
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 4, July-August 2003

Cite this column as follows: Donald Firesmith: “Specifying Good Requirements”, in Journal of
Object Technology, vol. 2, no. 4, July-August 2003, pp. 77-87.
http://www.jot.fm/issues/issue_2003_07/column7

Specifying Good Requirements
Donald Firesmith, Software Engineering Institute, U.S.A.

Abstract
Many of the characteristics of properly specified requirements have been well known for
many years, at least among professional requirements engineers. Yet most
requirements specifications seen today in industry still include many poor-quality
requirements. Far too many requirements are ambiguous, incomplete, inconsistent,
incorrect, infeasible, unusable, and/or not verifiable (e.g., not testable). To combat this
sad state of affairs, this column provides a questionnaire that can be used when
specifying and technically evaluating requirements.

1 WHAT MAKES A GOOD REQUIREMENT?

It is not difficult to find checklists and questionnaires for ensuring the quality of
requirements. Many such checklists and questionnaires of varying degrees of
completeness and usefulness are printed in books on requirements engineering (e.g.,
[Sommerville97]), presented at conference tutorials, and published on the Web. Thus,
many of the characteristics of properly specified requirements have been well known for
many years, at least among certain academics, consultants, and professional requirements
engineers.

Unfortunately, it is also very easy to find numerous requirements defects in almost
any requirements specification one reads. Almost all requirements specifications being
developed in industry today contain many poorly specified requirements. Far too many
requirements are ambiguous, incomplete, inconsistent, incorrect, infeasible, unusable,
and/or not verifiable (e.g., not testable). So what’s the problem? Why are so many poor-
quality requirements still being specified?

Although I have not seen much in the way of scientifically valid research to answer
this question, anecdotal evidence abounds. Although many good requirements
engineering books have been written, there are far more books published on
programming languages and the latest infrastructure technologies. This would not be so
bad if all requirements were specified by professional requirements engineers who had
mastered the best requirements engineering books, but they aren’t. In fact, the vast
majority of requirements are elicited, “analyzed,” and specified by managers, subject

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_07/column7

SPECIFYING GOOD REQUIREMENTS

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

matter experts (SMEs), or developers who have had little or no training in requirements
engineering.

The prevailing “wisdom” seems to be that because most requirements are specified
in textual English (or other natural languages) and because managers, SMEs, and
developers obviously know how to read and write, then they must also intuitively know
how to specify requirements. However, just as we all had to learn the rules for writing
grammatically correct English, we also have to learn the rules for writing high-quality
requirements. And just as not everyone who can read and write can also author a
publishable book, not everyone who can write individual requirements can organize them
into a high quality requirements specification. Whereas the rules for properly specifying
individual requirements are relatively easy to use once you learn them, experience shows
that they are also not obvious to most people who actually specify real requirements on
real projects. After all, how many people are able to write good technical documents? In
normal speech, we are used to relying on the give and take of conversation to ensure that
the people we talk to understand what we say. And if a misunderstanding occurs, it will
usually be discovered and if it’s not, there are typically no serious negative consequences.

The same cannot be said when you are specifying the requirements for a major
system. Failure to correctly specify the requirements can lead to major delays, cost
overruns, commercial consequences including the loss of money, property, layoffs, and
even the loss of lives. That is why I am writing this column which really only summarizes
information that is readily available elsewhere (if you know where to look and if you
know to look for it in the first place). It is probable that much of the following
information will be new to many of you, and with any luck, it will open your eyes to
requirements defects that you have made in the past. Hopefully, it will also help you
avoid similar mistakes in the future. And even if you have read some of the books and
checklists out there, you will probably still find some new and useful material. Besides,
all of us need a booster shot every now and then if we are not to fall back into our bad old
habits.

2 QUESTIONS FOR ENSURING REQUIREMENTS QUALITY

Quality Characteristics

A good-quality requirement should exhibit the following characteristics that are missing
from poorly specified requirements:

• Cohesiveness
• Completeness
• Consistency
• Correctness
• Currency
• Customer/User Orientation
• External Observability

QUESTIONS FOR ENSURING REQUIREMENTS QUALITY

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 79

• Feasibility
• Lack of Ambiguity
• Mandatory
• Metadata
• Relevance
• Usability
• Validatability
• Verifiability

Cohesiveness

Individual requirements should be cohesive, although the type of cohesion varies with the
different type of requirements being specified:

• Does each requirement specify only one thing?
• Do all parts of the requirement belong together:

• Do all parts of a data requirement involve the same data abstraction?
• Do all parts of a functional requirement involve the same functional

abstraction?
• Do all parts of an interface requirement involve the same interface?
• Do all parts of a quality requirement involve the same quality factor or

subfactor?

Completeness

Just as an entire requirements specification should be complete and contain all relevant
requirements and ancillary material (e.g., as specified in its template or content and
format standard), individual requirements should also be complete. This is often a
problem because subject matter experts (SMEs) who specify requirements often take
certain information for granted and omit it, even though it is not obvious to other
stakeholders of the requirement.

• Is each requirement self contained with no missing information?
• Does each requirement contain all relevant information? For example, does

the requirement include all relevant preconditions such as the relevant state of
the application or component?

• Does each requirement need no further amplification or clarification?
• Does each requirement provide sufficient information to avoid ambiguity?

• If the requirement is not a part of the current release, then is it specified as
completely and as thoroughly as is currently known?

• Is each identified “requirement” actually a single requirement and not actually
multiple requirements?

SPECIFYING GOOD REQUIREMENTS

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

• Is the use of conjunctions (“and” and “or”) restricted to preconditions and
invariants?

Consistency

Because collections of inconsistent requirements are impossible to implement, individual
requirements should be consistent:

• Is each requirement externally consistent with its documented sources such as
higher-level goals and requirements?

• Is each requirement externally consistent with all other related requirements of the
same type or at the same requirements specification? For example, two
requirements should neither be contradictory nor describe the same concepts
using different words.

• Are the constituent parts of each requirement internally consistent? For example,
are all parts of a compound precondition or postcondition consistent?

Correctness

Defects in requirements will naturally lead to corresponding defects in the resulting
architectures, designs, and implementations. Thus, individual requirements should
obviously be correct:

• Is each requirement semantically correct?
• Does each requirement meet all or part of an actual need of its relevant

stakeholder(s)?
• Is each requirement an accurate elaboration of a documented business

objective or goal?
• Is each requirement an accurate elaboration of a higher-level requirement?
• Do all numbers associated with each requirement have correct values?

• Is each requirement syntactically correct?
• Does each requirement use the proper standard format (if any)?
• Does each requirement properly use the words “shall” or “must” rather than

“will” or “may”?
• Are all words used in each requirement correctly spelled?
• Is each textual requirement grammatically correct?

Currency

All too often, requirements specifications are not updated when requirements change.
They are also frequently not updated as the architecture is produced, sometimes resulting
in changes in the underlying requirements. Both of these problems make testing and
maintenance much more difficult. Thus, individual requirements should not become
obsolete:

• Is each requirement a specification of a current or anticipated customer or user
need?

QUESTIONS FOR ENSURING REQUIREMENTS QUALITY

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 81

• Has each requirement not been obsoleted (e.g., due to changing business goals)?

Customer/User Orientation

Too often, requirements (especially derived requirements) are specified by developers
who use their technical jargon that is not understandable to other stakeholders, especially
customers, users, and managers. But individual requirements should be oriented around
the needs of the customers and users if they are to be understandable and validatable:

• Is each requirement phrased in the language of the customer and user
organizations?

• Does each requirement avoid the technical jargon of the development
organization?

External Observability

Requirements should not unnecessarily specify the internal architecture and design of an
application or component. Thus, individual requirements should only specify behavior or
characteristics that are externally observable:

• Does each requirement only specify behavior and/or characteristics that are
externally observable when treating the application or component as a black-box?

• Does each requirement avoid specifying any internal architecture, design,
implementation, or testing decisions?

• If a requirement does specify one or more internal architecture, design,
implementation, or testing decisions, is the requirement clearly identified as a
constraint rather than as a pure requirement?

Feasibility

Requirements are of no value if the development team cannot implement them. Thus,
individual requirements should be feasible given all relevant constraints:

• Can each requirement be implemented given the existing hardware or software
technology?

• Can each requirement be implemented given the endeavor’s budget?
• Can each requirement be implemented given the endeavor’s schedule?
• Can each requirement be implemented given the endeavor’s constraints on

staffing (e.g., staff size, expertise, and experience)?
• Can each requirement be implemented given the limitations of physics, chemistry,

etc?

Lack of Ambiguity

Individual requirements for an application or component should never be ambiguous.
Even if the requirement is intended to be highly reusable (e.g., across a product line) and
therefore general, it should still be unambiguous although it may well have precise

SPECIFYING GOOD REQUIREMENTS

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

flexibility points (e.g., it can contain parameters that must be filled in with specific values
when being reused). Yet, this critical characteristic of a good requirement is often
missing, resulting in requirements that are subject to misinterpretation and that are
inherently not verifiable (e.g., they are untestable).

• Is each requirement clear (i.e., not vague) and precise?
• Is the meaning of each requirement objective rather than subjective?
• Is each requirement concise (i.e., without unnecessary and irrelevant

information)?
• Does each requirement have only a single interpretation?
• Is the interpretation of each requirement obvious?
• Is each requirement understandable to its intended audiences?
• Will the interpretation of each requirement be the same for both those who wrote

it and the members of the different audiences who will read it?
• Does each requirement use specific concrete terms?
• Does each requirement avoid the use of inherently or potentially ambiguous

words such as:
• Vague subjects that can refer to multiple things:

• Pronouns such as “it” or “they”?
• Demonstrative adjectives such as “this”, “these”, “that”, and “those”?

• Vague adjectives that may mean different things to different readers:
• Intrinsic characteristics such as “soft”, “hard”, “fast”, “slow”, “hot”,

“cold”, “strong”, and “weak”?
• Judgmental characteristics such as “easy”, “hard”, “clear”, “efficient”,

“acceptable”, “adequate”, “good”, “bad”, “reasonable”, “sufficient”,
“useful”, “significant”, “adequate”, and “user-friendly”?

• Location characteristics such as “near”, “far”, and “close”?
• Ordering adjectives such as “first”, “previous”, “next”, “following”, and

“last”?
• Temporal characteristics such as “new”, “old”, “recent”, “future”, “past”,

“soon”, and “today”?
• Vague prepositions:

• Prepositions such as “above”, “below”, “in front of”, “in back of”, “over”,
“under”, “high”, and “low”?

• Vague verbs that are more qualitative than quantitative:
• Prepositions such as “increase”, “decrease”, “maximize”, and

“minimize”?
• Subjective phrases:

• “If possible”, “when cost-effective”, and “where appropriate”?
• Is each requirement specified in a quantitative manner whenever possible and

practical?
• Does each requirement include all necessary assertions:

QUESTIONS FOR ENSURING REQUIREMENTS QUALITY

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 83

• Invariants?
• Preconditions?
• Postconditions?

• Does each quality requirement go beyond merely “requiring” that the application
or component exhibit the associated quality factor? Thus, it is inadequate to
merely state that the application shall be portable; one must be explicit and
specify how portable (e.g., maximum amount of effort to port) and portable to
what (e.g., operating system, hardware platform, or infrastructure including
version)?

• Does each requirement only include abbreviations, acronyms, and/or technical
terms that are uniquely defined in either the associated glossary or requirements
specification?

• Does each requirement only include explicit references to other documents?
• Does each diagram associated with a requirement include a legend that defines its

icons and arcs?

Mandatory

Although requirements can and should be prioritized to help negotiate and schedule them,
individual requirements should by their very nature be mandatory (i.e., required):

• Is each requirement essential to the success of the application or component?
• Is each requirement truly mandatory (i.e., a true requirement that must be met and

implemented)?
• Is each requirement truly required by some stakeholder, typically the customer or

user organization?
• Is each requirement free from unnecessary constraints (e.g., architecture, design,

implementation, testing, and other technology decisions)?
• Does each requirement specify a “what” rather than a “how”?
• Is each requirement clearly differentiated from:

• A “nice to have” item on someone’s wish list (i.e., gold-plating)?
• Constraints?

Metadata

Individual requirements should have metadata (i.e., attributes or annotations) that
characterizes them. This metadata can include (but is not limited to) acceptance criteria,
allocation, assumptions, identification, prioritization, rationale, schedule, status, and
tracing information:

• Acceptance Criteria:
• Does each requirement have associated acceptance criteria?
• Is this acceptance criteria clear and objective?

• Allocation:

SPECIFYING GOOD REQUIREMENTS

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

• Is each requirement allocated to the team or individual who will implement it?
• Is each system requirement allocated to the system architectural elements that

will fulfill it?
• Is each software requirement allocated to the software architectural elements

that will fulfill it?
• Assumptions:

• Are all significant assumptions associated with each requirement properly
documented?

• Identification:
• Does each requirement have its own unique identifier that can be used for

tracing purposes?
• Is each requirement not redundant with any other requirement at the same

level of abstraction (e.g., within the same requirements specification)?
• Prioritization:

• Is each requirement prioritized for scheduling and trade-off purposes?
• Is the prioritization of the requirement based on the:

• Criticality of the requirement to the customer, marketing, and user
organizations?

• Scheduling from an architectural standpoint?
• Implementation precedence?
• The minimization of project risk?

• Rationale:
• Does each requirement have a reasonable rationale associated with it that

justifies it being specified as a requirement?
• Schedule:

• Is each requirement scheduled for implementation by a specific milestone or
release?

• Is this schedule based on the priority of the requirement?
• Status:

• Does each requirement have an associated status (e.g., identified, analyzed,
specified, approved, and frozen)?

• Is this status updated as the requirements goes through its lifecycle?
• Trace:

• Is each requirement traced to its source goal, document, and/or person?
• Does each requirement include both forward and backward tracing

information?
• Does each system requirement include a trace back to system goals?
• Does each system requirement include traces down to data, hardware,

personnel, and software:
• Components?
• Requirements?

QUESTIONS FOR ENSURING REQUIREMENTS QUALITY

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 85

• Does each software requirement include a trace back to its system component
and system requirements?

• Does each software requirement include traces down to data, hardware,
personnel, and software components.

Relevance

Some identified and specified “requirements” actually turn out to be outside of the scope
of the current endeavor. Thus, it is important to ensure that individual requirements are
relevant:

• Is each requirement within the scope of the business, application, or component
being specified? For example, is each requirement within the scope of the
associated statement of work, the mission statement, and/or the vision statement?

• Does each application or component requirement avoid specifying the behavior
and characteristics of the associated users?

• Does each application or component requirement avoid specifying the behavior
and characteristics of the associated external systems (except for mandatory
interfaces)?

Usability

Just like applications and components, requirements have many users (e.g., management,
customer representatives, marketing representatives, user representatives, architects,
developers, testers, support personnel) that use them for many purposes. Thus, individual
requirements should be usable by their numerous stakeholders:

• Is each requirement understandable and usable by the customer representatives
and user representatives who must use it for scope control and evaluation?

• Is each requirement understandable and usable by managers who must use it for
scope control as well as cost, schedule, and progress metrics?

• Is each architecturally-significant requirement understandable and usable by the
architects who will base the architecture on it?

• Is each requirement understandable and usable by the designers and programs
who must implement it?

• Is each requirement usable (e.g., testable) by the testers who must verify and
validate it?

Validatability

Individual requirements must actually fulfill the needs and desires of their primary
stakeholders. Individual requirements should be validatable:

• Is it possible to ensure that each requirement is actually what the customer
representatives really want and need?

• Is it possible to ensure that each requirement is actually user representatives really
want and need?

SPECIFYING GOOD REQUIREMENTS

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

• Is it possible to ensure that each requirement is actually what the marketing
representatives really want and need?

Verifiability

Requirements always have sources, and it is important that requirements are consistent
with them. Similarly, requirements need to be consistent with the standards, guidelines,
and templates that are used in their preparation. Thus, individual requirements should be
verifiable:

• Can each requirement be verified against its source?
• Can each requirement be verified against its associated standards (e.g., content

and format), guidelines, and/or templates?

3 USING THE PREVIOUS QUESTIONS

Occasionally, one sees some of the previously listed questions included in checklists
designed for inspecting requirements specifications. However, these questions must be
asked about each individual requirement, and any non-trivial application has far too many
requirements for these questions to be used that way. Not only is it impossible to spend
the time necessary to methodically and manually check each individual requirement
against each checklist question, it is also psychologically impossible because technical
evaluators would rapidly burn out before they had evaluated more than a dozen
requirements. Minimizing the number of questions to make a checklist possible would
allow too many potential defects to slip through and inspectors would still have to apply
each question against each requirement in the specification. Even if it were possible to
overcome these obstacles, a checklist would be relatively useless because the failure box
for each question would almost always end up being checked because in any reasonably-
sized requirements specification, there would always be at least one requirement that
would be ambiguous, incorrect, or untestable.

Another possible use for these questions would be as input to a software tool that
could automate their evaluation. Such a tool could rapidly identify potential defects in the
requirements specification or the presence of risk areas that need human attention.
Whereas a few tools have been developed that automatically identify potential problem
areas (e.g., the use of vague words and phrases), I am not aware of any tool that comes
even close to being able to answer the majority of the questions listed in this column.

So if checklists are not feasible and if practical (and complete) tools are not yet
available for commercial use, how then should these questions be used? Perhaps their
best use is in the training of both requirements engineers who specify requirements and
evaluators who technically evaluate them. By incorporating these questions into their
personal mental tool set, requirements engineers will produce better requirements by
avoiding the corresponding defects in the first place and technical evaluators will begin to
instantly recognize violations of the implicit guidelines that these questions represent. By

USING THE PREVIOUS QUESTIONS

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 87

studying these questions, they will eventually become intuitive and automatic. The
situation is similar to our leaning of natural languages. Most of us would have a hard time
writing down the grammatical rules of English and haven’t diagramed a sentence since
middle school, but we still know when the rules are violated because the offending
sentences just don’t sound right. Similarly, once requirements engineers and requirements
evaluators (and even managers, subject matter experts, and developers who must work
with requirements) learn these questions, the underlying guidelines become internalized
and poorly-specified requirements just don’t sound right.

4 CONCLUSION

Hopefully by now, it is clear that specifying requirements of high quality is not trivial but
it is also not rocket science either (unless you happen to be specifying requirements for
NASA). The answer is not to use simplistic checklists nor is it to give up. Eliminating
defects from requirements specifications is just too important. The answer is learning a
few simple characteristics of high-quality requirements and then internalizing them so
that the defects in poorly-specified requirements will effortlessly jump off the page.
Those that specify requirements should read and study the preceding questions so that
they do not insert defects into requirements specifications, and those that technically
evaluate requirements should also internalize the preceding questions so that any
violations will become obvious. While not a panacea, these simple questions can
eliminate a great number of defects from most requirements specifications.

REFERENCES

[Sommerville97] Ian Sommerville and Pete Sawyer: Requirements Engineering: A
Good Practices Guide, John Wiley & Sons, 1997.

About the author
Donald Firesmith is a senior member of the technical staff at the
Software Engineering Institute. He has worked exclusively with object
technology since 1984 and has written 5 books on the subject. He is
currently writing a book on requirements engineering. Most recently, he
has developed a 1000+ page informational website on the OPEN Process
Framework at http://www.donald-firesmith.com. He can be reached at
donald_firesmith@hotmail.com.

http://www.donald-firesmith.com
mailto:donald_firesmith@hotmail.com

