
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 5, September-October 2003

Cite this column as follows: Conrad Bock: “UML 2 Activity and Action Models Part 2: Actions”, in
Journal of Object Technology, vol. 2, no. 5, pp. 41-56.
http://www.jot.fm/issues/issue_2003_09/column4

UML 2 Activity and Action Models

Part 2: Actions

Conrad Bock, U.S. National Institute of Standards and Technology

This is the second in a series introducing the activity model in the Unified Modeling
Language, version 2 (UML 2), and how it integrates with the action model [1]. The first
article covered motivation and architecture for the new models, basic aspects of UML 2
activities and actions, and introduced the general notion of behavior in UML 2 [2]. The
remainder of the series elaborates specific elements in the models. This article recaps
behavior models in UML and the role of actions in them. It covers the execution
characteristics of actions in general, which inherit to the many kinds of actions provided
in UML 2. It also covers additional characteristics of actions that invoke behaviors.

1 UML BEHAVIOR MODELS

UML is divided into structural and behavioral specifications, that is, models of the static
and dynamic aspects of a system. Behavior models specify how the structural aspects of a
system change over time. UML has three behavior models: activities, state machines, and
interactions. Activities focus on the sequence, conditions, and inputs and outputs for
invoking other behaviors, state machines show how events cause changes of object state
and invoke other behaviors, and interactions describe message-passing between objects
that causes invocation of other behaviors. Each kind of behavior model emphasizes a
different aspect of system dynamics, making one or the other more suitable for a
particular application, or stage of application development.

Behaviors can be invoked directly, or as methods on objects accessed through
operations on objects. For example, in Figure 1 the DELIVER MAIL behavior can be
invoked directly, or through the DELIVERMAIL operation on an instance of the
POEMPLOYEE class (the arrow is only for exposition, it is not UML notation). Invoking a
behavior through an operation means that an object determines at runtime which behavior
actually executes, whereas no object is needed to invoke a behavior directly and the
behavior to be invoked is specified at design-time. The provision for first-class behaviors
independent of objects was introduced in UML 1.5 [3]. These can be used, for example,
when modeling function libraries of popular programming languages, They also facilitate

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_09/column4

UML 2 ACTIVITY AND ACTION MODELS, PART 2: ACTIONS

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

application of UML by modelers who do not use object-orientation (OO) routinely, such
as system engineers and enterprise modelers, and provides them a path to incrementally
adopt OO as needed. The flexibility to combine OO with functional approaches
considerably widens and integrates the potential applications of UML.

Figure 1: Operation Using a Behavior as a Method

2 THE ROLE OF ACTIONS IN UML

The recursion of behaviors coordinating other behaviors described in the last section is
mediated by, and bottoms out at, actions. Actions are the only elements in UML that can
query objects, have a persistent effect on them, invoke operations on them, and invoke
behaviors directly. For this reason, actions are sometimes called the "primitive" dynamic
elements in UML, since all behaviors must eventually reduce to actions to have any effect
on objects, or even to invoke other behaviors. Before the introduction of a complete
action model in UML 1.5, users depended on platform- or vendor-dependent code
inserted in the model to represent queries and effects on objects, and invoke behaviors.
UML 1.5 was the first version to support complete behavior specification independently
of implementation.

Actions are not behaviors themselves, because actions are provided by UML whereas
behaviors are user-defined. UML defines actions for invoking behaviors, either directly
or through an operation. For example, in Figure 1 the smaller, round-cornered rectangles
are actions that invoke the user-defined behaviors GET MAIL and PUT MAIL IN BOXES.
Other actions are defined for getting the values of attributes, linking objects together, and
so on. In fact, UML defines enough actions for almost all applications.

Actions are directly contained only in activities. Other specification elements refer to
actions through activities. For example, an activity can be used as the method for an
operation on a class, as the entry or exit behavior on a state, as a behavior nested inside
another activity, and as the cause of a message being sent between objects on interaction
lifelines.1 Actions are a kind of node in activities, connected to other nodes by edges to

1 The use of activities by interactions is unfortunate for maintaining consistency between interactions and
the other behavior models. Interactions are filtered views that show only the message-passing aspects of a
behavior. Interactions should refer to actions that pass messages, not to activities containing the actions, so
the interaction can show the message view of an activity or state machine. In UML 1.4 and earlier,
interaction messages referred to actions.

POEmployee

deliverMail()
Put Mail
In Boxes

Deliver Mail

Get
Mail

POEmployee

deliverMail()
Put Mail
In Boxes

Deliver Mail

Get
Mail

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 43

form a complete flow graph. The two other kinds of nodes in activities mediate between
actions to determine when the actions are executed and what inputs they will have.
Control nodes route values through the graph, including constructs for choosing between
alternative flows, for proceeding along multiple flows in parallel, and so on. Object nodes
hold data values temporarily as they wait to move through the graph, including constructs
for holding inputs and outputs of actions (see next section).2

Actions are notated with round-cornered rectangles, as shown in Figure 2. The
wording inside the action is not normative, because a standard textual notation for actions
is not adopted yet. Also action nodes can be given labels that are more descriptive for the
modeler than the predefined action name in UML. For example, the predefined
CREATEOBJECTACTION in UML can be used to instantiate any class, and may be used in
business application to create orders. The action might be named CREATE ORDER for
clarity. The round-cornered rectangle notation is overloaded in UML, because it is also
used by state machines to notate states, which have a very different meaning. This is not a
desirable situation, but it is beneficial to those users and vendors who have been trying to
apply state machines to flow modeling, for lack of a flow modeling standard until now.

Figure 2: Action Notation and Repository

3 START AND END CONDITIONS FOR ACTIONS

To begin executing, an action must know when to start and what its inputs are. These
conditions are called control and data, respectively.3 Figure 3 shows control and data flow
edges in UML 2 directed towards an action (the sources of the flows are not shown). Data
flow is distinguished from control by small rectangles on the action to show the type of
data flowing into the action. These are called pins. Pins may also be notated as a single
rectangle standing apart from the action, as long as the source of the data flow provides
the same type as the targeted input requires. In Figure 3, the ACQUIRING COMPANY input
is shown this way. The meaning is exactly the same regardless of which notation is used
for pins, as is the repository model. See Figures 5 and 6 in the first article.

2 Contrary to the name, object nodes can hold both objects and data. UML unifies data and object under the
notion of classifier.
3 Data includes objects, see footnote 2.

label

Create Order

Notation

Example

Repository Create Order : CreateObjectAction

label

Create Order

Notation

Example

Repository Create Order : CreateObjectActionCreate Order : CreateObjectAction

UML 2 ACTIVITY AND ACTION MODELS, PART 2: ACTIONS

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

Pins provide for multiple data flows into an action, which may all be of the same type but
treated differently by the action. For example, the ACQUISITION behavior in Figure 3 has
two data inputs, both of type COMPANY, where one is the purchasing company and the
other is purchased. A pin can be labeled with any string, but it is usually the name of the
type of object being input or output, such as COMPANY, or where that is ambiguous, a
distinguishing name like ACQUIRED COMPANY, or both separated by a colon, as in
COMPANY : ACQUIRED COMPANY. Pins are kinds of object nodes: they hold inputs to
actions until the action starts, and hold the outputs of actions before the values move
downstream.

An action begins executing when all its incoming control and data are available (see
exceptions to this in section 5). For example, the ACQUISITION behavior in Figure 3 will
only start when the two companies and control arrive at the action. If there are multiple
control flow edges coming into an action, control must arrive along all of them for the
action to start. For convenience, an action with no incoming control starts when all its
data inputs are available. This simplifies diagrams where the control dependencies
between actions in an activity are exactly the same as the data dependencies. An action
with no incoming control or data will never execute, though there are some exceptions
provided for convenience, described later in the series.

Figure 3: Control and Data Flow into an Action

label

label

Notation:

Example:

Data/Object
Flow

Control
Flow

Aquired
Company Acquisition

Data/Object
Flow

Control
Flow

Aquiring
Company

label

label

Notation:

Example:

Data/Object
Flow

Control
Flow

Aquired
Company Acquisition

Data/Object
Flow

Control
Flow

Aquiring
Company

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 45

Control flow does not require pins because control is not operated on by actions, that is,
actions cannot take a control value as input, examine it, perform some operation on it, as
they can do with data. Consequently, control does not have a type and is not a form of
data. There is in effect only one control value, namely the one that indicates an action can
start executing. Even though control flow has no pins, control arriving at an action before
other inputs is still held until those other inputs arrive before the action starts. However,
there is no provision for holding multiple control values as there is for data. The topic of
queuing will be addressed later in the series.4

Start conditions for actions treat data as a form of control in the sense that the
availability of data can trigger the start of an action, just as control can. This contrasts
with other forms of data flow in which data is a passive element that is read by an action
as needed when control indicated the action should start [4][5]. Passive data, usually
called data store, is partially addressed in UML 2 as a kind of object node, described later
in the series.

Modelers cannot change the fact that all inputs are required for an action to start. This
makes activity diagrams easier to read because the way actions start is uniform, rather
than varying by action, requiring detailed annotations to show the differences. Exceptions
to this are restricted to a few common patterns, as explained in section 5. User-defined
variations in control and data combination are separated from actions and explicitly
shown by using control nodes. This contrasts with languages that provide for variations
or user-defined control and data combiners at each action to specify other start conditions
[6][7][8]. Such languages can result in notations that are difficult to interpret, because the
execution rules for actions are not uniform.

Input pins accept data and objects at runtime, while other information that actions
require to begin execution is provided statically in the user model, at design time. For
example, the action in Figure 4 sets an attribute value. At runtime the input pins receive
the object to be modified, and the value to be added to the attribute. The attribute itself is
constant for all executions of the action and does not have a corresponding pin. It is only
shown informally in the action name. The attribute appears in the repository model for
the action, shown in Figure 5, as the STRUCTURALFEATURE association from the
ADDSTRUCTUREALFEATUREVALUEACTION to PROPERTY (see [9] regarding the UML
repository). A tool can access the repository to show the attribute in a vendor-specific
way, which may be on the diagram, for example as a vendor-specific action naming
convention, or may be some other non-diagrammatic user interface technique, such as a
dialog box.

4 Some languages provide for treating control as data, including queuing of control, as called for in [8].

UML 2 ACTIVITY AND ACTION MODELS, PART 2: ACTIONS

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

Figure 4: Action for Setting an Attribute Value

Figure 5: Repository Model for Figure 4

The repository model also includes the derived values for the type of object that pins can
hold, called the pin type for short. For example, in Figure 5 the type of the VALUE pin,
COLOR, is derived from the attribute being modified by the action, as is the type of the
OBJECT pin, HOUSE. The derivation rules for pin types of each action are given by
constraints in the UML specification.

An action has control and data outputs, notated in the same way as inputs, except the
flow arrows point in the other direction, as shown in. An action terminates based on
conditions internal to itself, but when the action does terminate, data is posted to all its
output pins, and control values are placed on all its outgoing control flows (see
exceptions to this in section 5). For example, in, when ACQUISITION terminates, control
leaves the action along with the merged company and new shares to replace the acquired
ones. An action that has no control or data outputs can still terminate, but its termination
cannot cause other actions to start.

New
Color

Change
House Color

House

New
Color

Change
House Color

House

House : InputPin

New Color : InputPin

House : Class

+/type

Change House Color : AddStructuralFeatureValueAction
isReplaceAll = true

+object

+value

Color : Class

+/type

Color : Property+ownedAttribute
+structuralFeature

+type

House : InputPin

New Color : InputPin

House : Class

+/type

Change House Color : AddStructuralFeatureValueAction
isReplaceAll = true

+object

+value

Color : Class

+/type

Color : Property+ownedAttribute
+structuralFeature

+type

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 47

Figure 6: Control and Data Flow out of an Action

4 PINS, PARAMETERS, AND CALL ACTIONS

Actions are predefined in UML, whereas behaviors and operations are user-defined.
Modelers can specify behaviors as activities, state machines, or interactions, can use
behaviors as methods for operations on classes, and can invoke behaviors and operations
with the actions CALLBEHAVIORACTION and CALLOPERATIONACTION, respectively.5
Figure 7 shows an example of these actions, collectively known as call actions. The
behavior DELIVER MAIL BY TRUCK is invoked by a CALLBEHAVIORACTION in the
fragment at the top, while the operation DELIVER MAIL on an instance of POST OFFICE is
invoked by CALLOPERATIONACTION in the fragment at the bottom (the curved line is

5 Behaviors can also be invoked by sending signals to objects with SENDSIGNALACTION,
BROADCASTSIGNALACTION, and SENDOBJECTACTION, but this is usually indirect invocation through
triggering transitions on a state machine of the object. The responding behavior can vary over time even for
the same object due to multiple states, can be delayed due to the queuing of signals for processing by the
state machine, and may even not have inputs compatible with the signal that was sent. The discussion in
sections 4 and 5 does not apply to these cases, because the loose linkage of action and behavior means the
characteristics of the parameters cannot be notated on the pins. Likewise for operation calls that are
dispatched to a state machine, which is also possible in UML. For operations and signals that are defined to
uniformly and directly invoke a behavior, the discussion in sections 4 and 5 applies.

UML 2 ACTIVITY AND ACTION MODELS, PART 2: ACTIONS

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

only for exposition, it is not UML notation).6 The behavior DELIVER MAIL BY TRUCK can
be a method for the DELIVER MAIL operation on POST OFFICE. The repository model for
this case is shown in Figure 8.7 The repository for CALLBEHAVIORACTION on the
DELIVER MAIL BY TRUCK behavior is very similar, except that CALLBEHAVIORACTION :
ACTION is linked directly to DELIVER MAIL BY TRUCK : BEHAVIOR, rather than going
through an operation.

Figure 7: Examples of CALLBEHAVIORACTION and CALLOPERATIONACTION

Behaviors and operations have parameters, and these must be compatible with each other
when a behavior is used as the method for an operation, as DELIVER MAIL BY TRUCK and
DELIVER MAIL are. Parameters must also be compatible with pins of actions that invoke
the behaviors or operations, as the pins are in Figure 7.8, 9 Labels on pins for call actions

6 The rake symbol for CALLBEHAVIORACTION was under some debate at the time of adoption and may be
changed in finalization. The parentheses notation for CALLOPERATIONACTION is inherited from UML 1.x,
but extensions to it in UML 2 for showing a different operation name than the action name may also change
in finalization. There is no notation yet to indicate which pin provides the object on which the operation is
invoked (for the "self " parameter), when it isn’t clear from the class given in parentheses.
7 The DELIVER MAIL operation is polymorphic even though POST OFFICE has only one method for it.
Subtypes of POST OFFICE may override the method with others, and CALLOPERATIONACTION will dispatch
to whatever method is in place for the class of object that is the target of the action.
8 Pins and parameters may be incompatible only when the call action is asynchronous that is, does not wait
for the return values after invoking the behavior or operation. In this case, the out and return parameters of
the behavior or operation, if any, will have no corresponding pins. Only the in and inout parameters must
be compatible.

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 49

can use the full UML syntax for parameters as they appear in classes, which includes the
parameter name, type, direction, and so on. For example, the pin for the mail on DELIVER
MAIL could be labeled as "IN M : MAIL".

Figure 8: Repository Model for CALLOPERATIONACTION in Figure 7.

Pins on call actions are usages of parameters in the same way that call actions are usages
of behavior and operations. Pins and actions separate the potentially reusable
specification of a behavior or operation from actual usage, to support multiple usages of
the same specification in multiple behaviors. For example, the same DELIVER MAIL
behavior may be invoked in many activity diagrams, or many times in the same activity
diagram, but each invocation will be represented by a separate instance of
CALLOPERATIONACTION in the repository, and separate instances of INPUTPIN and
OUTPUTPIN, all referring to the same DELIVER MAIL operation and parameters. This is
because each usage of DELIVER MAIL and its parameters will be in a different flow graph,
or at different points in the same flow, and the flow edges from the action and pins will

9 The matching of pin to parameter is achieved by the fact that the links from actions to input and output
pins are ordered, and the links between parameter and behavior or operation are also ordered, so can the
mapped one-for-one. However, the UML 2 currently uses separate associations from ACTION to INPUTPIN
and OUTPUTPIN, while there is a single association from BEHAVIOR to PARAMETER and from OPERATION to
PARAMETER. UML must either define a convention for combining the pin links into a total order, or add a
single generalized association between ACTION and PIN.

UML 2 ACTIVITY AND ACTION MODELS, PART 2: ACTIONS

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

come from and go to different actions in each case. Without this separation, the reusable
specification of DELIVER MAIL would become embedded in all the other behaviors that
use it, and have all the flow links of all its usages tied to it.

5 STREAMING AND EXCEPTION PARAMETERS, PARAMETER
SETS

Call actions can have different start and end conditions than the normal ones described in
section 3. These conditions depend on characteristics of the parameters of the behavior or
operation being invoked. They are:

1. Streaming Parameters
Streaming parameters can accept or provide values while an action is executing.
They are not required to be input only when the action begins execution or output
only when it stops, as non-streaming parameters are. In Figure 9, for example,
GENERATE LEADS can continue to execute as it outputs leads for FOLLOW LEADS.
Likewise, FOLLOW LEADS can accept new leads as it processes others.10
Streaming parameters are indicated with the annotation {STREAM} near the pin
corresponding to the parameter, or in the alternate notations shown in the lower
parts of Figure 9.

Figure 9: Streaming Parameters

10 Streaming input parameters are currently required to accept at least one value before the action can stop
executing. That is, streaming inputs values are not optional, they are just allowed to arrive after the
execution begins. This is to address the problem of an input arriving after the execution is done and being
consumed by a later execution with other later inputs it should not be paired with. This rule does not
actually work very well, since multiple inputs may arrive after the execution is done that the execution also
should have waited for. Streaming output parameters on the other hand, are not required to provide values
at all for the action to terminate. It is proposed for future revisions of UML to separate streaming from
optionality, and even multi-valuedness, so these concepts can be used independently.

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 51

Streaming parameters can accept or provide multiple values during a single
behavior execution (this is where the name "stream" comes from, even though
multiple values are only allowed, not required). Modeling streams usually
involves multiple values flowing in a single activity. For example, if FOLLOW
LEADS were defined as an activity, multiple leads would be flowing through the
graph at one time. Multi-token activities will be covered later in the series.

2. Exception Output Parameters

Exception output parameters provide values to the exclusion of any other output
parameter or outgoing control of the action. For example, in Figure 10 FILLORDER
normally outputs a package for shipping, paperwork for accounting, and a control
flow for the next step in the business process. It also has an exception parameter
notated with a triangle near the corresponding pin, which is output when the order
is incompletely specified. If the exception output is provided, the other outputs
and outgoing control are not, and the action must immediately terminate. This
means the normal business process no longer occurs. See comparison to
parameter sets below.11

Figure 10: Exception Output Parameter

There can be multiple exception output parameters, but at most one can provide a
value per action execution. Streaming output values posted before an exception
output are not affected by the exception, because they have already flowed out of
the action.

3. Parameter Sets

Parameters can be grouped so that exactly one of the groups can accept or provide
values for the action. For example, in Figure 11, the FILLORDER either outputs a
package and paperwork, or a partially completed product and incomplete order
notice. This could happen if FILL ORDER starts assembling the product without

11 Exception output parameters can be combined with streaming input parameters to model interruption. A
behavior might define a streaming input parameter that it reacts to by immediately outputting an exception
and terminating.

Fill
Order

Package

Paperwork

Incomplete
Order

Order
Fill

Order

Package

Paperwork

Incomplete
Order

Order

UML 2 ACTIVITY AND ACTION MODELS, PART 2: ACTIONS

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

checking the order first, and produces a partial product, returning it until the order
is completed. In contrast, FILL ORDER in Figure 10 expects the order to be
checked ahead of time, because it outputs an exception if it is incomplete. See the
next section for how to declare modeler expectations on actions.

Figure 11: Parameter Sets

Parameter sets must have at least one parameter in them, but the same parameters
can be part of more than one parameter set, to model parameters that always
accept or provide values regardless of which parameter set is used by an
execution.

Exception parameters could be considered a special form of parameter set where each
exception parameter is in its own set and all the non-exception parameters are in another
set. However, one difference is that behavior execution is immediately terminated when
the exception output is posted. For example, in Figure 10, if FILL ORDER is a
CALLBEHAVIORACTION invoking another activity, the posting of an incomplete order will
stop any other values flowing in that activity. Also, parameter sets cannot output control
values, because they are groups of pins and control is not output on pins (see section 3).
Exceptions will be covered in more detail later in the series.

The above characteristics of parameters apply to operations on objects as well as
behaviors. When an operation is invoked on an object, a behavior is chosen with
parameters compatible to the operation, including the above characteristics. Once the
behavior is chosen, the semantics of invoking it is the same as if the behavior was
invoked directly, without dispatch from an object.12 The notation in class diagrams for the
above parameters is the property list. If the behaviors in the above figures were
operations, they would appear in class diagrams as (omitting the "self" parameter):

12 In theory, different behaviors could be chosen each time the operation is called in the same runtime
object, but in practice, it is usually the same behavior each time. In rare implementations that allow
methods to change at runtime, the implementation will not support streaming inputs, because these require
an input arriving after execution has started to be forwarded to the existing execution, which is not unique
in such implementations.

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 53

• Figure 9: FollowLeads (in i: Lead {stream})

• Figure 10: FillOder (in o : Order,
 out pkg : Package,
 out pw : Paperwork,
 out io : IncompleteOrder {exception})

• Figure 11: FillOder(in o : Order,

 out pkg : Package {parameterSet ps1},
 out pw : Paperwork {parameterSet ps1},
 out pp: PartialProduct {parameterSet ps2},
 out io: IncompleteOrder{parameterSet ps2})

It is not required that the diagram show all the above information. For example, the
parameter set names are not shown in Figure 11.

In summary, the start and end conditions for call actions are:

• All non-stream inputs must arrive for the action to begin. If there are only stream
inputs, then at least one must arrive for the behavior to begin.

• All inputs must arrive for the behavior to finish, that is, all inputs must arrive

before non-stream and control outputs can be posted. This includes streaming
inputs. No input is optional.

• Either all non-stream, non-exception outputs must be provided when an activity is

finished, or one of the exception outputs must be, but not both. Exception outputs
cannot be streaming, because the action terminates when an exception output is
posted.

• A behavior or operation with input parameter sets can only accept inputs from

parameters in one of the sets per execution. A behavior or operation with output
parameter sets can only provide outputs to the parameters in one of the sets per
execution. The start and end conditions in the previous bullets apply to each set
separately.

The above deviations from normal start and end conditions described in section 3 are
ways that an action can affect the routing of values through the graph that contains the
action. Normally only control nodes and edges in an activity can determine which way
value flows throw the graph, and actions just operate on the values routed to them, and
hand the values back to the graph for further routing. The additional parameter
characteristics above are useful in situations where routing decisions should be
encapsulated in a behavior, to be reused by various actions. Otherwise, the decisions
would need to be reproduced across control nodes and edges in multiple activities. For
example, in Figure 10, the test for incomplete orders would need to be remodeled in a

UML 2 ACTIVITY AND ACTION MODELS, PART 2: ACTIONS

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

decision node after every invocation of FILLORDER, instead of being defined once in the
FILLORDER behavior.

6 LOCAL PRECONDITIONS AND POSTCONDITIONS

Modelers can declare conditions before and after actions that the rest of the model is
expected to insure are actually true. These can be the familiar pre/postconditions on
operations and behaviors [10], discussed later in the series, or can be local to specific
actions, including individual invocations of behaviors or operations. For example, Figure
12 shows an action that dispenses a drink from a vending machine in the context of an
activity for dieting. The local precondition is that the drink requested is low in calories.
The expectation is that the rest of the activity around DISPENSE DRINK will ensure that the
name provided is actually for a low-calorie drink.

Figure 12: Local Preconditions and Postconditions

The above conditions are called "local" because they only apply to the individual action,
not to all the invocations of the behavior or operation. For example, the DISPENSE DRINK
behavior could be used in activities unrelated to dieting. It is only restricted to low-calorie
drinks at the particular call action in Figure 12.13 A global precondition on the DISPENSE
DRINK behavior might be that the drink requested is available from the machine. This
would apply to every invocation of DISPENSE DRINK in every activity that uses it.

Since pre/postconditions are inherently redundant with the rest of the model, UML
intentionally does not dictate when or whether pre/postconditions are tested.14 For
example, they may be tested by a program correctness verifier at design time, or during
compilation of the model to a specific platform, at runtime during the execution of the
activity, or not at all when out of debugging mode, for example. UML also does not
define what the runtime effect of a failed pre/postcondition should be. For example, it
may be an error that stops execution, or just gives a warning, records a log entry, or has

13 UML could in theory provide for local pre/postconditions at every kind of node and edge in the activity
flow, such as control and object nodes. UML 2.0 happens to support them on actions only.
14 Perhaps future versions of UML should provide for modeling the runtime effect of local
pre/postconditions and constraints generally.

Dispense Drink

Drink
Name Drink

<<localPrecondition>>
Drink selected is low-calorie.

<<localPostcondition>>
Drink dispensed is low-calorie.

Dispense Drink

Drink
Name Drink

<<localPrecondition>>
Drink selected is low-calorie.

<<localPostcondition>>
Drink dispensed is low-calorie.

<<localPrecondition>>
Drink selected is low-calorie.

<<localPostcondition>>
Drink dispensed is low-calorie.

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 55

no effect at all. And as usual, UML does not specify an implementation.
Pre/postconditions can be implemented as assertions in programming languages, but it is
not required.15

7 CONCLUSION

This is the second in a series on the UML 2 activity and action models. This article
focuses on actions as the basis for all the behavior models in UML, and the execution
characteristics of actions that are common to all the specific actions provided in UML 2.
Static and dynamic inputs are distinguished, and start and end conditions for actions are
given in terms of runtime inputs and outputs of the action. Default start and end
conditions are described, along with special capabilities for actions that invoke behaviors.
The relation between pins and parameters is discussed in this context.

ACKNOWLEDGEMENTS

Thanks to Evan Wallace and James Odell for their input to this article.

15 Since pre/postconditions are modeler-defined constraints with no standard effects, violations do not mean
that the semantics of the action is undefined as far as UML goes. Violations only mean the model or
execution trace does not conform to the modeler's intention, and may reach points later on where execution
aborts or throws exceptions due to conditions that the modeler did not expect.

UML 2 ACTIVITY AND ACTION MODELS, PART 2: ACTIONS

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

REFERENCES

[1] U2 Partners, “Unified Modeling Language: Superstructure,” version 2.0, 3rd
revised submission to OMG RFP ad/00-09-02, http://www.omg.org/cgi-
bin/doc?ad/2003-04-01, April 2003.

[2] Bock, C., “UML 2 Activity and Action Models,” in Journal of Object Technology,

vol. 2, no. 4, July-August 2003, pp. 43-53.
http://www.jot.fm/issues/issue_2003_07/column3

[3] Object Management Group, “OMG Unified Modeling Language, version 1.5,”

http://www.omg.org/cgi-bin/doc?formal/03-03-01, March 2003.

[4] Rumbaugh, J., et al., Object-oriented Modeling and Design, Prentice Hall, 1991.

[5] Shlaer, S., Mellor S., Object-oriented Systems Analysis: Modeling the World in

Data, Yourdon Press, 1988.

[6] Thatte, S., et al., “Business Process Execution Language for Web Services,”

http://www-106.ibm.com/developerworks/library/ws-bpel/, May 2003.

[7] Workflow Mangement Coalition, “Workflow Process Definition Interface,”

http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf, October,
2002.

[8] OMG Systems Engineering DSIG, "UML for Systems Engineering RFP,"

http://www.omg.org/cgi-bin/doc?ad/03-03-41, March 2003.

[9] Bock, C., “UML Without Pictures,” to appear in IEEE Software Special Issue on

Model-driven Development, September/October 2003.

[10] Meyer, Bertrand, Object-Oriented Software Construction, Prentice Hall, Englewood

Cliffs, NJ, 1997.

About the author
Conrad Bock is a Computer Scientist at the National Institute of
Standards and Technology, specializing in process models. He is one of
the authors of UML 2 activities and actions, and can be reached at
conrad.bock at nist.gov .

http://www.omg.org/cgi-bin/doc?ad/2003-04-01
http://www.omg.org/cgi-bin/doc?ad/2003-04-01
http://www.jot.fm/issues/issue_2003_07/column3
http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://www-106.ibm.com/developerworks/library/ws-bpel/
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf
http://www.omg.org/cgi-bin/doc?ad/03-03-41
mailto:conrad.bock@nist.gov

