation. The latter two relationships, which define has-a and part-of relations
between client and supplier classes, are translated directly to Object-Z (reference)
attributes and compositions. Thus, an aggregation relation from class A to class B ,
with label b, is translated to the Object-Z attribute b : B c©. This accurately repre-
sents the semantics of BON associations and aggregations. Note that aggregations
are not potentially polymorphic in BON, and this is also reflected in the Object-Z
translations.

Inheritance in BON defines a subtyping relationship. It is mapped into Object-
Z’s class schema inclusion. When a BON feature is inherited, it can be renamed (via
BON’s rename clause) and redefined (i.e., its behaviour can be changed). Object-Z
supports renaming of features, via substitutions on the included schema. Thus, a
BON rename clause of the form

CLASS1 rename f as g end

(which means, inherit class CLASS1 and rename its feature f to g in the inheriting
class) is translated to CLASS1[f /g ] in Object-Z. Renamings of multiple features
from one class is possible in BON, and these are translated directly into Object-Z
by the obvious generalization of the above approach. The only complication with
the above is that class interfaces must be preserved, under renaming, in Object-Z;
this is not the case in BON. Thus, if a parent class has a feature f that is renamed
to g in a child class, then the child class must also possess a feature named f , so
as to maintain substitutability. Thus, when translating a renaming as above, an
additional definition is added to the Object-Z specification of the form f =̂ g , which
redeclares f in the child class, and defines it as a synonym for g .

VOL 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 133



INTEGRATING BON AND OBJECT-Z

For most redefined features in BON, nothing special needs to be done for transla-
tion. Feature signatures in BON can be covariantly redefined; this is not permitted
in Object-Z so it must be checked that feature signatures are not changed in BON
in order to translate.

Complications and expressiveness

The potential for problems arises in translating the following BON constructs into
Object-Z.

1. Constrained genericity, information hiding, and covariant feature redefinition,
as discussed above.

2. The assertion language. The BON assertion language is, informally, equivalent
to Object-Z, in its support for first-order boolean operators, primitive types,
and relations. BON provides one construct that is not available in Object-Z:
the colon operator :, which can be used to determine the dynamic type of an
object attached to a variable. For example, the expression

e : EMPLOYEE ∧ e.salary ≥ 20000

is true iff the type of the object attached to e is EMPLOYEE , and the em-
ployee’s salary is at least 20000. The static (declared) type of e need not be
EMPLOYEE . Object-Z does not provide such an operator; it is thus trans-
lated as a comment. We note that the colon operator is used infrequently in
BON, and is often replaced by polymorphic calls.

3. Changing export policy. BON allows a class to change the export policy of a
feature that it is inheriting, via an export clause. For example, a feature that
was publicly accessible in the parent could become private in a child. Object-
Z does not allow changes in the export policy of features that are inherited.
Thus, in order to translate BON to Object-Z, a contextual check must be
carried out that no change in export policy occurs in the BON specification.

4. BON reference types. In Section 3.3.2, we discussed the BON constant Void ,
which is the initial value for reference attributes. Such a construct is not
directly supported in Object-Z. There are several strategies to embedding this
concept in Object-Z. The approach we take is to introduce a new Object-Z
class, None, which inherits from every translated BON class. Void is then
introduced as a global constant of type None. An alternative approach, which
is also taken in [18], would be to introduce an attribute Void : B in each class;
the INIT schema would then contain clauses initializing each attribute. We
prefer the former approach since it directly expresses the semantics of BON
classes.

134 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 3



3 INTEGRATING THE BON METHODOLOGY AND OBJECT-Z

Example

Consider the BON class diagram shown earlier, in Fig. 2; it illustrates much of
the standard BON notation, such as associations, aggregations, inheritance, and
classes. The interface details of the CITIZEN class were shown in Fig. 1. The inter-
face contained much of the standard BON interface notation, including attributes,
queries, commands, assertions, information hiding details, and renaming of inher-
ited features. The Object-Z specification in Fig. 7 is automatically generated by
BON-CASE for CITIZEN , in LATEX format.

The aggregation relationship is mapped to an Object-Z composition, the multiple
inheritance relationships are mapped to class schema inclusion, and the associations
are mapped to attributes. The assertion language for BON is mapped to Object-Z
predicates.

BON-CASE supports the generation of code for individual classes, or for an
entire class diagram. This class diagram may include clusters, in which case the code
generation process recurses through the cluster structure. Thus, from the diagram
in Fig. 2, Object-Z will be generated for PERSON , EMPLOYER, CITIZENSHIP ,
and COMPARABLE . In Fig. 2, no interface details are provided for EMPLOYER
or CITIZENSHIP ; thus, empty class declarations are automatically generated for
these. An option is being added to the code generator to allow classes with empty
interfaces to be mapped to uninterpreted types.

Define the integrated process

The next step in combining BON and Object-Z is to provide an integrated develop-
ment process that describes how the techniques are to be used together. We explain
how the BON process is to be generalised to make use of Object-Z and the feedback
that Object-Z tools provide.

The BON process was described in Section 2.1.1. Task 6 of the process, defining
public features and contracts, is the first place wherein assertions are added to
features and classes. It is after or during this task where we generalise the process
to use Object-Z. Object-Z could be applied earlier, but it would be of less use, since
contracts in the BON model would not yet have been produced.

The generalised process is sketched in Fig. 8, using a UML activity diagram.
A decision point has been introduced, wherein Object-Z is automatically generated
and analyzed, e.g., using Wizard or an Object-Z embedding in a theorem prover or
model checker. At this point, several approaches can be taken.

1. The results of analyzing the generated Object-Z may point to the need to refine
and improve the BON specifications. Feedback from analysing the Object-Z
is therefore used to re-factor the BON specifications.

2. The results of analysis may suggest that the BON specifications are acceptable.

VOL 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 135



INTEGRATING BON AND OBJECT-Z

CITIZEN
�(name, spouse, parents, is married to, active, divorce)
PERSON [active/retired ]
COMPARABLE

Void : None

single : B

single = (spouse = Void)

is married to : CITIZEN → B

∀ a : CITIZEN • ¬ (a = Void) ⇒ a ∈ dom is married to
∀ a : CITIZEN • a ∈ dom is married to ⇒ is married to(a) = (a = spouse)

retired =̂ active

name :↓ seqCHAR
spouse :↓ CITIZEN
children :↓ P CITIZEN
parents :↓ P CITIZEN
company :↓ EMPLOYER
details : CITIZENSHIP c©

parents.count ≤ 2
single ∨ spouse.spouse = self
∀ c ∈ children • ∃ p ∈ c.parents • p = self

INIT
company = Void
details = Void
name = 〈 〉
spouse = Void
children = { }
parents = { }

divorce
∆(spouse)

¬ single
single ′

spouse.single

Figure 7: LATEX processed output from automatically generated Object-Z

136 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 3



3 INTEGRATING THE BON METHODOLOGY AND OBJECT-Z

The process now splits; in one branch, the typical BON development process
can be followed through implementation, refactoring, and review, typically
targetting Eiffel as a programming language. Thus, we effectively use Object-
Z as an analysis tool.

3. In the second branch of the split, an Object-Z development can be followed,
e.g., via formal refinement. This branch likely will not target a specific pro-
gramming language, and thus in a sense it is more flexible than the BON
branch.

Figure 8: Generalised BON process integrating Object-Z

VOL 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 137



INTEGRATING BON AND OBJECT-Z

We next describe the BON-CASE tool, which not only supports the construction
of BON models, but also helps to automate many stages of the generalized process,
including the automatic generation of Object-Z specifications.

4 TOOL SUPPORT FOR THE INTEGRATED METHOD

BON-CASE [14] is an open-source CASE tool for BON. It provides support for
automatic generation of Object-Z, as we discuss shortly. The CASE tool (version
0.5b3) supports the full BON notation, including static diagrams (classes and inter-
faces, clusters, relationships, and assertions), and collaboration diagrams (objects,
messages, and scenarios). It also supports UML use case diagrams, including syntax
for templates, use case relationships, and stereotypes.

A critical component of the tool is its code generation engine. The code genera-
tor, designed using the Template pattern, abstracts the code generation process from
concrete implementations of abstract syntax tree walkers. Current code generators
supported by BON-CASE include: ASCII BON, XML, C#, Java, Eiffel, JML [7],
and now Object-Z. The Object-Z code generator implements the translation rules
discussed in Section 3.

The BON-CASE tool can be used during the first six tasks of the generalized
BON process. The Object-Z code generator can be applied during task 7, and the
results of applying the Object-Z Wizard type checker or the Isabelle/HOL embed-
ding to the automatically generated Object-Z specifications can be fed back in to
the BON process in task 8. The feedback provided by the Object-Z checker is, of
course, given in terms of Object-Z syntax, but the relative similarity of this syntax
to that of BON does not make it difficult to use this feedback in modifying the
original BON models. Adding reverse engineering facilities to BON-CASE, as we
are currently doing, will help here. We note as well that the semantics of BON
and Object-Z have much in common (e.g., in terms of contracts and classes) so that
we can expect and have received useful feedback from the Object-Z checker about
errors or problems with our BON models.

5 DISCUSSION, LESSONS LEARNED, AND FUTURE WORK

The integration of BON and Object-Z presented in this paper provides Object-
Z developers access to mainstream software engineering languages and tools. A
secondary motivation for defining the translation from BON to Object-Z, and for
implementing the translation within the BON-CASE tool, was to be able to use
Object-Z tools with BON, and to use OO graphical notations and programming
languages with Object-Z. However, there were other reasons for carrying out the
integration as well.

138 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 3



5 DISCUSSION, LESSONS LEARNED, AND FUTURE WORK

• Integration with mainstream OO languages. BON-CASE supports several OO
diagramming notations, particularly collaboration diagrams and use case dia-
grams. Since the tool also supports several programming languages (e.g., Java,
Eiffel, C#), it provides a means for using these technologies as well.

• Providing a development process for Object-Z. By integrating BON and Object-
Z, we have augmented the latter with the development process of the former.
Since this development process includes tasks and phases that are intrinsic
to most systems development process – e.g., risk assessment, feedback – this
provides a way of showing how to use Object-Z techniques, if desired, in more
mainstream development processes.

• Graphical views of Object-Z specifications. This integration provides a visual
front-end for Object-Z.

• Exploiting Object-Z integrations. Object-Z has been integrated with several
other technologies, e.g., Timed CSP. The integration of BON and Timed CSP
thus lets developers use BON together with these other technologies.

A point worth mentioning is the generality of the approach to language integra-
tion and process augmentation that was applied. Without any change, the approach
described in this paper has been applied to integrating BON with the JML modelling
language, and a case study demonstrating the effectiveness of the methodology –
and some of the limitations of the tool support for the integration – has been carried
out.

We have taken a pragmatic approach to integration in this paper: we desired to
use Object-Z tools with BON, and BON tools with Object-Z and we implemented
a translation to effect this. The translation helped us attain the practical goal of
adding a development process to Object-Z. We have not yet proven the soundness
of the translation, nor the correctness of its implementation. Our experiments with
Object-Z’s tools (particularly Wizard and LATEX styles) have given us greater con-
fidence in the correctness of the translation. It would be beneficial to have a proof
of soundness. This is made more challenging by the size of the BON and Object-Z
languages, and the relative imprecision that still remains in the semantics of BON.

A key limitation with the integration – and the implementation in the BON-
CASE tool – is the inability to reverse the translation, i.e., to take manually modi-
fied Object-Z specifications and reverse engineer a BON specification from it. The
BON-CASE tool alpha currently supports reverse engineering only for Eiffel pro-
grams, though the infrastructure to allow extensions is present in its design. We are
currently defining a reverse mapping, from Object-Z to BON, and plan to implement
it along with other reverse engineering facilities in the tool in the near future.

VOL 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 139



INTEGRATING BON AND OBJECT-Z

REFERENCES

[1] L. Baresi and M. Pezzé. Toward formalising structured analysis. ACM Trans.
Soft. Eng. and Method. 7(1):80-107, January 1998.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The UML Reference Guide,
Addison-Wesley, 1999.

[3] J. Sun, J.S. Dong, J. Liu, and H. Wang. Object-Z web environment and pro-
jections to UML. In Proc. WWW’01, ACM Press, May 2001.

[4] R. Duke and G. Rose. Formal Object-Oriented Specification using Object-Z,
Palgrave, 2001.

[5] W. Johnston. A Type-Checker for Object-Z, SVRC Technical Report TR96-
24, University of Queensland, July 1996.

[6] S.-K. Kim and D. Carrington. A formal mapping between UML models and
Object-Z specifications. In Proc. ZB-2000, LNCS 1878, Springer-Verlag, 2000.

[7] G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML. Technical
Report 98-06i, Department of Computer Science, Iowa State University, Feb.
2000.

[8] Moby Research Group. Moby/OZ Tool, 2002.
http://theoretica.informatik.uni-oldenburg.de

[9] R.F. Paige. A meta-method for formal method integration. In Proc. Formal
Methods Europe 1997, LNCS 1313, Springer-Verlag, September 1997.

[10] R.F. Paige. Pure formal method integration via heterogeneous notations. For-
mal Aspects of Computing 10(3), June 1998.

[11] R.F. Paige. Integrating a program design calculus with a subset of UML. The
Computer Journal 42(2), March/April 1999.

[12] R.F. Paige. When are methods complementary? Information and Software
Technology 41(3), February 1999.

[13] R.F. Paige and J.S. Ostroff. From Z to BON/Eiffel. In Proc. Automated Soft-
ware Engineering 1998, IEEE Press, October 1998.

[14] R.F. Paige, L. Kaminskaya, J.S. Ostroff, and J. Lancaric. BON-CASE: an
extensible CASE tool for formal specification and reasoning. Journal of Object
Technology 1(3):65-87, August 2002.

[15] S. Schneider. Concurrent and Real-Time Systems, Wiley, 2000.

[16] G. Smith. The Object-Z Specification Language, Kluwer, 2000.

140 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 3

http://theoretica.informatik.uni-oldenburg.de


5 DISCUSSION, LESSONS LEARNED, AND FUTURE WORK

[17] G. Smith, F. Kammüller, and T. Santen. Embedding Object-Z in Is-
abelle/HOL. In Proc. ZB-2002, LNCS 2272, Springer-Verlag, January 2002.

[18] G. Smith. Introducing Reference Types by Refinement. In Proc. ICFEM 2002,
LNCS 2495, Springer-Verlag, October 2002.

[19] J.M. Spivey. The Z Specification Language, Second Edition, Prentice-Hall,
1992.

[20] K. Stirewalt and L. Dillon. A component-based approach to building formal
analysis tools. In Proc. ICSE 2001, IEEE Press, May 2001.

[21] K. Taguchi and J.S. Dong. An overview of Mobile Object-Z. In Proc. ICFEM
2002, LNCS 2495, October 2002.

[22] K. Walden and J.-M. Nerson. Seamless Object-Oriented Software Architecture,
Prentice-Hall, 1995.

ABOUT THE AUTHORS

Richard Paige is a lecturer at the University of York, United King-
dom, where he works with the High-Integrity Systems Group and is
a co-leader of the Software and Systems Modelling Team. He com-
pleted his PhD in Computer Science at the University of Toronto in
1997. E-Mail: paige@cs.york.ac.uk.

Phillip Brooke is a senior lecturer in the School of Computing,
Communications, and Electronics at the University of Plymouth,
United Kingdom, where he works with the Network Research Group.
He completed his DPhil in Computer Science at the University of
York in 1999. E-Mail: phil.brooke@plymouth.ac.uk.

VOL 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 141

mailto:paige@cs.york.ac.uk
mailto:phil.brooke@plymouth.ac.uk

