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Abstract 
Database reverse engineering (DBRE) recovers a database design using a semantic 
data model. Most of the existing works and tools for DBRE and database design specify 
relational database schemas with extended ER models. The Unified Modeling 
Language (UML) is a standard language for modeling software and database systems. 
We discuss how to extend the UML metamodel with elements for modeling relational 
dependencies. We also present techniques for converting structures of relational 
dependencies to UML constructs. The introduced metaelements and conversion 
techniques can be used in relational database design that is presented in the UML. 
They unify object-oriented software design and relational database design. 

1 INTRODUCTION 

Common tools for relational database design and database reverse engineering (DBRE) 
are based on extended ER models. An application that stores data in a database needs to 
design the database and the application. The application design focuses on business logic 
and GUI. The database design defines persistent data to be stored in the database. 
Software developers need to integrate database design and application design. Interface 
and overlapping problems challenge designers of database applications. A design in the 
Unified Modeling Language (UML) [OMG 2000] for a database application needs to 
represent a database design at an appropriate abstraction level.  

The UML [OMG 2000] is a standard language for specifying models and designs in 
object-oriented software development. In this paper, we extend the UML metamodel with 
relational dependencies and discuss how to convert structures of relational dependencies 
occurred in a relational database design to UML constructs. The extension and 
conversion techniques can be applied to integrate a relational database design with a 
software design expressed in the UML.  

In relational DBRE, relational dependencies can be discovered by examining relation 
instances [Petit1996]. A database designer can identify relational dependencies by 
studying the data used in an application. We shall regard a relational database design as 
composed of relation schemas interrelated with functional and inclusion dependencies. 
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Here, the task is to unify a relational database design and an application design that uses 
the database. 

This paper is organized as follows. In the next section, the UML metamodel is 
extended with metaelements for specifying foreign key, candidate key, functional 
dependency, and inclusion dependency, which are essential concepts in the relational data 
model. Based on the introduced metaelements, we discuss how to convert individual 
relational dependencies and structures of relational dependencies to UML associations, 
aggregations, and compositions in Section 3. The discussion also shows the necessity of 
the metaelements for presenting relational database designs in the UML. We conclude the 
paper in Section 4. 

2 EXTENDING THE UML METAMODEL 

The UML Metamodel 

The UML is based on a four-layer architecture, which consists of a meta-metamodel, a 
metamodel, a user-defined model or design, and objects [OMG 2000]. The UML 
metamodel is an instance of the meta-metamodel. It defines the UML language. A user-
defined analysis model or system design presented in the UML is an instance of the UML 
metamodel. Application-specific data is stored in objects, which are created with classes 
specified in the design.  

The UML metamodel specifies metaclasses, relationships between metaclasses, and 
standard metaelements. It defines well-formedness rules in the Object Constraint 
Language (OCL). It provides designers with three controllable extension mechanisms – 
stereotype, tagged value, and constraint. An application-specific stereotype is based on a 
metaclass defined in the UML metamodel. It may have tagged values and constraints. 
Metaclass Dependency in the UML metamodel abstracts semantic relationships 
between elements in user-defined models. A dependency in a user-defined model 
indicates that a change to the target element (supplier) of the dependency may cause a 
change to the source element (client) [OMG 2000, p. 3-82]. The UML metamodel defines 
standard stereotypes for various types of dependency.  

Relational Keys 

Following the UML User Guide [Rumba1999], a relation schema is represented with a 
class symbol stereotyped with keyword persistent in a UML class diagram. A tuple 
of the relation corresponds to an instance of the persistent class. In the following 
discussion, terms relation schema and persistent class are used as synonyms.  

In a UML model or design, a tagged value introduces a named property for a 
modeling element. An attribute in a persistent class may be a part of the primary key of 
the relation schema. We shall attach tagged value {PK} to each attribute in the primary 
key. In the UML metamodel, we can use the following OCL invariant constraint to 
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characterize the relational concept primary key. For a tuple i and an attribute set X, 
expression i.X in an OCL expression denotes the projection of tuple i over X. 

 
context Class inv: 
let primaryKey : Collection(Attribute) =  

self.allFeatures -> collect(f|f.PK) 
self.allInstances -> forAll(i, j | i <> j implies  

i.primaryKey <> j.primaryKey) 
 

In a persistent class, we can attach a tagged value {FK = (relationName, 
i)} to an attribute of the class. The tagged value indicates that the attribute belongs to 
the ith foreign key that references relation relationName. If the name 
relationName of referenced relation is irrelevant to the discussion, the tagged value 
can be simplified to {FK = i}. Furthermore, when no ambiguity may occur, the tagged 
value can be simplified to {FK}.  

In a persistent class, we can attach a tagged value {CK = i} to an attribute. The 
tagged value indicates that the attribute belongs to the ith candidate key of the relation 
schema. If the number i is irrelevant to the discussion, tagged value {CK = i} can be 
simplified to {CK}. By assuming that a persistent class has at most one candidate key, 
the candidate key can be constrained with the OCL expression: 

 
context Class inv: 
let candidateKey : Collection(Attribute) =  

self.allFeatures -> 
      collection(f|f.CK) 

self.allInstances -> forAll(i, j | i <> j implies  
i.candidateKey <> j.candidateKey) 

 

Inclusion and Functional Dependencies 

In the relational data model, an inclusion dependency R1(X) ⊆ R2(Y) is a dependency 
between an attribute set X in a relation schema R1 and an attribute set Y in a relation 
schema R2. The related client schema R1 and supplier schema R2 may be identical. 
Inclusion dependencies between attribute sets of same relation schema are important 
clues to hidden classes [Petit1996].  

We introduce stereotype inclusion based on the UML metaclass Dependency. 
In the UML, an inclusion dependency R1(X) ⊆ R2(Y) is defined as a dependency 
between persistent classes R1 and R2 such that the following OCL expression holds: 
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R1.allInstances -> forAll(i | R2.allInstances ->  
collect(j|i.X = j.Y) -> size > 0) 

 

For an inclusion dependency R1(X) ⊆ R2(Y), if Y is a candidate key of R2, the 
dependency is key based. If Y is the primary key of R2, the dependency is a foreign key 
dependency.  

As shown in the UML class diagram in Fig. 2.1, an inclusion dependency R1(X) ⊆ 
R2(Y) between persistent classes R1 and R2 is stereotyped with keyword inclusion. 
The source relation R1 is the client, and the target relation R2 the supplier. A tagged value 
with property name ID for the dependency specifies the pair of attribute sets X and Y. A 
foreign key dependency is a special type of inclusion dependency. It is stereotyped with 
keyword foreign_key. 

 

Fig. 2.1 An inclusion dependency 

For a relation schema R and attribute subsets X and Y of R, a functional dependency R: X 
-> Y will be denoted with stereotype functional, which is based on metaclass 
Dependency and which is constrained with the OCL expression: 

R.allInstances -> forAll(i, j | i.X = j.X implies  
i.Y = j.Y) 

For a candidate key K of a persistent class R and any attribute subset A of class R, the 
candidate key implies a functional dependency R: K -> A in a UML class diagram.  

As shown in the UML class diagram in Fig. 2.2, a functional dependency R: X -> 
Y will be stereotyped with keyword functional. A tagged value with property name 
FD is used to specify the pair of source and target attribute sets X and Y of the functional 
dependency.  

Fig. 2.2 A functional dependency 
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Inclusion Dependency Clustering 

Given a relation schema R, the number of inclusion dependencies in which R serves as a 
client and the number of inclusion dependencies in which R serves as a supplier are 
denoted with Dout(R) and Din(R), respectively. The numbers Dout(R) and Din(R) can 
be defined in the OCL as follows. Here, we use a metaclass named Inclusion to 
abstract inclusion dependencies. 

 
context R: Class inv: 
Dout(R) = Inclusion.allInstances ->  

select(d|d.client = R) -> size 
Din(R) = Inclusion.allInstances -> 

select(d|d.supplier = R) -> size 

An inclusion dependency connects two persistent classes R1 and R2 with Dout(R1) ≥ 1 
and Din(R2) ≥ 1. If the classes R1 and R2 are identical, the inclusion dependency is self-
referencing; otherwise, it is a binary inclusion dependency.  

Let R, R1, …, Rn with n ≥ 2 be persistent classes. If for each integer i with 1 ≤ i ≤ 
n, Xi is an attribute set of R, Yi is an attribute set of Ri, and R(Xi) ⊆ Ri(Yi) is an 
inclusion dependency, we say that the n inclusion dependencies form a star structure. If 
n ≥ 3, a subset of the persistent classes R1, …, Rn can form a star structure with the 
common client class R.  

Let R1, R2, …, Rn be persistent classes.  If for each integer i with 1 ≤ i < n, Xi is an 
attribute set of Ri, Yi is an attribute set of Ri+1, and Ri(Xi) ⊆ Ri+1(Yi) is an 
inclusion dependency, we say that the n – 1 inclusion dependencies form a path 
structure. A path structure of length greater than 2 entails subpath structures. 

3 REPRESENTING DATA DEPENDENCIES IN THE UML  

Self-Referencing Dependencies 

A functional dependency in a relational database design can be expressed in a UML class 
diagram with a functional dependency, which is a semantic constraint that applies to 
only one persistent class.  

In database normalization, functional dependencies can be used to detect hidden 
persistent classes. For example, persistent class Employee shown in Fig. 3.1(a) satisfies 
functional dependency {ssn} -> {empID, dept, job, salary}. By 
separating the source attribute set from class Employee, we derive a new class Person 
shown in Fig. 3.1(b). Since class Person can be used and inherited by other classes, the 
design in Fig. 3.1(b) is more robust than that in Fig. 3.1(a). In Fig. 3.1(b), a UML 
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aggregation is used to join classes Employee and Person so that each employee object 
is linked to a person object, which holds the employee’s social security number, name, 
and address. Thus, the functional dependency is represented with an aggregation. 

Fig. 3.1 A functional dependency with a hidden object type 

 

Not only functional but also inclusion dependencies may be self-referencing. Self-
referencing inclusion dependencies may imply hidden persistent classes as well. Some of 
them may be represented as various types of association in a UML design. For example, 
persistent class Employee in Fig. 3.2(a) satisfies inclusion dependency 
Employee(managerID) ⊆ Employee(empID), which maps an employee object 
to an employee object that represents a manger managing the former employee. The self-
referencing inclusion dependency can be used to derive a new class Manager and a 
many-to-one association between persistent classes Employee and Manager. Note that 
a manager is also an employee. Therefore, class Manager inherits class Employee. 
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Fig. 3.2 An inclusion dependency implies a hidden subclass Manager 

Binary Inclusion Dependencies 

A general inclusion dependency in a database design represents a many-to-many semantic 
dependency, which may or may not denote a UML association. For example, attribute 
courses of class Instructor depends on attribute courseID of class Course. 
The dependency requires each course taught by an instructor have a valid course ID. It is 
a many-to-many inclusion dependency, which can be represented in a UML design with 
the stereotype inclusion introduced in Section 2.3.  

A binary inclusion dependency may be a foreign key dependency, which denotes a 
many-to-one or one-to-one relationship. For example, an inclusion dependency between 
persistent classes Employee and Position describes assignment of employees to 
positions. Each employee must be assigned to a specific position. The inclusion 
dependency represents a many-to-one association.  

When presenting a many-to-one inclusion dependency in a UML design, the 
dependency may be represented as a many-to-one association or an aggregation. It is also 
possible that the client class can be merged into the supplier class so that the total number 
of classes can be reduced and the association or aggregation can be eliminated from the 
design.  

For example, inclusion dependency Employee(deptID) ⊆ Department 
(deptID) denotes a foreign key dependency. In the UML, we say that each department 
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aggregates a collection of employees. Therefore, the inclusion dependency shown in Fig. 
3.3(a) can be converted to the aggregation shown in Fig. 3.3(b).  

Fig. 3.3 An inclusion dependency implies an aggregation 

 

Assume a relation schema Emp_Type that abstracts employee categories. Each 
employee is described with an Emp_Type tuple. The relationship between relations 
Employee and Emp_Type can be described with a foreign key dependency shown in 
Fig. 3.4(a). Also assume that both the persistent classes Employee and Emp_Type 
have reasons to exist independently. The foreign key dependency can be represented with 
a many-to-one association shown in Fig. 3.4(b). 

An inclusion dependency may denote a composition in a UML class diagram. For 
example, relation schemas Dependent and Employee can be related with inclusion 
dependency Dependent(empID) ⊆ Employee(empID), where empID is the 
primary key of relation Employee. Due to the strong bond between an employee and 
the employee’s dependents, the inclusion dependency shown in Fig. 3.5(a) can be 
converted to a UML composition between classes Dependent and Employee shown 
in Fig. 3.5(b). 

By the above discussion, a single binary inclusion dependency may denote an 
association, an aggregation, or a composition. It is also possible that the inclusion 
dependency may not denote any association and, therefore, cannot be represented with 
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any association. A binary inclusion dependency may be a clue for merging the related 
classes. 

Fig. 3.4 A foreign key dependency is converted to a many-to-one association 

Fig. 3.5 A composition derived from an inclusion dependency  

Star Structure 

Assume a persistent class R that has out-degree Dout(R) ≥ n ≥ 2. Some of the inclusion 
dependencies with client R may form a star structure that represents an n-ary association. 
For example, persistent classes Person, Company, and Works_For in Fig. 3.6(a) 
form a star structure with n = 2. Class Works_For uses foreign keys ssn and 
company_name to reference classes Person and Company, respectively. As shown 
in Fig. 3.6(b), the foreign key dependencies can be converted to an association class 
works_for in the UML.  
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Fig. 3.6 A star structure that represents a binary association 

 
Two or more inclusion dependencies in a star structure may share a supplier. The client 
and supplier of an inclusion dependency in a star structure may be identical. For example, 
persistent class Request in Fig. 3.7(a) includes foreign keys courseID and 
prerequisite, both of which reference supplier class Course. In Fig. 3.7(b), the 
dependencies are represented with a UML one-to-many self-referencing association 
requires between class Course and the class itself. 
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Fig. 3.7 Inclusion dependencies with a common supplier and client 

 
Inclusion dependencies in a star structure may be semantically unrelated at all and, 
therefore, cannot be represented with a single n-ary association in the UML design. 
Hence, they should be implemented separately. For example, persistent class Employee 
may use foreign keys deptID and project_title to reference classes 
Department and Project, respectively. The two foreign keys are independent from 
each other. They should be implemented separately.  

In summary, a star structure of inclusion dependencies may be converted to a binary 
or an n-ary association with n ≥ 3. By investigating the inclusion dependencies, we can 
decide whether the dependencies can be converted to an association. A binary association 
can be implemented in object-oriented languages directly.  

Path Structure 

Due to the 1-NF requirement, a relational database design cannot use complex data 
elements. It may need a path structure to support data navigation. By considering path 
structures that are formed with inclusion dependencies, we may merge persistent classes 
so that the number of classes and dependencies can be reduced. Like a single inclusion 
dependency, a path structure in a relational database design may represent an association, 
an aggregation, or a composition in a UML design.  

For example, inclusion dependencies Part(typeID) ⊆ Part_Type 
(typeID), Part_Type(typeID) ⊆ Supplying(typeID), Supplying 
(supplierID) ⊆ Supplier(supplierID) compose a path structure, which 
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connects relation schemas Part, Part_Type, Supplying, and Supplier. In a 
UML design, relation schemas Part, Part_Type, and Supplying may be combined 
into a single persistent class Part. The inclusion dependencies can be represented with a 
many-to-many association between persistent classes Part and Supplier. The 
association is used to record which parts are supplied by which suppliers. 

4 CONCLUSION 

We regard a relational database design as a set of relation schemas and a set of 
dependencies between the relation schemas. We discuss how to specify relational 
database design in the UML. The UML metamodel is extended with stereotypes 
inclusion, foreign_key, and functional, which are based on the UML 
metaclass Dependency and which abstract inclusion dependencies, foreign key 
dependencies, and functional dependencies presented in a relational database design. We 
show that some of the relational dependencies can be converted to associations, 
aggregations, or compositions in the UML. By merging persistent classes, the number of 
dependencies may be reduced.  

By investigating relational database design and relational dependencies from the 
viewpoint of a UML designer, we see that some functional and inclusion dependencies 
cannot be represented with UML associations or with other types of UML modeling 
element. These dependencies justify our stereotypes inclusion, foreign_key, and 
functional. Other functional and inclusion dependencies are disguised associations, 
aggregations, or compositions in the UML.  

An n-ary association for n ≥ 3 in a UML design is difficult to implement. The above 
discussion indicates that an n-ary association for n ≥ 3 can be implemented with a set of 
foreign key dependencies. The 1-NF requirement on a relational database schema may 
force a path structure of inclusion dependencies in the database design. The above 
discussion shows that the path may be reduced to an association in the UML by merging 
persistent classes. The introduced stereotypes inclusion, foreign_key, and 
functional are indispensable for some relational database designs. They improve the 
expressive power of the UML. 
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