"L'JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2004

Vol. 3, No. 1, January—February 2004

Finding Frameworks Hot Spots in Pattern
Languages

Rosana T. V. Braga

Paulo Cesar Masiero

Instituto de Ciéncias Matematicas e de Computacdo
Universidade de S3o Paulo — Brazil

An important issue that contributes to the complexity of object-oriented framework
development is the identification of its hot spots, i.e., the framework parts that must
be kept flexible, as they are specific of individual systems. A process for identification
of hot spots in an analysis pattern language is proposed. Several types of hot spots are
identifiable from information presented in the elements of each pattern of the pattern
language, making possible to define a process to sistematize this task. An example
illustrates the hot spots identification based on a pattern language for business resource
management.

1 INTRODUCTION

Software reuse is a goal that was set almost simultaneously with software engi-
neering. Structured programming, followed by object-oriented programming and
domain analysis were achievements obtained a long time ago to enhance software
reuse. Object-oriented software frameworks have emerged in the same context.
They allow the reuse of large structures in a particular domain, which can be cus-
tomized to specific applications in the domain. Families of similar but non-identical
applications can be derived from a single framework [Johnson and Foote, 1988],
[Fayad and Schmidt, 1997].

The difficulty to build, understand, and use frameworks has motivated the re-
search around frameworks, which includes methods for framework development and
documentation. In particular, a major complexity in framework development con-
cerns the identification of its hot spots, i.e., the parts that have to be kept flexible, as
they are specific of individual systems. This involves deep knowledge about the do-
main for which the framework is being built, as hot spots are designed to be generic
and further adapted according to the requirements of each instantiated application.
Hot spots are usually discovered by domain analysis and then by successive frame-
work refinements. However, each new discovery may imply in the need to redesign
part of the framework, which makes development more complex. The best approach
is to know beforehand which are the framework hot spots, in order to minimize the
number of iterations needed for its construction.

Cite this article as follows: Rosana T. V. Braga and Paulo Cesar Masiero: Finding Frameworks
Hot Spots in Pattern Languages, in Journal of Object Technology, vol. 3, no. 1, January-
February 2004, pages 123-142, http://www.jot.fm /issues/issue_2004_01 /article2

http://www.jot.fm/issues/issue_2004_01/article2

C"#_/ FINDING FRAMEWORKS HOT SPOTS IN PATTERN LANGUAGES

Like frameworks, software patterns and pattern languages have emerged aiming
at reuse, but in higher abstraction levels. While software patterns try to capture
the experience acquired during software development and synthesize it in a prob-
lem/solution form [Gamma et al., 1995], a pattern language is a structured collec-
tion of patterns that build on each other to transform needs and constraints into an
architecture [Coplien, 1998]. Pattern languages represent the temporal sequence of
decisions that lead to the complete design of an application, so it becomes a method
to guide the development process [Brugali et al., 2000].

Pattern languages and frameworks can be used together to achieve even more
reuse. Both are conceived for a specific domain, solving most of the problems that
are common to applications in that domain [Brugali and Menga, 1999]. A pat-
tern language can be used for documenting the framework, as already shown in
several works [Aarsten et al., 2000, Johnson, 1992]; for supporting the framework
design and implementation [Brugali and Menga, 1999, Brugali et al., 2000]; and as
a method to guide the transformation of the framework in a concrete application
[Brugali and Menga, 1999]. As pattern languages contain the main abstractions
found in an application domain, they have built-in information about the points
that differ from one application to another. So, they are a valuable source to iden-
tify the framework hot-spots. In particular, this work considers analysis pattern
languages, which are composed of patterns to solve problems found during system
analysis. These patterns are placed in a higher abstraction level than design pat-
terns, as they are domain specific.

The work shown in this paper depends on the existence of a pattern language for
a specific domain. Details about the construction of this pattern language is out of
the scope of this paper and can be found elsewhere [Braga and Masiero, 2003]. Ba-
sically, it involves domain analysis, the use of experience acquired during software
development in a specific domain, or the reverse engineering of existing systems.
After building a domain model to represent applications in a specific domain, the
problems found in the domain are split into smaller problems, and an analysis pat-
tern is created to solve each of these problems. The interaction among the patterns
in documented, for example using a graph, and the patterns are written.

The pattern language is not constructed only with the purpose of helping iden-
tifying the hot spots of a possible framework. Continuing the work presented in
this paper, we have defined two different processes: the first to build frameworks
based on pattern languages [Braga and Masiero, 2002b] and the second for using a
pattern language during the instantiation of applications with a framework built
based in that pattern language [Braga and Masiero, 2002c]. This second process is
supported by a wizard with a user interface that follows the same concepts of the
pattern language [Braga and Masiero, 2002a], so that users can apply the pattern
language and have their systems semi-automatically built.

This work focuses on analysis pattern languages as a source for framework hot
spots mining, pointing to the several types of hot spots that can be found inside
pattern languages and proposing guidelines of how to find them. The purpose is to
ease framework construction by minimizing the iteration cycles needed to refine it.

124 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1

2 HOT SPOTS ELICITATION

The paper is organized as follows. Section 2 presents the problem of hot spots
elicitation and shows the related work. Section 3 describes the types of hot spots that
are identifiable from pattern languages. Section 4 proposes guidelines to identify hot
spots in a pattern language. Section 5 establishes the relationship between the hot
spot type and the design of the framework. Section 6 presents a case study, in which
a pattern language for business resource management is the source for identifying the
hot spots of its associated framework. Section 7 presents the concluding remarks.

2 HOT SPOTS ELICITATION

A framework is a powerful technique to improve reuse, as lots of different appli-
cations can be obtained by instantiating it. However, the instantiation process is
usually very complex, requiring a deep understanding of the framework design and
implementation. To achieve the desired flexibility, frameworks contain special con-
structions that difficult its understanding. All frameworks have a fixed part, called
frozen spots [Pree, 1999], that reflect the common behavior of applications in the
domain. On the other hand, frameworks have parts that need to be kept flexible,
called hot spots, which have to be adapted according to the specific requirements of
concrete applications derived from the framework.

In most existing techniques for framework development [Pree, 1995, Pree, 1999,
Schmid, 1997, Schmid, 1999, Roberts and Johnson, 1998|, hot spots are identified
throughout the process. They begin with a particular application model, which is
used to define the first framework version, and then it is refined through several it-
eration cycles, including more and more hot spots. In other approaches, like Bosch’s
[J. Bosch and Fayad, 1999], a domain analysis model is obtained at the beginning,
which makes the framework hot spots more foreseeable.

Similar to identifying frameworks hot spots is identifying the variability of a soft-
ware product line [Griss et al., 1998, Svahnberg et al., 2001]. In this case, the vari-
ability is documented by the system features, which are used to group related require-
ments concerning the system behavior. Svahnberg et al. [Svahnberg et al., 2001]
classify features in four groups: External features, mandatory features, optional fea-
tures, and variant features. The approach presented in this paper also classifies the
several types of hot spots, some of which are similar to the features classification.

If an analysis pattern language exists for a particular domain, then it can be
used as a source for hot spots elicitation, minimizing iteration cycles needed for
framework construction, like in Bosch’s approach. Additionally, the framework can
be designed based on the pattern language, easing its future instantiation, as the
requirements of the the specific application will be more easily mapped to hot spots
that have to be adapted [Braga and Masiero, 2002b, Braga and Masiero, 2002c].

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 125

b

3 TYPES OF HOT SPOTS IDENTIFIABLE FROM PATTERN LAN-
GUAGES

FINDING FRAMEWORKS HOT SPOTS IN PATTERN LANGUAGES

There are several types of hot spots in a framework that must be adapted to produce
specific applications. Usually, this adaptation involves adding new classes and over-
riding methods, with the purpose of characterizing the specific application behavior.
For example, in white box frameworks reuse is obtained through inheritance, i.e.,
the concrete application classes inherit from framework abstract classes, whose hook
methods have to be overridden to provide the desired behavior.

The existence of a pattern language for a particular domain can greatly help in
the hot spots identification. Table 1 summarizes the types of hot spots that can be
identified from a pattern language. A code is assigned to each of them to ease future
reference. The adaptation type offers insights of how to design and implement it
in the framework and of how do adapt it during instantiation. The following sub-
sections describe how to find these types of hot spots in a pattern language.

Table 1: Types of Hot spots identifiable from pattern languages

IdCode

Hot spot Descrip-
tion

Adaptation type

Main sources in the
pattern language

PATTERN_OPTION

{ Optional pattern

Several classes and relationships

Language graph, Fol-

chosen according to the system re-
quirements

are disabled lowing patterns, Re-
lated patterns
PARTIC_OPTION | Optional participant One class and its relationships with | Participants
other classes are disabled or en-
abled
PARTIC_CHOICE | Choice of participants One or more participants must be | Participants, Struc-

ture, Variants

RELATIONSHIP

Change of Relationship

One or more relationships must be
changed according to the system
requirements

Participants

BEHAVIOR

Change of Behavior

One or more algorithms must be
changed according to the system
requirements

Participants, Structure

PROPAGATION

Propagation effect as
a consequence of other
pattern application

Some participants may have
changes in attributes or meth-
ods according to other patterns
already applied

Participants, Structure

Optional patterns

A hot spot belongs to the type PATTERN_OPTION if the whole pattern can be
considered optional when instantiating applications. It can be found by analyzing
the general structure of a pattern language, i.e., it is necessary to observe the sev-
eral inter-related patterns. The relationship among patterns is generally shown by
a graph that represents, rather than the interaction among patterns, the sequence
in which they are applied. A simple analysis of which patterns are of mandatory
use and which are of optional use, indicates several framework hot spots. For ex-
ample, both the pattern language for improving the capacity of reactive systems

126 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1

3 TYPES OF HOT SPOTS IDENTIFIABLE FROM PATTERN LANGUAGES

[Meszaros, 1995] and the pattern language for business resource management, named
GRN [Braga et al., 1999] use a graph to illustrate their structure. By analyzing this
graph we can have an idea of which patterns are mandatory or optional and, so,
we can identify several hot spots of the framework to be built. For example, in the
GRN pattern language, the RESERVE THE RESOURCE pattern is optional. This
indicates the need of a hot spot in the framework to handle this feature. This can
be confirmed by analyzing the pattern context which presents the scenario for the
pattern usage.

If the pattern language has no corresponding graph, the information necessary
to know whether each pattern is optional or not, can be found mainly in sections
“Context”, “Following patterns”, and “Related patterns”. The context is impor-
tant, as it gives indications of the desirable features for the pattern usage. Adding
to this the knowledge about the application domain, we can identify applications
that do not fit in the context and that, consequently, do not use the pattern. Sec-
tions “Related patterns” and “Following patterns” show other patterns related to
the current pattern, helping to identify other alternative patterns and, consequently,
indicate the pattern optionallity. The pattern language Accounts and Transactions
[Johnson, 1996] — although written in the Alexander form and, consequently, with-
out a “related patterns” section — has a paragraph at the end of the “solution”
section pointing to the related patterns, where it is clear that the user is directed to
alternative patterns according to the application characteristics.

Optional participants

The PARTIC_OPTION hot spot type denotes that a pattern participant is op-
tional when instantiating concrete applications, i.e., the pattern can be applied
without one of its participants. This type of hot spot can be found at different
sections of a pattern language. The main sources are the “participants” and “col-
laborations” sections, which are present in patterns that follow the GoF format
[Gamma et al., 1995]. As they describe the participants of the pattern and their
collaboration, they provide alternatives of using or not some of the participants.
When a participant is optional, there is a description of how the pattern works
without it. For example, in the GRN pattern language, “Source-Party” is an op-
tional participant in the RENT THE RESOURCE pattern, because small organizations
do not have branches or departments to be managed.

The “variants” or “variations” section, commonly found in the patterns of a
pattern language, is one of the richest sources of hot spots, mainly of the PAR-
TIC_OPTION type, because the variants often present solutions that differ with
respect to the participants.

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 127

C"#_/ FINDING FRAMEWORKS HOT SPOTS IN PATTERN LANGUAGES

Choice among participants

When a pattern participant does not specify a particular class, but gives alternatives
of two or more classes that can be used, a decision has to be made during analysis
to define the participant class, according to the requirements. This type of hot spot
(PARTIC_CHOICE) can be detected in the “Structure” section of the pattern lan-
guage, where a class diagram presents the solution, or in the “Participants” section,
where the classes that make the pattern are described. For example, in the pat-
tern language for Object-RDBMS Integration [Brown and Whitenack, 1996] there
is a section named “Discussion” in which variations of the solution are presented to
discuss the participants and their collaborations.

Relationship and Behavior

The RELATIONSHIP and BEHAVIOR hot spot types can be found in several sec-
tions of the pattern language. The RELATIONSHIP type consists of changing a
relationship between classes to obtain the desired functionality. The BEHAVIOR
type consists of changing a method (or operation) to attend a specific requirement.
The “Implementation” section, present in patterns that follow the GoF format, con-
tains suggestions of alternative implementations of the proposed solution, so that
according to the restrictions imposed by each particular application, different im-
plementations can be chosen. Thus, this section is a good source of these types of
hot spot. It must be observed that the framework developer often makes implemen-
tation choices that limit the possible implementations to one or two solutions. So,
it is common for the framework not to cover all the possibilities presented in the
“Implementation” section.

Another source of these types of hot spots is the “Structure” section, which
contains a diagrammatic representation of the pattern classes and their relationships.
A detailed analysis of this section can help to identify alternative behaviors that
may be desired for the system operations, often not described in the “Participants”
section. Thus, new hot spots can be defined to allow, for example, new attributes
or methods for the classes and alternative algorithms for computing attributes.

It is possible to misunderstand the hot spot types BEHAVIOR and RELATION-
SHIP. In fact, the RELATIONSHIP type is more specific and can include the BE-
HAVIOR type, because when a class relationship is changed there is a change of
behavior in the system. In this case, it is better to use the more specific type. An
example of the BEHAVIOR hot spot type is the payment of commissions regarding
transactions performed by the executor in the “Identify the Transaction Executor”
pattern of the GRN pattern language. The “variants” section of this pattern sug-
gests two different ways of implementing the commission payment: the payment
can be done independently of the corresponding payment by the customer, or it can
be done provided that the payment of each installment is done by the customer.
So, the classes and relationships are the same, but the algorithm used to compute
commissions can be different.

128 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1

4 GUIDELINES FOR IDENTIFYING HOT SPOTS

Propagation

The PROPAGATION hot spots are not very easy to find, because they reflect de-
cisions made in previously applied patterns. This means that some patterns may
have their participants or relationships modified according to the pattern variants
already applied. For example, in the GRN pattern language, the choice done when
applying the QUANTIFY THE RESOURCE pattern implies in several additions to the
participants of patterns applied subsequently.

Like the BEHAVIOR and RELATIONSHIP types, the PROPAGATION type is
also prone to be misunderstood. It is possible to categorize this type of hot spot into
one of the five other types, but it is recommended to classify it as PROPAGATION
to ease its further design: there is a high probability that its design will follow the
design of the hot spots for which it is a propagation of.

4 GUIDELINES FOR IDENTIFYING HOT SPOTS

Based on the types of hot spots defined in Table 1 and on the information contained
in a pattern language, a generic process is proposed to help the framework developer
to identify the hot spots using a pattern language. Figure 1 shows the steps involved
in this process.

Pattern Language

Non-functional
requirements
Knowledge Knowleds Design
bout th flowlecge !
Knowlege about about the about domain decisions

domain

hot jPOtS l analysis l

1 - Analyze 5 - Analyze non-

:> the Pattern 2 - Analyze 3 - Refine the list 4 - Hot spots functional
each pattern .
Language Graph of hot spots cross-reference requirements

\ List of Framework
hot spots

ES
E=

Figure 1: Process for hot spots identification based on a pattern language

In the first step, an analysis is done in the pattern language graph if there is one.
Alternatively, the sections “Following Patterns”, “Related Patterns”, or “Context”

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 129

C"#_/ FINDING FRAMEWORKS HOT SPOTS IN PATTERN LANGUAGES

of each pattern are studied. The main goal is to find paths that skip one or more
patterns, so that the optional patterns are determined. As explained in Section
3, if a pattern can be optionally applied during the pattern language usage, then
the corresponding framework needs to have means of working correctly without this
pattern. So, one or more hot spots are included in the framework to cope with this
behavior. In this case, the hot spot type is PATTERN_OPTION and the framework
user can enable or disable it, resulting in the inclusion or omission of one or more
classes that compose this pattern.

In the second step, each pattern of the pattern language is analyzed, by studying
its constituent sections, as they can indicate several framework hot spots. The
explanations supplied in sections 3 to 3 are useful to identify hot spots in this step.

In the third step, a refinement is done to each hot spot, aiming at supplying the
information necessary for its further design and implementation. It is common to
discover new hot spots in this step, depending on the experience of the framework
designer, because to refine a hot spot it may be necessary to split it into two or
more hot spots. The information about new hot spots can be used as feedback to
improve the pattern language in the subsequent iteration cycle.

To better organize the hot spots list, it is recommended to build a table with
information about hot spots. For each hot spot identified in steps 1 to 3 do the
following;:

1. Include it in the hot spots table, assigning it a number, a name and a brief
description of the desired flexibility.

2. Inform the hot spot type, according to what is needed to adapt the framework
for a specific application (Table 1).

3. Associate the hot spot with its source in the pattern language and the pattern
number.

In the fourth step, a cross reference among the hot spots is done to identify
possible inconsistencies in the whole list. New hot spots can be found in this step,
for example due to the incorrect propagation of previously applied patterns. Domain
knowledge is essential to perform this activity and, like in the previous step, new
hot spots can be used to enhance the pattern language.

In the last step, other non-functional aspects of the application with potential to
originate new hot spots are considered, which include portability, usability, security
and reliability. Design and implementation issues that could bring more flexibility
to the framework are also treated in this step. Some pattern languages contain
patterns in several abstraction levels like architectural and design patterns. Thus,
it is possible that the non-functional aspects of the domain may have already been
covered by the patterns. As our approach is preferably used with analysis pattern
languages, this step was added to reinforce the need of analyzing these issues.

130 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1

5 DESIGN OF THE FRAMEWORK HOT SPOTS

It is necessary to balance performance versus flexibility when considering non-
functional requirements and design or implementation issues, because including sev-
eral alternatives in the framework would make it more flexible but degrade system
performance. For example, if we consider database portability, the choice of using
a relational database or an object-oriented one may derive a hot spot to be set by
the framework user. Another example is the graphical user interface, which could
have two or more implementations (one for traditional applications, another for vir-
tual applications, etc.) so that the framework user could choose one of them. Notice
that this type of flexibility could be achieved by implementing several versions of the
framework, which would cause less impact on system performance. An example of a
design/implementation issue that could generate a hot spot is a web-based education
framework, where the course selection mechanism can vary [Fontoura et al., 2001].
For example, the entire list of available courses or just the ones related to the student
major could be shown.

Depending on the framework developer knowledge and on human decisions made
at this point, other hot spots that are not explicit in the pattern language can be
added. Knowledge about the domain is essential to succeed, but some guidelines can
give the framework developer indications of other sources of hot spots. For example,
looking at class attributes in the patterns of the pattern language, some questions
should be answered, like: “is this a computed attribute?” If so, “is it possible to have
several types of algorithms to compute it?” If the answer is affirmative, a new hot
spot has been found. Looking at class relationships, another source of hot spots is to
argue the cardinality of the relationships. If it is possible to find applications where
the cardinality would be different from the cardinality proposed in the pattern, then
a variant of the pattern exists and, consequently, a new hot spot. It is also desirable
to look for similar hot spots in the table, because sometimes new hot spots can be
derived by analogy.

Applying this process results in a list of the framework hot spots, each of which
composed of an identifier code, a description, a type, the section(s) in the pattern
where this hot spot was found and the pattern number (these two last items are
optional). The hot spot type allows the framework developer to know what should
be done to obtain an application from the framework. For example, if the type is
PARTIC_CHOICE then there will be a choice among participants; if the type is
PATTERN_OPTION, then the pattern is optional in particular applications; and if
the type is PARTIC_OPTION, then a pattern participant can be omitted in partic-
ular instantiations.

5 DESIGN OF THE FRAMEWORK HOT SPOTS

According to the hot spot type (Table 1) it is possible to have some indications
of how to implement it in the framework. For example, when a choice has to be
made among participants (PARTIC_CHOICE type), the STRATEGY design pattern
[Gamma et al., 1995] can be used. A Strategy class can be created with concrete

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 131

C"#_/ FINDING FRAMEWORKS HOT SPOTS IN PATTERN LANGUAGES

subclasses representing each possible choice. This strategy class is referenced by
one of the pattern mandatory participants, whose operations are delegated to the
strategy object.

Another example of how the hot spot type can influence its design is for optional
patterns (PATTERN_OPTION), in which the design has to allow the omission of
its constituent classes during instantiation, when that pattern is not selected. It is
preferable to design the classes using only inheritance, as the simple fact of inheriting
by one of the subclasses is enough to know that the pattern was used. However, this
is not always possible. For example, when the application of a pattern opens the
possibility of using another dependent pattern, then it may be necessary for a class
of the first pattern to know if the dependent pattern was also applied. A possible
solution to solve this problem is to include a special class variable in the first pattern
class that indicates if the dependent pattern was applied.

Similarly, for optional participants (PARTIC_OPTION), there must be a way of
hiding them during instantiation. This can also be done by including a special class
variable in a mandatory class of the pattern to indicate if an optional participant
was used in a specific instantiation.

The other three types of hot spots, namely BEHAVIOR, RELATIONSHIP, and
PROPAGATION usually do not map easily to a common design, as they are more
general. So, each specific case has to be treated separately.

6 CASE STUDY

A case study was conducted to evaluate the proposed process. The GRN pattern
language [Braga et al., 1999] was used to develop a framework for the same domain,
called GREN [Braga and Masiero, 2002b)].

Pattern Language features

The Pattern Language for Business Resource Management (Gestao de Recursos de
Negocios, or GRN, in Portuguese) is composed of fifteen analysis patterns (see Fig-
ure 2), some of which are specific usages or extensions of more generic patterns
proposed in the literature [Coad et al., 1997, Boyd, 1998, Johnson and Woolf, 1998,
Fowler, 1997]. It was conceived to help software engineers in the development of
applications concerned with business resource management. This includes applica-
tions where it is necessary to log transactions of business resource rental, trade or
maintenance. By transaction we mean the same as Coad et al.: “a significant event
to be remembered, i.e., an event that the system must remember through time”
[Fowler, 1997].

Resource rental focuses primarily on the satisfaction of a certain temporary need
of a product or service like a videotape or a physician time. Resource trade focuses

132 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1

6 CASE STUDY

('

| ICENTIFY THERESOURCE(L) |
Section
241 <
Business | |
A — QuanTFY THE RESCURCE (2)
Identification
v
| Y orE THE REZOURCE (3)
\ '
(
ReNT THE RESOURCE (4) TRATE THERESCURCE (6) MANTAIN THE RESCURCE (9)
Section RESERVE THE QUOTE THE QUOTE THE
22 < RESOURCE (5) T RADE(7) MANTENANCE (10)
Business
Transactions y
CHECK RESCURCE
DELIVERY (8)
4 i \ 4 L
h 4
ITENZE THE RESOURCE PA¥ FOR THE RESOURCE IDENTIFY M ATMTENANCE
i —» >
Sezctéon T rawsacTIoN (11) T RaANSACTION (12) Tasgs(14)
Business < ¢
Transaction &
Details IDENTIFY M AINTENANCE
] IDENTIFY THE T RAMSACTION PrTS(15)
> Execurcr (13)
\

Figure 2: GRN: a Pattern Language for Business Resource Management

on the transference of property of a product, as for example a product sale or auction.
Resource maintenance focuses on the maintenance of a certain product, using labor
and parts to perform it, as in an electric appliance repair shop. Figure 2 shows the
dependencies among the patterns and the order in which they are generally applied.
These dependencies are also presented, and eventually complemented, inside each
specific pattern. The main patterns in the language are RENT THE RESOURCE,
TRADE THE RESOURCE, and MAINTAIN THE RESOURCE, indicated by a thicker
line. Their use is not mutually exclusive and, in fact, there are applications in which
they can fit together. MAINTAIN THE RESOURCE may use RENT THE RESOURCE
and TRADE THE RESOURCE, as in a car repair shop system, in which parts are
traded and labor is rented.

The patterns are grouped according to their purpose, as illustrated in Fig-
ure 2: group 1 patterns are basically concerned with the identification, quantifi-
cation and storage of the business resources; group 2 patterns deal with the business
transactions performed by the system; and group 3 patterns that take care of de-

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 133

b

FINDING FRAMEWORKS HOT SPOTS IN PATTERN LANGUAGES

tails associated to most business transactions. The GREN framework construction
based on the GRN pattern language was done in two phases. In the first phase
a white box version of the framework was built [Braga and Masiero, 2002b]. Its
hot spots were identified in the GRN pattern language and were implemented us-

ing Smalltalk VisualWorks.

This framework can be manually instantiated using

a well defined process [Braga and Masiero, 2002c]. In the second phase, a wizard
was built [Braga and Masiero, 2002a], also based on the GRN pattern language, to
automatically instantiate the framework to specific applications.

Application of the hot spots identification process

The process outlined in section 4 was applied to identify 36 hot spots of the GREN
framework (some of them are listed in Table 2). Most of them (88,9%) were found
based in the GRN pattern language (steps 1 and 2 of the process) and only 11,1%
were identified by other ways (step 4 of the process, in this case).

Table 2

Partial List of Hot Spots for the GREN Framework

Name Description Type Source in the | Pattern
pattern lan- | #
guage

2 Resource A resource can be unique, can | PARTIC_CHOICE Participants, 2

Quantification have multiple instances, can be Structure,
managed in quantities or in Variants (sub-
lots. patterns)

8 Instance num- | The instance number of the re- | BEHAVIOR - 4

ber generation source to be rented can be sup-
plied by the user or automati-
cally generated by the system
9 Resource reser- | The application may or may | PATTERN_OPTION | Language 5
vation not need to deal with resource Graph +
reservation Context

12 Reserved quan- | It is necessary to read the | PROPAGATION - 5

tity entry quantity of reserved resources
when the reservation refers to
a measurable resource (propa-
gation of pattern 2 usage)

13 Resource trade | The application may or may | PATTERN_OPTION | Language 6
not concern the trade of re- Graph +
sources Context

14 Existence of | In sale systems, the organiza- | PARTIC_.OPTION Participants 6

Source-party in | tion may be small and not have
the trade branches or departments.
15 Existence of | In purchase systems, the orga- | PARTIC_.OPTION Participants 6
Destination- nization may be small and not
party in the | have branches or departments.
trade
16 Traded quan- | It is necessary to read the | PROPAGATION Participants 6
tity entry quantity of traded resources
when the trade refers to a mea-
surable resource (propagation
of pattern 2 usage)
35 Charge of | The application may have no | BEHAVIOR - 4
rentals charge for rentals, as in some
libraries

36 Fine comput- | The computing of fines due | BEHAVIOR - 12

ing to delayed payment may vary
from application to application
134 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1

6 CASE STUDY

Table 3 summarizes the types of hot spots found. We observe that most of them
are of type PATTERN_OPTION, since the pattern language has many optional
patterns and this results directly in hot spots, as explained in section 3.

Table 3: Summary of the types of hot spots identified

Type of hot spot Quantity found Per centage

Stepl | Step 2| Step 3| Step 4| Step 5
PATTERN_OPTION 14 38,9 %
PARTIC_OPTION 7 194 %
PARTIC_CHOICE 3 8,3 %
RELATIONSHIP 1 2,7%
BEHAVIOUR 2 3 139 %
PROPAGATION 5 1 16,7 %
Total 36

To illustrate the hot spots identification based on the pattern language, we will
use one pattern of the GRN pattern language, shown in Figure 3. It refers to the
TRADE THE RESOURCE pattern. The four hot spots identified from this pattern cor-
respond to hot spots 13 to 16 of Table 2. Hot spot 13, called “Trade the Resource”,
provides the flexibility to make optional the application of this pattern, because the
pattern language can also be used for rental or maintenance applications, and so it
may be desired not to apply this pattern. This is a PATTERN_OPTION hot spot,
as the whole pattern is optional. It was identified during step 1 of the process of
Figure 1. Analyzing the pattern language graph (see Figure 2), we notice that there
are paths that do not include the TRADE THE RESOURCE pattern, which implies
that this pattern is optional. Also, observing the pattern context (see item 6.1 of
Figure 3), we notice that applications that do not deal with resource trade do not
fit in the proper context for the pattern usage and, thus, should not use it.

Hot spots 14 to 16 were found during step 2 of the process shown in section 4.
Hot spot 14, called “Source-party existence”, gives small organizations the possibility
of having a simpler system, in which branches or departments are not considered.
This hot spot was identified observing the “participants” section of the pattern (see
item 6.5 of Figure 3: notice that “Source-party” is an optional participant of this
pattern). It is a PARTIC_OPTION hot spot, as its purpose is to make the source-
party participant optional. Hot spot 15 (“Destination-party existence”) is similar
to number 14 and was identified in the same section.

Hot spot 16 (“Traded quantity entry”) concerns the inclusion of a new attribute
in the trade due to the previous use of another pattern of the language and, so, is a
PROPAGATION hot spot. The knowledge about the propagation caused by the ap-
plication of certain patterns is embedded in the pattern language, as exemplified by
the participant “Resource Trade” (see section 6.5 of Figure 3). The pattern language
states that an attribute quantity is included in this class when the MEASURABLE
RESOURCE sub-pattern has been applied earlier.

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 135

f—

FINDING FRAMEWORKS HOT SPOTS IN PATTERN LANGUAGES

Pattern 6: TRADE THE RESOURCE

6.1 Context

Your application deals with trade of resources, which
may involve resources sold and/or purchased. You have
already identified and Quantified these resources.

Resource trading may be thought of as a resource
property transference, in which a resource owned by one
party becomes owned by another party. In a sale, if the
resource is not available in stock, then the customer can
fill in an order that will be granted when possible. In a
purchase an order is made to the supplier who delivers
the resource within a certain period.

6.2 Problem
How do you manage the resource trades made by your
application?

6.3 Forces

e Itisessential tolog trade information, because it can
be used to generate important reports on resource
demand and organization gains (most systems in this
domain are concerned with profits).

e The additional storage space and processing time
required to log trade information has to be balanced
against possible gains in system functionality when
evaluating costs versus benefits. For example, it may
be enough to increase and decrease stock levels
when resources are traded, without considering other
trade details.

6.4 Structure
Figure 17 shows the TRADE THE RESOURCE pattern.

6.5 Participants

Resource Trade: represents all the details involved in trading the
resource. The attribute status denctes the trade stage: pending,
partially fulfilled, or fully fulfilled. When the MEASURABLE
RESOURCE sub-pattern has been applied earlier, then an attribute
Quantityis added to denote a non-unitary resource trade.
Resource/Resource Instance/Resource Lot the choice among
Resource, Resource Instance or Resource Lot depends on the
quantification sub-pattern used.

Source-Party. represents the original resource owner, for
example, in the case of a sale it is the organization department or
branch that sells the resource, and in the case of a purchase itis
the supplier orgamzation. This class is optional for small sale
systems where there are no departments or branches.
Destination-Party. represents the final resource owner, for
example, in the case of a sale it is the customer buying the
resource, and in the case of a purchase it is the organization
department or branch buying the resource. This classis optional
for small purchase systems where there are no departments or
branches and also in systems where the customer is not logged,
as in supermarkets.

6.6 Example
Figure 18 shows an instantiation of the TRADE THE RESOURCE
pattern for an Inventory Control system.

Destination -Party

Supplier Store-branch

code
name
lget purchases by branch

code
location
!get purchases by supplier

asks for
1 makes v 1
£ ' il
Purchase Product
purchase number barCode
purchase date is related to P» | description
status cost
uantity in stock

2do the purchase * 1 g.\ ‘m‘:}"v level
?cancel the pumhase !get purchases by product
l#calculate earnings
I#get non-deliv. purch.

Sonrce-Party Destination-Party

code code

name me —

Icet trades bv source-party !get trades by destination-party

01| makes asks for| 0..1
s

trade number
trade date . Resource/Resource
status isrelated to. P Instance/Resource Lot
observations

2o the trade * 1

?2cancel the trade

l#calculate earnings

l#get non-delivered trades

Figure 17: TRADE THE REsOURCE pattern

Resource
Tirztile Resource

Figure 18: Instantiation of the TrRADE THE RESOURCE pattern

6.7 Following patterns

Now, look at patterns in Section 2.3, which are useful for
modeling other trade details. As a trade is followed by a delivery
and can be preceded by a quotation, try to use the patterns Quom
THE TRADE (7) and CHECK RESOURCE DELIVERY (8).

Figure 3: Example of a pattern of the GRN pattern language

Another interesting result of the case study was the identification of four new
hot spots during step 4 of the process proposed in section 4. For example, hot
spot 12 of Table 2 was not identified from the pattern language, but found through
inspection of similar hot spots in the table. An analysis of the table was done to
check the propagation effect of applying the QUANTIFY THE RESOURCE pattern.
This pattern has four alternative solutions, presented as sub-patterns. One of them,
the MEASURABLE RESOURCE sub-pattern, is used when the resource is dealt with in
quantities, so the quantity attribute needs to be entered in all resource transactions.
Thus, as we have seven possible transactions in the pattern language, we expected

136 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1

6 CASE STUDY

to have seven hot spots concerning this feature. However, we found only four. The
missing ones were for patterns 5, 9 and 10. Making a deeper domain analysis, we
concluded that this feature is not desired for maintenance systems (patterns 9 and
10), because it is very rare to have resources to be maintained in quantities (they
are usually unique). So only one new hot spot was added (number 12), as it makes
sense to reserve more than one copy of a resource. It had been forgotten during the
pattern language writing and, afterwards, the pattern language was fixed to include
this requirement.

Hot spot 36 of Table 2 is another example of a hot spot found during step 4 by
analyzing class attributes that need to be computed. There are several different ways
of computing the fine that customers need to pay when a transaction is paid after
its due date. Examples are fixed, daily, weekly or monthly fees, or a percentage of
the total due value. Besides the fine, interests may optionally be charged. Hot spots
8 and 35 were also found during the fourth step of the process. It was not possible
to identify hot spots during step 5 using the GRN pattern language because GRN
refers to analysis patterns and is not concerned with design and implementation
issues. We have decided not to include hot spots of this category in a first version
of the framework, but will consider this possibility in its future versions.

Design of the GREN hot spots

The GREN framework hot spot 2 — Resource Quantification (see Table 2) was imple-
mented using the STRATEGY design pattern [Gamma et al., 1995]. Figure 4 shows
part of the GREN class hierarchy, where it can be observed the use of a strategy ob-
ject (QuantificationStrategy of Figure 4). This strategy object is responsible for the
resource quantification issues, allowing the framework to implement the four different
solutions required by the pattern. So, for example, when the method isAvailable
is invoked by a Resource object (this method returns a boolean to denote if the re-
source is available for the transaction), it is delegated to the corresponding strategy
object, which knows exactly how to determine the resource availability. For exam-
ple, if the quantification strategy is an InstantiableResource, then it has to find at
least one available instance, but if it is a MeasurableResource, then its quantity in
stock needs to be checked.

Another example of a GREN hot spot design and implementation is hot spot 9
— Reserve the Resource, now illustrating the PATTERN_OPTION type. It uses the
class variable hasReservation in the ResourceRental class to indicate whether or not
the RESERVE THE RESOURCE pattern was used. As can be in seen in Figure 3, this
pattern is optional, as there are arrows indicating that other patterns can be applied
after pattern 4, so skipping it. This class variable is set to a boolean value during
GREN instantiation for a specific application. If it is set to true, then pattern 5
was applied. As there is a relationship between a class of pattern 4 to a class of
pattern 5, it is necessary to override some methods that deal with this relationship.
Otherwise, pattern 5 was not applied, so nothing else has to be done.

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 137

G#_/ FINDING FRAMEWORKS HOT SPOTS IN PATTERN LANGUAGES

PersistentObject
isChanged < StaticObject
isPersisted idCode : integer <l 1
description : String QualifiableObject types
ObjectType
Resource 0.7 L
/0 isAvailableQ) |~.._ é type
.
QuantificationStrategy o N _
quantification do quantification.isAvailable SimpleType NestedType
isAvailable()
[I |
InstantiableResource MeasurableResource SingleResource

for each instance do:
if status=Available . . L
return true - 1.1 isAvailable()] if quantitylnStock >= 1
T 0. R return true
Resourcelnstance
number 1.1 LotableResource Resourcelot
allocation resourcelot number
status MeasureUnity 1.1 0.* qtty
isAvailable()

Figure 4: Example of some GREN classes

7 CONCLUDING REMARKS

It is rather intuitive that splitting the application domain in several patterns implies
in the elicitation of many hot spots. This makes the system composed of smaller
parts, which need to be joined to make up the specific application. This fact was
confirmed during the case study, where we have observed many hot spots identified
from the pattern language graph, which means that optional parts of the system are
encapsulated in patterns.

The pattern language example used in this paper had only analysis patterns,
so the hot spots found using it were basically concerned with the analysis phase
of the software development. Pattern languages that comprise patterns in several
abstraction levels, for example, architectural, analysis, and design patterns, can lead
to the identification of other types of hot spots.

The pattern language construction involves an analysis of the application domain
and having practical experience in the development of applications for this domain.
In our case the first author had more than ten years of practice that allowed the de-
velopment of the pattern language. During the framework usage in the development
of specific applications and because of the application domain evolution, new hot
spots may be necessary. In this case, the pattern language must also be updated,
including new patterns or changing existing ones.

138 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1

instances quantitylnStock status if status=Available
reSupplyLevel return true
----- isAvailable() measureUnity isAvailable() e

7 CONCLUDING REMARKS

The strategy proposed in this paper offers a new alternative to find framework
hot spots. The pattern language embodies the domain knowledge and lends itself
to hot spots elicitation. As already mentioned in the introduction, our approach
is directed to the ultimate goal of easing framework reuse and continues using the
pattern language in the framework design, implementation and instantiation.

REFERENCES

[Aarsten et al., 2000] Aarsten, A., Brugali, D., and Menga, G. (2000). A CIM
Framework and Pattern Language, pages 21-42. Domain-Specific Ap-

plication Frameworks: Frameworks Experience by Industry, M. Fayad,
R. Johnson, —~John Willey and Sons.

[Boyd, 1998] Boyd, L. (1998). Business Patterns of Association Objects, pages 395—
408. Addison-Wesley.

[Braga et al., 1999] Braga, R. T. V., Germano, F. S. R., and Masiero, P. C. (1999).
A pattern language for business resource management. In 6th Pattern
Languages of Programs Conference (PLoP’99), Monticello — IL, USA.

[Braga and Masiero, 2002a] Braga, R. T. V. and Masiero, P. C. (2002a). GREN-
Wizard: a tool to instantiate the GREN framework. In Proceedings of the

Tools Session of the 16th Simposio Brasileiro de Engenharia de Software
(SBES 2002), pages 408413, Gramado-RS.

[Braga and Masiero, 2002b] Braga, R. T. V. and Masiero, P. C. (2002b). A process
for framework construction based on a pattern language. In Proceed-
ings of the 26th Annual International Computer Software and Applica-
tions Conference (COMPSAC), pages 615-620, IEEE Computer Society,
Oxford-England.

[Braga and Masiero, 2002¢c] Braga, R. T. V. and Masiero, P. C. (2002c). The role
of pattern languages in the instantiation of object-oriented frameworks.
Lecture Notes on Computer Science, 2426-Advances in Object-Oriented
Information Systems:122-131.

[Braga and Masiero, 2003] Braga, R. T. V. and Masiero, P. C. (2003). Building a
wizard for framework instantiation based on a pattern language. Lecture

Notes on Computer Science, 2817-Object-Oriented Information Systems,
2003: 95-106.

[Brown and Whitenack, 1996] Brown, K. and Whitenack, B. G. (1996). Crossing
Chasms: A Pattern language for Object-RDBMS Integration, The Static
Patterns, pages 227-238. Addison-Wesley. in J. Vlissides and J. Coplien
and N. Kerth (eds.)- Pattern Languages of Program Design 2.

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 139

C"#_/ FINDING FRAMEWORKS HOT SPOTS IN PATTERN LANGUAGES

[Brugali and Menga, 1999] Brugali, D. and Menga, G. (1999). Frameworks and
pattern languages: an intriguing relationship. ACM Computing Surveys,
32(1):2-7.

[Brugali et al., 2000] Brugali, D., Menga, G., and Aarsten, A. (2000). A Case Study
for Flexible Manufacuring Systems, pages 85-99. Domain-Specific Appli-
cation Frameworks: Frameworks Experience by Industry, M. Fayad, R.
Johnson, —John Willey and Sons.

[Coad et al., 1997] Coad, P., North, D., and Mayfield, M. (1997). Object Models:
Strategies, Patterns and Applications. Yourdon Press, 2 edition.

[Coplien, 1998] Coplien, J. O. (1998). Software Design Patterns: Common Ques-
tions and Answers, pages 311-320. Cambridge University Press. in L.
Rising - The Patterns Handbook: Techniques, Strategies, and Applica-
tions.

[Fayad and Schmidt, 1997] Fayad, M. and Schmidt, D. C. (1997). Object-oriented
application frameworks. Communications of the ACM, 40(10).

[Fontoura et al., 2001] Fontoura, M., Pree, W., and Rumpe, B. (2001). The UML
Profile for Framework Architectures. Addison-Wesley.

[Fowler, 1997] Fowler, M. (1997). Analysis Patterns. Addison-Wesley.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns: Elements of Reusable Object-Oriented Software. Addi-
son Wesley.

[Griss et al., 1998] Griss, M. L., Favaro, J., and d’Alessandro, M. (1998). Integrating
feature modeling with the RSEB. In Fifth International Conference on

Software Reuse, pages 78-85, IEEE Computer Society, Los Alamitos,
CA, USA.

[J. Bosch and Fayad, 1999] J. Bosch, P. Molin, M. Mattsson. P. Bengtsson. and
M. Fayad (1999). Framework problem and experiences, pages 55—
82. Building Application Frameworks: Object-Oriented Foundations of
Framework Design, M. Fayad, R. Johnson, D. Schmidt, — John Willey
and Sons.

[Johnson and Foote, 1988] Johnson, R. and Foote, B. (1988). Designing reusable
classes. Journal of Object Oriented Programming, 1(2):22-35.

[Johnson, 1992] Johnson, R. E. (1992). Documenting frameworks using patterns.
In OOPSLA 92, pages 63-76.

[Johnson, 1996] Johnson, R. E. (1996). Transactions and Accounts, pages 239-249.
Addison-Wesley. in VLISSIDES, J.; COPLIEN, J.; KERTH, N. (eds.)
Pattern Languages of Program Design 2.

140 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1

7 CONCLUDING REMARKS

[Johnson and Woolf, 1998] Johnson, R. E. and Woolf, B. (1998). Type Object, pages
47-65. Addison-Wesley. in Martin, R.C.; Riehle, D.; Buschmann, F.
Pattern Languages of Program Design 3.

[Meszaros, 1995] Meszaros, G. (1995). A Pattern Language for Improving the Ca-
pacity of Reactive Systems, pages 575-591. Addison-Wesley. in J. Coplien
and D. Schmidt (eds.) - Pattern Languages of Program Design.

[Pree, 1995] Pree, W. (1995). Design Patterns for Object-Oriented Software Devel-
opment. Addison-Wesley.

[Pree, 1999] Pree, W. (1999). Hot-spot-driven Development, pages 379-393. Build-
ing Application Frameworks: Object-Oriented Foundations of Frame-
work Design, M. Fayad, R. Johnson, D. Schmidt, —John Willey and Sons.

[Roberts and Johnson, 1998] Roberts, D. and Johnson, R. (1998). Evolving Frame-
works: A Pattern Language for Developing Object-Oriented Frameworks,

pages 471-486. Pattern Languages of Program Design 3, Martin, R.C.,
Riehle, D. , Buschmann, F. — Addison-Wesley.

[Schmid, 1997] Schmid, H. A. (1997). Systematic framework design by generaliza-
tion. Communications of the ACM, 40(10):48-51.

[Schmid, 1999] Schmid, H. A. (1999). Framework Design by Systematic Generaliza-
tion, pages 353-378. Building Application Frameworks: Object-Oriented
Foundations of Framework Design, M. Fayad, R. Johnson, D. Schmidt,
—John Willey and Sons.

[Svahnberg et al., 2001] Svahnberg, M., Gurp, J. V., and Bosch, J. (2001). On
the notion of variability in software product lines. In Proceedings of the
Working IEEE/IFIP Conference on Software Architecture (WICSA’01),
pages 45-54, Amsterdam, The Netherlands.

ABOUT THE AUTHORS

Rosana T. Vaccare Braga is Professor at ICMC — University of
Sao Paulo — Brazil, where she had also had her PhD in 2003 and
her Master’s degree in 1998. She has been working with business
systems development for the last fifteen years. Her research ac-
tivity is in Software Engineering (Frameworks, Pattern Languages,
Reengineering, and Reverse Engineering) and Information Systems.
Her financial support for this paper is from FAPESP Process n.
98/13588-4. She can be reached at rtvb@icmc.usp.br.

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 141

file:rtvb@icmc.usp.br

FINDING FRAMEWORKS HOT SPOTS IN PATTERN LANGUAGES

Paulo C. Masiero received the D.Sc. degree from the Univer-
sity of Sao Paulo, Sao Paulo. He is currently a Full-Professor in
the Computer Science Departament of the Institute of Mathematics
and Computing Sciences/USP, in Sao Carlos, Brazil, where he has
been the Dean. His research activities are in Software Engineering
(software reuse, object oriented design, frameworks, and reverser en-
gineering) and applications of Information Technology. He can be
reached at masiero@icmec.usp.br.

142

JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1

file:masiero@icmc.usp.br

