
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 1, January-February 2004

Cite this column as follows: Donald Firesmith: “Specifying Reusable Security Requirements”, in
Journal of Object Technology, vol. 3, no. 1, January-February 2004, pp. 61-75.
http://www.jot.fm/issues/issue_2004_01/column6

Specifying Reusable Security
Requirements

Donald Firesmith, Software Engineering Institute, U.S.A.

Abstract
Unlike typical functional requirements, security requirements can potentially be highly
reusable, especially if specified as instances of reusable templates. In this column, I will
discuss the concepts underlying security engineering including its quality subfactors. I
will then address the issue of security requirements and how they differ from the
architectural mechanisms that will fulfill them. Then, I will discuss the value of reusable
parameterized templates for specifying security requirements and provide an example
of such a template and its associated usage. Finally, I will outline an asset-based risk-
driven analysis approach for determining the appropriate actual parameters to use when
reusing such parameterized templates to specify security requirements.

1 CONCEPTS UNDERLYING SECURITY ENGINEERING

To specify security requirements, it is critical to first understand the concepts underlying
security engineering. And the most important concept of these is ‘security’ itself.
Whereas security is often defined as an incomplete subset of its most important quality
subfactors (e.g., integrity and privacy), the following figure illustrates that a more general
and complete definition of security is that it is the degree to which malicious1 (i.e.,
unauthorized and intentional) harm to valuable system assets is prevented, reduced, and
properly responded to. Thus, security is about protecting these assets (e.g., data, services,
hardware, and personnel) from harm due to various kinds of attacks (e.g., password
sniffing, spoofing, viruses) that may be mounted by the various kinds of attackers (e.g.,
hackers, crackers, disgruntled employees, international cyber-terrorists, industrial spies,
governmental spies, foreign military, etc.). These assets are at risk due both to various
kinds of threats (e.g., theft, vandalism, unauthorized disclosure, destruction, fraud,
extortion, espionage, trespass, etc.) of attack as well as the vulnerabilities the system may

1 Some may argue that the term ‘malicious’ is too strong. What about people who vandalize the website of
a company that pollutes the environment? What about someone who uses company computers to surf the
Web in violation of company policy. The first example is a cybercrime and the second is an unauthorized
use of property. In both cases, the victims would be justified to consider these acts malicious. If the term
‘malicious’ still seems too harsh, just consider it to mean the combination of unauthorized and intentional.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_01/column6

SPECIFYING REUSABLE SECURITY REQUIREMENTS

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

have. Security requirements are engineered to specify the system’s security policies and
both policies and requirements should address these security risks. Security mechanisms
(e.g., user IDs, passwords, encryption, firewalls, antivirus software, intrusion detection
systems, etc.) are then architected to fulfill the security requirements. Some of these
concepts influence the engineering of security requirements (e.g., policies, risks, threats,
and assets), whereas others (e.g., security mechanisms, security vulnerabilities, and
attacks) are influenced by the security requirements.

Fig. 1: Concepts that Influence and are Influenced by Security Requirements

The following list defines these security-oriented terms that will be used during the
remainder of this column:

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 63

• Asset is anything of value that should be protected from harm. An asset can require
protection because it is the potential target of attack. Assets can be people, properties
(e.g., data, hardware, software, and facilities), and services.

• Attack (a.k.a., security breach) is an attacker’s unauthorized attempt to cause harm to
an asset (i.e., violate the security of the system, bypass security mechanisms). An
attack may be either successful or unsuccessful.2

• Attacker is an agent (e.g., humans, programs, processes, devices, or other systems)
that causes an attack due to the desire to cause harm to an asset.

• Harm is a negative impact associated with an asset due to an attack.
• Threat is a general condition, situation, or state (typically corresponding to the

motivation of potential attackers) that may result in one or more related attacks.3
• Security is the degree to which malicious harm to a valuable asset is prevented,

reduced, and properly responded to. Security is thus the quality factor that signifies
the degree to which valuable assets are protected from significant threats posed by
malicious attackers.

• Security Goal is a quality goal that documents a target level of security or one of its
subfactors [Lamsweerde 2000].

• Security Policy is a quality policy that mandates a system-specific4 quality criterion
for security or one of its subfactors.

• Security Mechanism (a.k.a., countermeasure) is an architecture mechanism (i.e.,
strategic decision) that helps fulfill one or more security requirements and/or reduces
one or more security vulnerabilities. Security mechanisms can be implemented as
some combination of hardware or software components, manual procedures, training,
etc.

• Security Requirement is a quality requirement that specifies a required amount of
security (actually a quality subfactor of security) in terms of a system-specific
criterion and a minimum level of an associated quality measure that is necessary to
meet one or more security policies.

• Security Risk is the potential risk of harm to an asset due to the sum (over all
relevant threats) of the negative impact of the harm to the asset (i.e., its criticality)
multiplied by the likelihood of the harm occurring5.

2 Due to their malicious nature, most attacks are cybercrimes, which are crimes (e.g., theft of money or
services, fraud, espionage, extortion, vandalism, terrorism, child pornography, etc.) carried out using
computer resources. However, some unauthorized misuses of software-intensive systems are merely
unethical or malfeasant rather than criminal.
3 Thus, the threat of theft may result in an actual theft (attack), and threats correspond to attacks that are
classified by attacker motivation (e.g., theft) as opposed to technique (e.g., spoofing). In some books and
articles, the similar terms ‘attack’ and ‘threat’ are confounded by being used as synonyms. [Tulloch 2003]
4 Remember that this can also involve the system’s environment, the infrastructure in which it exists, and
any assumptions about the system.
5 Using the basic theory of conditional probability, the likelihood that harm results from an attack can be
calculated/estimated as the product of the following terms: (1) the likelihood that the threat of attack exists,
(2) the likelihood that other necessary conditions (e.g., vulnerabilities) also exist, and (3) the likelihood that
the threat will lead to a successful attack if it and the other necessary conditions exist. The term likelihood

SPECIFYING REUSABLE SECURITY REQUIREMENTS

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

• Security Vulnerability is any weakness6 in the system that increases the likelihood
of a successful attack (i.e., cause harm).

Quality Subfactors of the Security Quality Factor

Like any other type of quality requirement, security requirements should be based on an
underlying quality model [IEEE 1992] [ISO 2000a] [Firesmith 2003a]. As previously
stated, security signifies the degree to which valuable assets are protected from
significant threats posed by malicious attackers. As a quality factor (i.e., attribute,
characteristic, or aspect), security can be decomposed into a hierarchical taxonomy of
underlying quality subfactors [Firesmith 2003a] [ISO 2000b] as illustrated in the
following figure:

Fig. 2: Taxonomy of Security Quality Factors and Subfactors

These quality factors can be defined as follows:
• Access Control is the degree to which the system limits access to its resources only

to its authorized externals (e.g., human users, programs, processes, devices, or other
systems). The following are quality subfactors of the access control quality subfactor:

– Identification is the degree to which the system identifies (i.e., recognizes) its
externals before interacting with them.

is used rather than probability because the probability is typically not known exactly but rather grossly
estimated (guesstimated).
6 This is not restricted to just vulnerabilities due to programming problems. It also includes vulnerabilities
in the systems architecture and design, how it is installed and configured, how its users are trained, etc.
Remember that the vulnerabilities of a system may involve its hardware components, software components,
human role components (a.k.a., wetware or personnel), and document components (i.e., paperware).

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 65

– Authentication is the degree to which the system verifies the identities of its
externals before interacting with them.

– Authorization is the degree to which access and usage privileges of authenticated
externals are properly granted and enforced.

• Attack/Harm Detection is the degree to which attempted or successful attacks (or
their resulting harm) are detected, recorded, and notified.

• Integrity is the degree to which components are protected from intentional and
unauthorized corruption:

– Data Integrity is the degree to which data components (including
communications) are protected from intentional corruption (e.g., via unauthorized
creation, modification, deletion, or replay).

– Hardware Integrity is the degree to which hardware components are protected
from intentional corruption (e.g., via unauthorized addition, modification, or
theft).

– Personnel Integrity is the degree to which human components are protected from
intentional corruption (e.g., via bribery or extortion).

– Software Integrity is the degree to which software components are protected
from intentional corruption (e.g., via unauthorized addition, modification,
deletion, or theft).

– Immunity is the degree to which the system protects its software components
from infection by unauthorized malicious programs7 (i.e., malware such as
computer viruses, worms, Trojan horses, time bombs, malicious scripts, and
spyware).

• Nonrepudiation is the degree to which a party to an interaction (e.g., message,
transaction, transmission of data) is prevented from successfully repudiating (i.e.,
denying) any aspect of the interaction8.

• Privacy is the degree to which unauthorized parties are prevented from obtaining
sensitive information.
– Anonymity is the degree to which the identity of users is prevented from

unauthorized storage or disclosure.

– Confidentiality is the degree to which sensitive information is not disclosed to
unauthorized parties (e.g., individuals, programs, processes, devices, or other
systems).

7 This includes complete programs, partial programs, processes, tasks, and firmware.
8 Nonrepudiation covers such information as the identities of the sender and recipient of the transaction, the
time and date of the interaction, and any data that flowed with the interaction. Nonrepudiation thus assumes
data integrity so that a party cannot argue that the data was corrupted.

SPECIFYING REUSABLE SECURITY REQUIREMENTS

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

• Security Auditing is the degree to which security personnel are enabled to audit the
status and use of security mechanisms by analyzing security-related events.

• Physical Protection is the degree to which the system protects itself and its
components from physical attack9.

2 SECURITY REQUIREMENTS

Functionality and its associated functional requirements tend to vary greatly between
applications, especially across different application domains. Look at any two
requirements specifications, and the main difference between them will almost always be
in the content and size of their sections specifying functional requirements. For example,
the functional requirements for an embedded avionics application and an ecommerce
website may have almost nothing in common. However, the same cannot be said about
their security requirements, which tend to exhibit far less variability. After all, both
avionics applications and ecommerce applications need to specify levels of identification,
authentication, authorization, integrity, privacy, etc.

Every application at the highest level of abstraction will tend to have the same basic
kinds of valuable and potentially vulnerable assets. Similarly, these assets tend to be
subject to the same basic kinds of security threats from attacks by the same basic kinds of
attackers who can be profiled with motivations and their typical levels of expertise and
tools. Whereas the specific type of attack may vary greatly depending on the architecture
under attack, the similarity of threats and attackers tends to lead to considerable
uniformity when it comes to the architectural security mechanisms that are used to protect
these assets from the threats posed by these attackers.

And security requirements tend to be even more standardized than their associated
security mechanisms. For any given set of requirements, an architect can and should
typically identify and evaluate multiple different architectures and architectural
mechanisms before selecting what he or she thinks will be the optimum way of fulfilling
the requirements. Thus, there are often many ways for an architecture or security team to
address a specific kind of security requirement, and a layered defense will use several of
them. For example, to address the identification and authentication (i.e., verification of
identification) requirements, one has several choices of architectural mechanisms beyond
user IDs and passwords. Specifically, architects and security engineers can base
identification and authentication mechanisms on:
• Who You Say You Are:

– Name, user identifier, or national identifier (e.g., social security number).

9 Physical attack may mean something as violent as the use of a bomb or the kidnapping or blackmailing of
personnel. It can also mean something as subtle as the prevention of the theft of a laptop by means of a
cable and lock.

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 67

• What You Know:
– Your password or personal identification number (PIN).

– Relatively private personal information such as the last four digits of your social
security number, your mother’s maiden name, the name of your pet, etc.

• What You Have:
– Digital possessions such as a digital certificate or token.

– Physical possessions such as an employee ID card, a hardware key, or a smart
card enabled with a public key infrastructure (PKI).

• Who You Are:
– Physiological traits (e.g., finger print, palm print, vein pattern, face recognition,

iris recognition, and retina scan).

– Behavioral characteristics (e.g., voice pattern, signature style, and keystroke
dynamics).

Yet requirements teams should not constrain the architecture team and security team by
specifying unnecessary security architecture mechanisms. Instead, the requirements team
should specify what is needed (e.g., a specific required level of identification and
authentication) rather than the architectural security mechanisms (e.g., user IDs and
passwords) by which they must be achieved. This will result in significantly more
uniformity in security requirements than in security mechanisms and associated
architectures.

Whereas functional requirements can range over the entire gamut of human
imagination, security requirements specify a required amount of a security subfactor and
are thus quite limited in scope. One form of reuse of security requirements is then found
in the reuse of the security subfactors as a basis for organizing and identifying different
kinds of security requirements. For each security subfactor in the quality model, there can
be multiple quality criteria (i.e., descriptions) that describe the existence of that subfactor
and quality measures (e.g., the percent of users identified) that can be used to measure the
degree of existence of that subfactor [Firesmith 2003b]. A security requirement can thus
be defined as a specification of a minimum amount of a security subfactor stated in terms
of a security criterion and its associated quality measure. Thus, one form of reuse when
specifying measurable and therefore testable security requirements is the reuse of
parameterized criteria (e.g., involving the protection of valuable assets from attacks by
attackers) and their associated quality measures (i.e., ways to quantify the minimum
acceptable level of the criterion).

SPECIFYING REUSABLE SECURITY REQUIREMENTS

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

3 REUSABLE SECURITY REQUIREMENTS TEMPLATES

Based on the preceding discussion, the following facts combine to strongly argue that
highly reusable requirements templates can be produced for reuse across almost all
applications and application domains:
• Requirements. Security requirements are at a higher level of abstraction than

security architectural mechanisms.

• Security Subfactors. Only a small number of security quality subfactors exist.

• Quality Measures. For each security subfactor, only a small number of associated
measures exist.

• Quality Criteria. Although there are potentially a large number of application-
specific security criteria, these can be parameterized by:

– Asset. The valuable and vulnerable asset to be protected by the security
requirement. Although different applications do not have the same assets, they do
tend to have the same kinds of assets. The different assets of different applications
are subject to different levels of risk.

– Threat. The threat the asset should be protected against. Although different
applications are not subject to the same threats, but do tend to be subject to the
same kinds of threats (i.e., there are only so many kinds of cybercrimes). And the
threats may result in different negative impacts if an associated attack is
successful.

– Attacker Type. Different applications tend to be targets of different kinds of
attackers with different profiles (e.g., motivation, experience, and resources) who
launch different kinds of attacks at different levels of sophistication. Nevertheless,
the same kinds of attackers with the same profiles tend to occur over and over.

– Situation. The situation is what tends to be very application specific and is
typically the state of the application during the attack, the communications that
are occurring, the services that are being requested, the data that are being
accessed, and the transactions that are in progress.

Thus, applications tend to have similar classes of security requirements that vary
depending on the security subfactor being specified and the associated quality criterion
and quality measure chosen to specify the minimum acceptable amount of that security
subfactor. Whereas the criticality and specific parameters vary from application to
application, a great amount of reuse is available if one has a repository of reusable
security requirement templates that formalize the commonality.

This high potential reusability of security requirements is very beneficial because
most requirements engineers have had no training in identifying, analyzing, specifying,
and managing security requirements and most requirements teams do no include subject
matter experts in security. Thus, most current requirements specifications 1) are totally

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 69

silent regarding security, 2) merely specify vague security goals such as “The application
shall be secure” or “Confidential data shall be kept private.”, or 3) specify commonly-
used security mechanisms (e.g., encryption and firewalls) as architectural constraints. In
the first case, security too often falls through the cracks and may (or may not) be properly
addressed during architecting (or even later when it is much more expensive and difficult
to be added to an existing architecture that was not built to support it). In the second case,
proper security may still fall through the cracks and often leaves the customer with the
unjustified feeling that they have adequately required security even though stating the
goal of “The application shall be secure” is hardly a testable requirement. And the third
case may unnecessarily tie the architecture team’s hands by specifying an inappropriate
security mechanism (e.g., passwords rather than biometrics). Whereas these problems
may (or may not) be mitigated by a proper security policy developed by a security team,
there is no guarantee that an appropriate security policy will be ready in time to influence
the architecture team and the resulting application architecture. And even if the security
policy is developed early enough, there is no guarantee that its explicit security policies
(and implicit security requirements) will be consistent with the many other functional and
quality requirements in the requirements specification. Ultimately, the best approach is to
include explicitly specified security requirements with the other quality requirements so
that they can all be analyzed, prioritized, and traced, and so that trade-offs can be made to
ensure that all requirements are consistent and feasible. Finally, reusable templates for
security requirements will help requirements and security teams realize that actual
security requirements are both valuable and feasible.

4 EXAMPLE TEMPLATE AND ITS USAGE

As an example of a reusable template for specifying security requirements, consider the
following template for specifying integrity requirements:
• “The [application / component / data center / business unit] shall protect the

[identifier | type] data it transmits from corruption (e.g., unauthorized addition,
modification, deletion, or replay) due to [unsophisticated / somewhat sophisticated /
sophisticated] attack during execution of [a set of interactions / use cases] as indicated
in [specified table].”
– [Table of interactions / use cases versus minimum acceptable measurement level].

Collaborating with the security team, the requirements team could reuse the preceding
template to generate the following integrity requirements:
• “The Global Personal Marketplace (GPM) system shall protect the buyer-related data

(see use cases) it transmits from corruption (e.g., unauthorized addition,
modification, deletion, or replay) due to unsophisticated attack during execution of
the Buyer use cases as indicated in the following table”

SPECIFYING REUSABLE SECURITY REQUIREMENTS

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

Global Personal Marketplace (GPM)

Buyer Use Cases

Minimum
Transmissions

Protected
from Corruption

Buyer Buys Item at Direct Sale 99.99%

Buyer Modifies Bid on Item 99.99%

Buyer Modifies Sealed Offer 99.99%

Buyer Places Bid on Item 99.99%

Buyer Places Sealed Offer at Decreasing Price Sale 99.99%

Buyer Reads Buyer Guidelines 99%

Buyer Registers Feedback about Seller 99.99%

… …

GPM Notifies Buyer of Acceptance of Sealed Offer 99.9%

GPM Notifies Buyer of Being Outbid 99.9%

GPM Notifies Buyer of Canceled Sale 99.9%

GPM Notifies Buyer of Relevant Sale 99.9%

GPM Notifies Winning Buyer of Auction Results 99.9%

5 PROCESS FOR IDENTIFYING AND ANALYZING SECURITY
REQUIREMENTS

The preceding sections were primarily concerned with the specification of security
requirements using reusable parameterized templates. But how should one determine
what actual values to use for these parameters? Typical approaches of requirements
analysis (e.g., functional decomposition, use case modeling) were designed for the
analysis of functional requirements and are insufficient when analyzing most security
requirements. And although misuse cases can help the analyst analyze attacks [Alexander
2001] [Sindre 2001] and security use cases [Firesmith 2003c] can help the analyst
understand the system’s desired response to these attacks, they still do not adequately
support determining the specific values of all of the template’s parameters.

So the question remains: how do you fill in the parameters in the reusable templates?
It is my contention that any requirements analysis method for security requirements
should be asset-based and risk-driven [Alberts 1999]. Different applications have

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 71

different assets to be protected and failure to protect these assets can result in negative
impacts ranging from minor inconvenience to the potential of major lost of life and even
war. And different assets will be subject to different kinds of threats due to different
kinds of attacks by different kinds of attackers. These threats and negative impacts result
in different security risks that need to be addressed.

Given the preceding discussion, we can produce an asset-based risk-driven
procedure for the identification and analysis of security requirements. At the highest
level, the requirements and security teams could collaborate to perform the following
general steps in a highly iterative, incremental, parallel, and time-boxed manner:
1. Identify Valuable Assets. Identify the different kinds of valuable assets (e.g., data,

communications, services, hardware components, and personnel) that may be subject
to security risks. Identification can be based on:

– The functional, data, and interface requirements

– Interviews with stakeholders

– Lists of assets generated during disaster recovery planning

2. Identify Likely Attacker Types. Identify the types of attackers who most threaten
the vulnerable assets. Identification can be based on:

– Reusable tables of common attacker types

– Existing reusable attacker profiles (e.g., in terms of attacker motivation,
experience level, and resources)

– The identified valuable assets to be protected

3. Identify Threats to these Assets. Identify the general kinds of threats (e.g., theft,
vandalism, fraud, unauthorized disclosure, destruction, extortion, espionage, trespass,
etc.) to which these assets may be subject. Identification can be based on:

– The identified valuable assets to be protected

– The identified types of attackers from which to protect the assets

– Reusable tables of common threats

– Essential (i.e., requirements level) misuse cases

4. Determine Negative Impacts. For each vulnerable asset, determine the negative
impacts which could result if the threats against the asset were to occur.

5. Estimate and Prioritize Security Risks. Estimate the security risks to the valuable
assets based on the relevant threats and their potential negative impacts. Prioritize
these security risks so that the most important ones (e.g., in terms of negative impact
and likelihood of occurrence) are handled first given the limited resources of the
requirements and security teams.

SPECIFYING REUSABLE SECURITY REQUIREMENTS

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

6. Select Security Subfactor(s). For each important security risk, select the relevant
security subfactors from the quality model for which security requirements of that
type are needed to limit the risk to an acceptable level.

7. Select Relevant Template(s). For each relevant security subfactor and security risk,
select the relevant reusable template(s) for specifying requirements for the relevant
security subfactor in terms of the criteria relevant to the security risk. If no relevant
template exists, develop one.

8. Identify Relevant Functional Requirements. To help identify the relevant security
criteria, identify relevant functional requirements based on:

– The prioritized security risks

– The selected templates for the selected security subfactors

9. Determine Security Criterion. Using the relevant template, determine the
appropriate security criterion and enter its parameters into the template.
Determination can be based on:

– The identified valuable assets

– The identified types of attackers

– The identified threats

– The security risks

– The functional requirements

– Essential (i.e., requirements level) misuse cases

10. Determine Quality Measure. Select the appropriate measure for measuring the
existence of the chosen security criterion from the quality model and enter the quality
measure into the template.

11. Determine Required Level. Based on the security risk to the asset, determine a
minimum acceptable level of the measure for that criterion to limit the associated risk
to an acceptable level and enter the required level of the measure into the template. A
cost-benefit analysis may be used to determine the appropriate level of the quality
measure.

12. Specify Requirement. Instantiate the template based on the actual parameters from
the three previous steps to produce an actual security requirement.

The above process is only one of several that could be used to create security
requirements based on the reuse of parameterized templates for security use cases. More
important than the specific steps of the preceding process or the order in which these
steps are performed is that the requirements and security teams use a documented process
with the following useful properties:

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 73

• The process should be based on the vulnerable assets to be protected and the negative
impacts of the harm that could result if they are not protected.

• The process should achieve high reuse via quality models and parameterized
templates.

• The process should enable the requirements and security engineers to determine
appropriate values for the parameters in the templates.

• The process should address all significant issues including assets, attackers, threats,
negative impacts, and security risks.

• The process should ensure that no important types of security fall through the cracks.

6 CONCLUSION

As stated above, one solution to the problem of how to analyze and specify security
requirements is for the security team to create and make available a set of parameterized
reusable templates that can be used by the requirements team to engineer security
requirements that meet the same quality criteria (e.g., correctness, lack of ambiguity,
testability) as other requirements. By using a rigorous asset-based risk-driven security
requirements analysis method, the quality and appropriateness of the security
requirements should rise and the resulting architecture will be more likely to have been
designed from the beginning to properly support the security requirements in addition to
the functional requirements and the other quality requirements such as availability,
capacity, extensibility, internationalization, interoperability, maintainability,
performance, portability, reliability, robustness, usability, etc.). The publication of such
requirements templates has the potential for greatly improving the quality of security
requirements in actual requirements specifications.

REFERENCES

[Alexander 2001] Alexander, I. “Misuse Case Help to Elicit Nonfunctional
Requirements”, IEE CCEJ, 2001. Available at http://wwweasyweb.easynet.
co.uk/~iany/consultancy/papers.htm

[Alberts 1999] Alberts, C.J. et al., Operationally Critical Threat, Asset, and Vulnerability
EvaluationSM (OCTAVESM) Framework, Technical Report CMU/SEI-99-TR-
017 (1999). Available at http://www.sei.cmu.edu/publications/documents/
99.reports/99tr017/99tr017abstract.html

[Firesmith 2003a] OPEN Process Framework Website. Available at http://www.donald-
firesmith.com/

http://wwweasyweb.easynet.co.uk/~iany/consultancy/papers.htm
http://wwweasyweb.easynet.co.uk/~iany/consultancy/papers.htm
http://www.sei.cmu.edu/publications/documents/99.reports/99tr017/99tr017abstract.html
http://www.sei.cmu.edu/publications/documents/99.reports/99tr017/99tr017abstract.html
http://www.donald-firesmith.com
http://www.donald-firesmith.com/

SPECIFYING REUSABLE SECURITY REQUIREMENTS

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

[Firesmith 2003b] Firesmith, D.G. “Engineering Security Requirements,” in Journal of
Object Technology, vol. 2, no. 1, January-February 2003, pp. 53-68.
http://www.jot.fm/issues/issue_2003_01/column6

[Firesmith 2003c] Firesmith, D.G. “Security Use Cases,” in Journal of Object
Technology vol. 2, no. 3, May-June 2003, pp. 53-64.
http://www.jot.fm/issues/issue_2003_05/column6

[Firesmith 2003d] Firesmith, D.G. “Analyzing and Specifying Reusable Security
Requirements,” Eleventh International IEEE Conference on Requirements
Engineering (RE’2003) Requirements for High-Availability Systems
(RHAS’03) Workshop, Monterey, California, September 2003.

[IEEE 1992] IEEE Std 1061-1992, IEEE Standard for a Software Quality Metrics
Methodology, 1992.

[ISO 2000a] ISO/IEC 9126-1, Software Engineering – Product Quality – Part 1: Quality
Model, 2000.

 [ISO 2000b] ISO/IEC 9126-2, Software Engineering – Product Quality – Part 2:
External Metrics, 2000.

[Lamsweerde 2000] Axel van Lamsweerde and Emmanuel Letier, “Handling Obstacles in
Goal-Oriented Requirements Engineering,” IEEE Transactions on Software
Engineering, Vol. 26, No. 10, October 2000, pp. 978-1005

 [Sindre 2001] Sindre, G. and Opdahl, A. “Templates for Misuse Case Description,”
Seventh International Workshop on Requirements Engineering: Foundation
for Software Quality (REFSQ’2001), (4-5 June 2001).
http://www.ifi.uib.no/conf/refsq2001/papers/p25.pdf

[Stoneburner 1999] Stoneburner, Gary, CSPP- Guidance for COTS Security Protection
Profiles, NISTIR 6462, National Institutes of Standards and Technology
(NIST), U.S. Department of Commerce, (December 1999), B-4-7. Available
at http://csrc.nist.gov/publications/nistir/index.html.

[Tulloch 2003] Mitch Tulloch, Microsoft Encyclopedia of Security, Microsoft, Redmond,
Washington, 2003.

ACKNOWLEDGMENTS

This column is an update of a paper [Firesmith 2003d] given at the RE’03 RHAS’03
workshop combined with a subset of the technical note “Common Concepts Underlying
Safety, Security, and Survivability Engineering (CMU/SEI-2003-TN-033), December
2003” that I am currently writing for the SEI. The idea of using standardized templates
came from [Stoneburner 1999].

http://www.jot.fm/issues/issue_2003_01/column6
http://www.jot.fm/issues/issue_2003_05/column6
http://www.ifi.uib.no/conf/refsq2001/papers/p25.pdf
http://csrc.nist.gov/publications/nistir/index.html

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 75

About the author

Donald Firesmith is a senior member of the technical staff at the
Software Engineering Institute. He has worked exclusively with object
technology since 1984 and has written 5 books on the subject. He is
currently writing a book on requirements engineering. Most recently, he
has developed a 1000+ page informational website on the OPEN Process
Framework at http://www.donald-firesmith.com. He can be reached at
dgf@sei.cmu.edu.

http://www.donald-firesmith.com
mailto:dgf@sei.cmu.edu

