
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 2

Special issue: .NET: The Programmer’s Perspective: ECOOP Workshop 2003

Cite this article as follows: Guiseppe Attardi et al.: “CIL + Metadata > Executable Program”, in
Journal of Object Technology, vol. 3, no. 2, Special issue: .NET: The Programmer’s Perspective:
ECOOP Workshop 2003, pp. 19-26. http://www.jot.fm/issues/issue_2004_02/article2

CIL + Metadata > Executable Program
Giuseppe Attardi, Antonio Cisternino and Diego Colombo, University of
Pisa, Italy

Abstract
Execution environments like Java Virtual Machine and Microsoft CLR rely on
executables containing information about types and their structure. Method bodies are
expressed in an intermediate language rather than machine dependent code to allow
verification. Although intermediate language and metadata are required by the
execution engine, the information available can be used for other purposes. In this
paper we present an application that relies on the rich binary format of CLR to translate
the intermediate language code into Lego Mindstorms bytecode. All programming
languages targeting the Common Language Infrastructure can be used to program the
programmable Lego brick. We exploit the information available to automatically
distribute a program between a robot with very limited abilities and a standard PC.

1 INTRODUCTION

Intermediate languages have been used since the early days of computer science. A
common approach to implement efficient interpreters has been employing p-code based
systems to reduce parsing costs at runtime (see the introduction of [Krall98]).

In the last years the number of languages based on virtual machines is substantially
increased. There are several reasons supporting this trend: hardware is becoming ever
faster and we can pay some overhead to get more reusability, security and robustness
from our programs; programming has become a hard task requiring an ever increasing
number of services.

Garbage collection, libraries of precooked functionalities are often considered a
requisite for a programming language. Programming languages based on virtual machines
allow programs to be run across different platforms at the only cost of porting the
execution environment rather than having to recompile every program. Virtual machines
also offer the opportunity of achieving better security: the execution engine mediates all
accesses to resources made by programs verifying that the system can’t be compromised
running applications.

Among the crowd of execution environments two notable examples emerges because
of their large use in real world applications and a structure that is more complex with

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_02/article2

CIL + METADATA > EXECUTABLE PROGRAM

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 2

respect to the others: Java Virtual Machine [LiYe99] and Microsoft Common Language
Runtime (CLR) [EC335, ISO271]. Both environments distinguish somewhat themselves
from the others because of the set of services that are provided at runtime. In particular
types and verification have a significant impact on the overall design of the runtime. A
major consequence of this fact is that the amount of information about programming
abstractions is not thrown away during compilation in favor of a simpler, though
equivalent, program expressed in a bytecode with simple instructions.

In this paper we discuss how the metadata and the intermediate language used to
describe types of such runtimes can be useful for purposes other than execution. Tasks
such as static analysis or bytecode manipulation are simplified because of the abstraction
level provided by the intermediate language. To make our statement more concrete we
describe a compiler that translates a particular class of .NET binaries into programs
executable on the Lego’s programmable brick RCX [HaLP99].

2 WHAT KIND OF INFORMATION IS AVAILABLE?

Describing a type-system is a tough job. In Partition II of Common Language
Infrastructure (CLI) standard [EC335, ISO271] the metadata format used by .NET
assemblies is defined. A single assembly describes a set of types and may contain
references to other assemblies. Thirty-six tables are used to describe all the types
contained in the assembly and their relation with types contained in other assemblies.

Metadata contain all the information related to types and their structure. Both in
JVM and CLR binary formats it is possible to include additional information to
metadata1. Method bodies are defined using the intermediate language, though they are
not accessible through reflection abilities. Nevertheless several libraries have been
developed to address this issue; in our system based on .NET we used CLIFileReader
library [CistCFR].

The choice of representing types and code in intermediate language form, rather than
machine code, is somewhat constrained because of design goals. Without information on
types it’s almost impossible to have general support for dynamic loading of modules (one
weakness of COM [Rog97] was the incomplete type system), reducing reuse of software.
Besides the ability of verifying that types are used correctly help to avoid memory
corruption due to misuse of programming abstractions: this contributes to reduce the
corruption of the execution state and implement security checks.

Types are good for software reuse because are one of the foundations of modern
programming languages. Traditionally runtimes, like C runtime or even ML [OCVM]
runtime, share a little amount of programming abstractions with the programming

1 In .NET the ability of annotating metadata is exposed in programming languages such C# [EC334,
ISO270]: all programming elements exposed through reflection (types, methods, assemblies and so on) can
be annotated by means custom attributes. Java bytecode [LiYe99] can also contain custom information
(class file attributes) though this feature isn’t exposed to the language: it was conceived to support
programming tools like debuggers.

WHAT KIND OF INFORMATION IS AVAILABLE?

VOL. 3, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 21

language: in C just numbers are the same used by the processor, in ML a little bit more.
When types become a shared abstraction between the execution environment and the
programming language a larger amount of information is made available about a program
to the runtime and to all the other programs interested in code analysis. Partial evaluators
and programs alike can even execute these binaries with different semantics from the one
of the execution environment. The simplicity of manipulate intermediate language and
metadata makes possible code analysis that would be hard to do in other contexts. In
[MaYo01, TSNP02, Cist03] are reported examples of analysis and manipulation of
binaries for CLR and JVM.

Besides ordinary code analysis, the fact that types are shared between execution
environment and the programming language implies that it is possible to provide libraries
without implementation. The programmer makes use of such libraries and its invocation
to library methods and types are used as placeholders into the binary format for further
processing. After compilation programs may manipulate the output looking for special
patterns inside the intermediate language, types and metadata. The post processing may
be done for several reasons: in [Cist03] it is done for runtime code generation; a post
processor would optimize patterns deriving from the use of domain specific operators;
some aspect could be interwoven into the code; the executable is translated into an
executable for a different platform.

In the rest of this paper we outline the structure of a compiler we developed to
translate .NET assemblies into programs for Lego Mindstorms. The compiler is an
example of how the information contained into binaries can be used for purposes
different from execution.

3 PROGRAMMING LEGO BRICK IN C#

The following program is a simple example:

public class SimpleBrick : RCX2 {
 public int guard;
 [FunctionType(Function.Task, 0)]
 public void Main() {
 guard = 1;
 while (guard != 0) {
 PlaySystemSound(Sounds.sweepdown);
 Wait(50);
 }
 }
 [FunctionType(Function.Task, 1)]
 public void Alert(){
 while (guard != 0)
 guard = Sensor1();
 }
}

CIL + METADATA > EXECUTABLE PROGRAM

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 2

A program that should be executed on the RCX brick is contained in a single class; in our
example SimpleBrick. We note that the class inherits from a base class representing the
type of the brick2 that we want to program, in the example RCX2.

The class has a single field called guard that is used in the two methods of the class
Main and Alert. Lego VM supports up to ten threads executing tasks concurrently. We
have used custom attributes to define the mapping between class methods and brick tasks.
The custom attribute FunctionType is a trivial object whose purpose is to indicate to
the compiler how to deal with it. In the example the two methods are mapped into brick
tasks.

It is worth noting that we could have used the Thread class to represent tasks within
the brick. We have avoided this solution because a brick tasks are different from threads,
making hard to map the abstractions provided by .NET threads into the simpler task.
Moreover from a teaching standpoint it is better to think that methods are executed by
different threads rather than having to declare how to spawn threads. Thus we have
decided to not expose any threading facility and provide a simpler interface.

The sample program activates two tasks on the brick: the task Main polls the field
guard until it becomes 0, at each poll it plays a beep and waits 50 milliseconds before the
subsequent check. The task associated to method Alert simply reads the value from a
sensor and stores it into guard; also in this case when the value read from the sensor
number 1 is 0 the task exits.

It is important to note that methods Sensor1, Wait, and PlaySystemSound are
methods inherited from RCX2 class. We rely on the type checking to constrain the set of
available functions into the class. Type checking is also used to check constants like
Sounds.Sweepdown.

So can we use windows or databases on the small brick? Of course not! The
compiler is aware of the target brick and it checks that the intermediate language
associated with a method is compatible with the expressive power of the virtual machine
running on the brick.

We have shown a C# program, but we could have chosen also other languages:
Visual Basic, Java Script, SML and all the other languages available for .NET. This is
possible because we translate the output of the compiler: in few months we have more
than doubled the number of languages available to program Lego Mindstorms.

Since its launch many people have contributed in developing programming
languages and tools to control Lego Robots. At university of Berlin gcc has been
modified to generate code for the processor embedded into the brick. A popular
programming language for Lego Mindstorms is Not Quite C (NQC) [NQC] which is a
language derived from C. A significant effort has been spent in implementing a full
programming language that doesn’t provide even the for command. An attempt of
implementing a Java Virtual Machine for the Lego Brick is ongoing as an open source
initiative.

2 There are different versions of the programmable brick: RCX 1.0, RCX 2.0, Scout, SpyBot and
CyberMaster.

PROGRAMMING LEGO BRICK IN C#

VOL. 3, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 23

We believe that our approach has the advantage of exploiting the whole
infrastructure provided by .NET providing the same functionalities of the other systems
obtained with a small amount of effort.

4 THE COMPILER

The compiler takes as input a .NET assembly. The first step of compilation inspects the
assembly using reflection facilities provided by CLR looking for classes that inherits
from the classes representing known bricks.

When a class that should be compiled is found, the compiler inspects its methods and
fields. Only methods labeled with custom attributes are considered and the compilation
fails is class fields are of types different than int. This limitation is because the Lego
VM [LegoSdk] supports only integer types. Compiled methods should have the signature
void f().

The compilation of method bodies requires a mapping from CIL op-codes into Lego
VM ones. This conversion is not straightforward because the Lego VM is register based
whereas CLR is a stack based VM.

The Lego brick provides 32 global integer variables (available from all tasks) and 16
integer variables local to each task. We mapped class fields into global variables; local
variables have been used to emulate the operand stack and (integer) variables local to
methods. Of course the maximum stack height (available in the metadata) together with
the number of local variables used in a method shouldn’t be greater than 16, otherwise
the compiler raises an error.

Lego VM provides special operators to read sensors and control motors. We use
instance method inherited from the base class to represent these operators. These methods
have a dummy implementation and are used only to indicate where special instructions
should be generated.

The instance method invocation has a fingerprint easy to detect inside intermediate
language. The first step consists in loading the this reference on the operands stack with
the instruction ldarg.0. Then a sequence of instructions follows to load the arguments
that should be passed to the method. Finally the callvirt instruction is used to invoke the
method. The compiler recognizes such patterns and replaces these instructions with the
appropriate Lego instruction.

This approach can be used also to provide advanced functionalities such as automatic
distribution of computations between the brick and the PC. When the compiler finds a
method invocation that doesn’t corresponds to a special method it generates an RPC
invocation that sends the method request through the onboard IR port and waits for an
answer from the PC. The server on the PC can also be automatically generated exploiting
metadata.

In addition to IL patterns recognized to generate special operators, the compiler
looks for patterns that can be optimized generating smaller code. The result of this

CIL + METADATA > EXECUTABLE PROGRAM

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 2

(simple) optimization step is that the generated code has the same size of the output of
NQC compiler for the same program.

5 CONCLUSIONS

Development of Mindstorms compiler taught us that the information available into
executables files for JVM and CLR are so rich that these files can be used for purposes
different from simple execution. Moreover sharing of the same notion of type between
programming language and execution environment allow the development of libraries
that provide the illusion of doing something to the programmer. In fact these libraries are
used to encode information into executables that can be used by other programs, together
with metadata, to manipulate the binary code.

We used this technique to compile a particular subset of .NET classes into programs
that are executed on the Lego Mindstorms. The compiler has been developed in few
months as a toy project; this fact shows how powerful can be the manipulation of
executables: we had the opportunity of focusing our effort on the translation phase rather
than spending a large amount of time in implementing our own programming language.

Although we have used .NET the same approach could have been employed for Java
bytecode, though .NET assemblies contain more information than Java’s class files.

REFERENCES

[CTHL] Calcagno, C., Taha, W., Huang, L., Leroy, X., A Bytecode-Compiled, Type-
safe, Multi-Stage Language, http://citeseer.nj.nec.com/460583.html.

[Cist03] Cisternino, A., “Multi-Stage and Meta-Programming Support in Strongly
Typed Execution Engines”, PhD Thesis, May 2003, available at
http://www.di.unipi.it/phd/tesi/tesi_2003/PhDthesis_Cisternino.ps.gz.

[EC334] ECMA 334, “C# Language Specification”, http://www.ecma.ch/ecma1/
STAND/ecma-334.htm.

[EC335] ECMA 335, “Common Language Infrastructure (CLI)”, http://www.ecma.ch/
ecma1/STAND/ecma-335.htm.

[ISO270] ISO/IEC 23270, “Information technology - C# Language Specification”,
available at http://www.iso.org/

[ISO271] ISO/IEC 23271, “Information technology - Common Language Infra-
structure”, available at http://www.iso.org/

[KCC99] Kamin, S., Callahan, M., Clausen, L., “Lightweight and generative
components II: Binary-level components”, in Proceedings of SAIG00, 28-50,
1999.

http://citeseer.nj.nec.com/460583.html
http://www.di.unipi.it/phd/tesi/tesi_2003/PhDthesis_Cisternino.ps.gz
http://www.ecma.ch/ecma1/STAND/ecma-334.htm
http://www.ecma.ch/ecma1/STAND/ecma-334.htm
http://www.ecma.ch/ecma1/STAND/ecma-335.htm
http://www.ecma.ch/ecma1/STAND/ecma-335.htm
http://www.iso.org/
http://www.iso.org/

CONCLUSIONS

VOL. 3, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 25

[MaYo01] Masuhara, H., and Yonezawa, A., “Run-time Bytecode Specialization: A
Portable Approach to Generating Optimized Specialized Code”, in
Proceedings of Programs as Data Objects, Second Symposium, PADO 2001.

[TSNP02] Tanter, E., Ségura-Devillechaise, M., Noyé, J., Piquer, J., “Altering Java
Semantics via Bytecode Manipulation”, in Proceedings of Generative
Programming and Component Engineering (GPCE), LNCS 2487, 283-298,
2002.

[Krall98] Krall, A., “Efficient JavaVM Just-in-Time Compilation”, International
Conference on Parallel Architectures and Compilation Techniques, ed. Jean-
Luc Gaudiot, North-Holland, Paris, 1998, pp. 205-212.

[CistCFR] Cisternino, A., “CLIFileReader library”, http://dotnet.di.unipi.it/
MultipleContentView.aspx?code=103.

[LiYe99] Lindholm, T., and Yellin, F., The Java™ Virtual Machine Specification,
Second Edition, Addison-Wesley, 1999.

[HaLP99] Hautop, H., Lund, and Pagliarini, L., “Robot Soccer with LEGO
Mindstorms”, Lecture Notes in Computer Science 1604, 1999,
http://mindstorms.lego.com/eng/community/resources/default.asp.

[OCVM] OCaml VM, http://pauillac.inria.fr/~lebotlan/docaml_html/english/.

[Rog97] Rogerson, D., Inside COM, Microsoft Press, Redmond, Wa, 1997.

[NQC] “NQC” web site, http://www.baumfamily.org/nqc/.

[TinyVM] “TinyVM” web site, http://tinyvm.sourceforge.net/.

[LegoSdk] Lego Mindstorms SDK, http://mindstorms.lego.com/eng/community/
resources/default.

http://dotnet.di.unipi.it/MultipleContentView.aspx?code=103
http://dotnet.di.unipi.it/MultipleContentView.aspx?code=103
http://mindstorms.lego.com/eng/community/resources/default.asp
http://pauillac.inria.fr/~lebotlan/docaml_html/english/
http://www.baumfamily.org/nqc/
http://tinyvm.sourceforge.net/
http://mindstorms.lego.com/eng/community/resources/default
http://mindstorms.lego.com/eng/community/resources/default

CIL + METADATA > EXECUTABLE PROGRAM

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 2

About the authors
Giuseppe Attardi is professor of Computer Science at the Dipartimento
di Informatica of Università di Pisa, where he currently teaches
Advanced Programming. His research interests are meta-programming
and reflection, search engines and question answering. He can be
reached at attardi@di.unipi.it.

Antonio Cisternino is research fellow at the Dipartimento di
Informatica of Università di Pisa. His current research is on runtime
code generation and multi-stage programming on execution
environments like JVM and CLI. He can be reached at
cisterni@di.unipi.it.

Diego Colombo is student of Computer Science at Università di Pisa.
He has a three years degree. He is interested in robotics, computer
vision, 3D graphics. He can be reached at colombod@di.unipi.it.

mailto:attardi@di.unipi.it
mailto:cisterni@di.unipi.it
mailto:colombod@di.unipi.it

