
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 4, July-August 2003

Cite this article as follows: Markus Völter: “A Taxonomy for Components”, in Journal of Object
Technology, vol. 2, no. 4, July-August 2003, pp. 119-125.
http://www.jot.fm/issues/issue_2003_07/article3

A Taxonomy of Components
Markus Voelter, Independent Consultant, Germany

Abstract
The notion of a component is not really well defined for practical purposes. This is,
because the term is used to denote many different things. So, instead of defining the
term once and for all, we present a taxonomy that shows the different features of a
component.

1 INTRODUCTION

There exist several definitions for the term component, one of them by Clemens
Szyperski:

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.” [SZY]

We will use it as a starting point for our further discussion: Let’s consider some parts of
this definition in detail:

• “a unit of composition”: Calling a component a unit of composition actually
means that the purpose of components is to be composed with other components.
A component-based application is thus assembled from a set of collaborating
components.

• “contractually specified interfaces”: To be able to compose components into
applications, each component must provide one or more interfaces. These
interfaces form a contract between the component and its environment. The
interface clearly defines which services the component provides. It thus defines its
responsibility.

• “explicit context dependencies only”: Usually, software depends on a specific
context, such as available database connections or other system resources being
available. One particularly interesting context is the set of other components that
must be available for a specific component to collaborate with. To support the
composability of components, such dependencies be explicitly specified.

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_07/article3

A TAXONOMY OF COMPONENTS

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

• “can be deployed independently”: A component is self-contained. Changes to the
implementation of a component do not require changes (or a reinstallation) to
other components. Of course, this is only true as long as the interface remains
compatible.

• “third parties”: The people who assemble applications from components are not
necessarily the same as those who created a component. Components are intended
to be reused - the goal is a kind of component marketplace where people buy
components and use them to compose their own applications.

This definition of the term component is very generic and thus it is not surprising that the
term is used to describe rather different concepts: subsystems, DLLs, JavaBeans, ActiveX
controls, .NET assemblies, Enterprise JavaBeans, COM+ components, CORBA
components and more. The purpose of this article is to try to clarify these different views
by providing a taxonomy for components. We therefore don't try to give one concise,
closed definition. Instead, we will show the different features and characteristics a
component must or can have, thereby classifying the different kinds of components as
they are used today.

2 A FEATURE DIAGRAM FOR COMPONENTS

The following discussion centers around a feature diagram for the concept „component“.
Feature diagrams are a notation that is used as part of feature-oriented domain analysis
(see [FODA]), a technique used for analysing the different products to be covered by a
software product-line. This approach, as well as the diagram notation, is extensively
explained in [GP]. For those who don't know the notation, rest assured that the article is
written in a way that will clarify the diagram semantics on the fly. The diagram we use as
a basis for our discussion is depicted in the illustration.

In this diagram, the features (denotes by the boxes) of the concept component are
described, which is located at the top of the diagram. The boxes directly connected to
component are the direct subfeatures of a component. The little circles at the edges
connecting the features define the semantics of the edge. A filled circle means
„mandatory“. Thus, every component has a feature service interface, is of a certain kind,
requires certain resources, and plays a certain role, and it is deployable. Optionally
(denoted by the outlined circle at the edge), it provides meta information. Let's elaborate
on these issues.

A FEATURE DIAGRAM FOR COMPONENTS

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 121

Fig 1: A feature diagram for components

Discussion

As already stated in Szyperski's definition, a component „is a unit of composition with
contractually specified interfaces“. It is thus necessary that a component specifies the
services it provides to clients (which can also be other components). Typically, these
services are specified in terms of operations including their parameters and types in a
service interface. Ideally, this interface also specifies the semantics of the operations.
There are several ways how this can be done: the most popular ways are based on design-
by-contract [DBC] (i.e. pre- and postconditions for operations) or state machines (which
specifies the legal invocation sequences and possibly timing constraints). In most
component-based systems, the service interface does not specify any semantics however,
only the provided operations and their signatures.

Because a component is intended to be (re-)used as a building block during the
assembly of complete applications, it is necessary that it specifies the resources it
requires to run. Typical resources are database connections, message queues or the
service interfaces of other components that the current component uses to have some
services fulfilled. Ideally, the resources should be specified in a way that allows the
environment to detect whether an application – a collaboration of components – can run,
or whether resources are missing. Enterprise JavaBeans [SCP], for example, specify these
resources as part of the XML deployment descriptor, the Small Components prototype
[SMC], a component framework for small devices, uses a normal Java interface, together
with some naming conventions, to specify a component's resources.

A TAXONOMY OF COMPONENTS

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

The next feature to be discussed is the role a component plays. As the feature
diagram shows, a component can play one of several roles (a one-of-many selection is
denoted in the diagram by the outlined-filled arc connecting the three subfeatures of
role). The most typical are:

• A component can represent an entity such as a person, an employee or a text edit
field. It has state, which can be persistent.

• It can represent a service. This means it is typically stateless. An example would
be a component that provides an operation to calculate the VAT for a specific
product or do some mathematical calculations, or a wrapper around some physical
device or legacy system.

• A process component is one that encapsulates a process like the filling of a
shopping cart or a complex workflow. It is typically stateful, usually it is not
persistent.

A component also is of a specific kind. This is a very important concept because people
typically confuse these two kinds of components and end up in endless discussions.
Components can either be technical or logical. A logical component is simply a package
of related functionality. It can be some kind of subsystem, a DLL or a complete,
standalone application that runs as part of a larger system. Logical components are
mainly a way to keep the complexity of a system under control, and to organize version
control or project management issues. Often, the other features (like service interface,
resources, role, and meta information) are specified informally – not necessarily tool-
readable. There are basically three kinds of logical components. Domain components
provide business logic; data components provide access (and optionally, validation and
conversion) to data; user components are part of the client application and typically
provide user interface functionality and/or access to domain or data components. There is
also the notion of a business component – an aggregation of data, domain, and user
components that embody a complete subsystem.

On the other side there are technical components. These are technical building
blocks to assemble applications. Here, the concepts explained above (service interface,
role, resources, meta information) are specified „formally“, they can be evaluated and
understood by a tool. Such a tool is usually called a container. The container provides a
runtime environment for the component. The component cannot live (i.e. run) outside a
container. Their single purpose in life is to be used inside a container. Why is this so? The
reason is, that we want to apply the concept of separation of concerns: we want to keep
different aspects of an application separated into different technical artifacts. A container
handles the so-called technical concerns for the components. What these technical
concerns are, depends on the application domain in which the component architecture is
used. In business systems the technical concerns are things like transactions, security,
failover or load-balancing. The container handles these technical concerns for the
components – the component developer does not need to implement them manually in his
code. To allow the container to host a technical component and handle the technical
concerns for it, the component has to provide a technical interface, with which the

A FEATURE DIAGRAM FOR COMPONENTS

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 123

container can access all hosted components in a uniform way, for example to configure
them, start them, stop them, query them for their state or whatever (see [SCP] for details).

Components optionally provide meta information, which means that they can
provide information describing themselves. The specification of resources is often part of
that meta information. Meta information can be available for runtime or build time, or
both. Build time meta information is important for application assembly tools, tools that
support the assembly of applications from components. Runtime meta information can be
used by clients to gain insight into the features a component can provide to them.

Today, there are two main uses for technical components. They are either used in
client applications, or, in multi-tier systems, on the server. The container for client
components is typically an IDE where the components are configured at development-
time. These client components can either be visible or invisible. Server components
usually encapsulate business logic in mutli-tier systems. The container is typically a part
of an application server.

There is an important relationship between logical and technical components: in
many cases, logical components are aggregations of technical components – i.e. technical
components are used as building blocks for logical components.

As a last point, components are separately deployable. In a component-based
application, it is possible to replace a component with a new one, as long as it provide the
same, or a compatible service interface, usually at runtime. The significantly simplifies
deployment, maintenance and operation.

3 TECHNOLOGY EXAMPLES

Let's look into some concrete examples for the concepts we explained above. Let's start
with client-side componens. The most popular examples are ActiveX controls and
JavaBeans. Both are typically used as building blocks in IDEs, usually they are visible.
They are used as text fields, timers, or more complex widgets, or provide access to
databases, etc. ActiveX controls as well as JavaBeans provide meta information at build-
time and at runtime. In case of JavaBeans for example, the meta information can be
accessed either by Java's reflection or by querying the associated BeanInfo class. In
multi-tier systems, these components are used as user components, in client/server or
standalone applications they are used as user, domain and data components.

In case of server-side components, there are three mainstream examples: Enterprise
JavaBeans (EJB), Microsoft's COM+ and CORBA Components. They are used in
enterprise business applications. All reside in a container which takes care of
transactions, security, load-balancing, failover and other features. Again, they provide
meta information, mainly for use at build time (or deployment time). In case of EJB, this
is an XML file called a deployment descriptor, in case of COM+ these are attributes
stored in the COM+ registry. In all cases, the components provide a technical interface
for the container (called SessionBean or EntityBean in case of EJB). The container uses it
to control the (not always trivial) lifecycle of component instances. These components

A TAXONOMY OF COMPONENTS

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

also specify the resources they need in order to allow the container to povide them to the
components. In the CORBA Component Model, for example, they are specified as part of
the configuration XML file. These server components are never used as client
components, because the containers are rather complex and not available at the client site.
Usually, they are used as domain components, sometimes also as data components. There
are different specifications for service, process and entity components. They typically
differ in their lifecycle and in the services the container provides for them. For example,
the EJB container provides concurreny synchronization for Entity Beans, but it does not
provide this feature for SessionBeans.

Windows DLLs are thus not really technical components. While the exported
operations can account for the interface, but the don't really provide meta information.
They also don't specify the resources they require. There is also no container that
provides services for them. A technical interface is also not available of course. Their
purpose is a way to enhance reuse, and to allow the dynamic loading of application
functionality. .NET assemblies are roughly in the same category, althoug they do feature
a sophisticated metadata facility. Standard metadata (which types are in the assembly,
which modules, and which additional resources) is added by the respective compiler and
it is even possible for the developer to add additional metadata items to types, operations
and fields using .NET attributes.

4 SUMMARY

The goal of this article was to define the term component as it is used today in the
industry. Of course, this is also just the opinion of some people, those with whom I
discussed the ideas during the writing of this article. If you have another opinion or any
comments, I'd be glad to hear from you at voelter@acm.org.

REFERENCES

[DBC] ISE; An Introduction to Design by Contract
http://www.eiffel.com/doc/manuals/technology/contract/page.html

[FODA] SEI; Feature-Oriented Domain Engineering,
http://www.sei.cmu.edu/domain-engineering/FODA.html

[GP] Ulrich Eisenecker, Krzysztof Czarnecki; Generative Programming, Addison-
Wesley 2000

[SCP] Markus Voelter, Alexander Schmid, Eberhard Wolff; Server Component
Patterns, Wiley and Sons, 2002

[SMC] Small Components Project, http://www.voelter.de/smallComponents

mailto:voelter@acm.org
http://www.eiffel.com/doc/manuals/technology/contract/page.html
http://www.sei.cmu.edu/domain-engineering/FODA.html
http://www.voelter.de/smallComponents

SUMMARY

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 125

[SZY] Clemens Szyperski; Component Software - Beyond Object-Oriented
Programming, Addison-Wesley, 1999

About the author
Markus Völter works as an an independent consultant for software
technology and engineering. He focuses on the architecture of large,
distributed systems. Markus is the author of several magazine articles and
patterns, a regular speaker at conferences and co-author of Wiley's Server
Component Patterns. He can be reached at voelter@acm.org
or at http://www.voelter.de

mailto:voelter@acm.org
http://www.voelter.de

