
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 3, May-June 2003

Cite this article as follows: Woo-Shin Han, Ki-Hoon Lee, Byung Suk Lee: “An XML Storage
System for Object-Oriented/Object-Relational DBMSs”, in Journal of Object Technology, vol. 2,
no. 3, May-June 2003, pp. 113-126. http://www.jot.fm/issues/issue_2003_05/article2

An XML Storage System for Object-
Oriented/Object-Relational DBMSs

Wook-Shin Han
Department of Computer Engineering, Kyungpook National University, Korea
Ki-Hoon Lee
Department of Computer Science and AITrc, KAIST, Korea
Byung Suk Lee
Department of Computer Science, University of Vermont, U.S.A.

Abstract
As XML has become popular as a document standard in the World Wide Web, a lot of
research has been done on the XML storage systems for storing and managing XML
documents using existing DBMSs. Most of the research activities, however, assume a
relational DBMS instead of an object-oriented/object-relational (OO/OR) DBMS, which
offers more powerful modeling capabilities. In this paper, we present the design and
implementation of an XML storage system designed for an OO/OR DBMS. Specifically,
we first analyze the mapping from an XML document structure to OO/OR database
schema. Second, we propose a method for describing the mapping using a standard
language called the XML Schema Language. Third, we propose system catalog classes
for storing the mapping information specified by users in the database. Fourth, we
propose a detailed algorithm for storing XML documents in an OO/OR database, based
on the mapping information. We believe the proposed system is practically usable for
object-oriented programmers and DBMS implementors.

1 INTRODUCTION

XML is widely accepted as a new standard for documents having structural information
on the Web [Sim00]. Typically, the number of Web documents is very large and,
therefore, storing and managing them require an efficient storage manager. There exist
several types of XML storage systems, but most of them use relational DBMSs, and this
is what currently available commercial DBMSs do as well [Che00, Mic00]. Naturally,
their focus has been on storing XML documents as relational database records [Flo99,
Sha99, Sha01].

Storing XML documents as database records requires a specification of the mapping
from the document structures to database schema. Currently, most commercial DBMSs
provide such specification languages, but the languages are proprietary and limited to

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_05/article2

AN XML STORAGE SYSTEM FOR OBJECT-ORIENTED/OBJECT-RELATIONAL DBMSS

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

specifying a mapping to relational databases only. This limitation keeps us from
exploiting the powerful modeling capabilities of object-oriented/object-relational
(OO/OR) DBMSs [Sto99] like the references and the collections. Furthermore, learning
the proprietary languages is a burden to users.

In this paper, we propose an XML storage system geared for an OO/OR DBMS. For
this purpose, we first analyze the mapping from XML document structures to OO/OR
schema and propose a specification language based on the standard XML Schema
Language. Then, we propose a set of system catalog classes for storing user-specified
mapping information in the database and propose a detailed algorithm for storing XML
documents in an OO/OR database based on the mapping information.

The rest of the paper is as follows. Section 2 provides an overview of the XML
Schema Language, and Section 3 provides an overview of the XML supports available
from commercial DBMSs. Section 4 analyzes the mapping from the structure of XML
documents to an OO/OR database schema and proposes an XML mapping language
based on the analysis results. Section 5 proposes the system catalog classes and the
detailed algorithm for storing XML documents. Section 6 concludes the paper.

2 XML SCHEMA LANGUAGE

The XML Schema Language is a standard from W3C that replaces XML Document Type
Definitions (DTDs) for specifying the structure of an XML document [Bir01, Fal01,
Tho01]. It is written in XML and offers several important elements including
xsd:element, xsd:attribute, xsd:complexType, and xsd:annotation.

The element xsd:element is used for defining an element. It has the attributes name
and type that respectively represent the name and type of the given element. Additionally
it has the attributes minOccurs and maxOccurs that respectively represent the maximum
and the minimum numbers of occurrences of the element.

The element xsd:attribute is used for defining an attribute. It has the attributes name
and type that respectively represent the name and type of the given attribute.

The element xsd:complexType is used for defining the type of an element having
subelements or attributes. In the XML Schema Language, if an element has subelements
or attributes, the type of the element is called the complex type (complexType), and
otherwise called the simple type.

The element xsd:annotation is used for annotating additional information like the
comment on a document and the information used by application programs. It has two
subelements―xsd:documentation and xsd:appinfo. The former is used for specifying
comment and the latter is used for specifying information for application programs.

Figure 1 represents an exemplary XML Schema. The xsd:element with the optional
xsd:attribute defines the elements book, title, author, etc. The element book has the
subelements title and author representing the title and authors, respectively. It also has

XML SCHEMA LANGUAGE

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 115

the attribute id representing the unique id of a book. The element author has the
subelements name and email representing the name and email address of the author,
respectively. The xsd:complexType defines the complex types of the elements book and
author. The xsd:annotation defines the annotation like the copyright information.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:annotation>

<xsd:documentation>

Book schema for www.book.com.

Copyright 2001 www.book.com. All rights reserved.

</xsd:documentation>

</xsd:annotation>

<xsd:element name="book">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="title" type="xsd:string"/>

<xsd:element name="author" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="email" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:integer"/>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Fig. 1: An example of XML schema.

3 XML SUPPORTS IN COMMERCIAL DBMSS

In this section we give an overview of the XML structure-to-database schema mapping
specification languages currently available from two selected commercial DBMSs: IBM
DB2 and Microsoft SQL Server.

Note that the specification languages of both DBMSs are geared for a mapping to
relational schema only and, therefore, cannot utilize such constructs as the references and
collections available from an OO/OR schema. Furthermore, both languages are

AN XML STORAGE SYSTEM FOR OBJECT-ORIENTED/OBJECT-RELATIONAL DBMSS

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

proprietary to the specific DBMSs and, therefore, make it involving for users to switch
between them.

IBM DB2

IBM DB2 offers the XML Extender for storing XML documents. Its XML structure-to
database schema mapping language is Document Access Definition (DAD). The DAD
uses two elements, element_node and attribute_node, for describing the structure of XML
documents, and one element RDB_node for describing its mapping to database schema.
Element_node specifies the elements in an XML document, and attribute_node specifies
the attributes. Both element_node and attribute_node have RDB_node as their
subelement. RDB_element in turn has the subelements table, column, and condition,
which respectively specifies a table, a column, and a primary key-foreign key relationship
between tables in a database schema.

In the XML-to-schema mapping using DAD, XML elements are mapped to database
tables or columns, XML attributes are mapped to database columns, and relationships
between XML elements are mapped to primary key-foreign key relationships between
database tables. The principles for this mapping are as follows. First, specify the structure
of XML documents by using element_node and attribute_node. Second, specify the
mapping to a database schema using RDB_node. Third, specify all primary key-foreign
key relationships between tables in the RDB_node subelement of the root element_node.
Fourth, specify the table and column, to which an element or an attribute is mapped, in
the RDB_node subelement of each non-root element_node and attribute_node.

Figure 3 shows a DAD specifying the mapping from the XML document structure in
Figure 1 to the database schema in Figure 2. The table book, the table author and the
primary key-foreign key relationship between the two tables are specified in the
RDB_node subelement of the root element_node named “book.” The columns id and title
of the table book are specified in the RDB_node subelements of the attribute_node named
“id” and the element_node named “title,” respectively. Likewise, the columns name and
email of the table author are specified in the RDB_node subelements of the element_node
named “name” and the element_node named “email.”

integer

id

varchar(100)type

titlename

integer

id

varchar(100)type

titlename

integer

bookId

varchar(100)varchar(100)type

emailname name

integer

bookId

varchar(100)varchar(100)type

emailname name

Table book Table author

Fig. 2: An example relational database schema.

XML SUPPORTS IN COMMERCIAL DBMSS

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 117

<element_node name="book">
<RDB_node>

<table name="book" key="id"/>
<table name="author"/>
<condition> book.id=author.bookId </condition>

</RDB_node>
<attribute_node name="id">

<RDB_node>
<table name="book"/>
<column name="id" type="integer"/>

</RDB_node>
</attribute_node>
<element_node name="title">

<text_node>
<RDB_node>

<table name="book"/>
<column name="title" type="varchar(100)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="author" multi_occurrence="YES">

<element_node name="name">
<text_node>

<RDB_node>
<table name="author"/>
<column name="name" type="varchar(100)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="email">

<text_node>
<RDB_node>

<table name="author"/>
<column name="email" type="varchar(100)"/>

</RDB_node>
</text_node>

</element_node>
</element_node>

</element_node>

mapping the relationship between
the elements book and author

mapping the attribute id

mapping the attribute title

mapping the element author

mapping the element email

Fig. 3: An example DAD.

Microsoft SQL Server

Microsoft SQL Server offers the XML Bulk Load utility for storing XML
documents[Mic00]. Its XML-to-database mapping language is the annotated XML-Data
Reduced (XDR) Schema. This language uses four elements―ElementType, AttributeType,
element, attribute―for specifying the structure of an XML document, and two attributes
relation and field as well as one element relationship for specifying the mapping to a
database schema. Specifically, ElementType and AttributeType are used respectively to
declare XML elements and attributes, whereas element and attribute are used to refer to
the declared ElementType and AttributeType. Additionally, the attributes relation and

AN XML STORAGE SYSTEM FOR OBJECT-ORIENTED/OBJECT-RELATIONAL DBMSS

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

field respectively specify a table and a column, and the element relationship specifies the
primary key-foreign key relationship between two tables in the database schema.

Like the DAD, the annotated XDR Schema maps XML elements and attributes to
database tables or columns, and relationships between XML elements to primary key-
foreign key relationships between database tables. The principles for specifying the
mapping are like those for the DAD. First, specify the structure of XML documents by
using the elements ElementType, AttributeType, element, and attribute. Second, specify
the table and column, to which an element or an attribute is mapped, by using the
attributes relation and field. Third, specify the primary key-foreign key relationship
between tables by using the element relationship.

Figure 4 shows an annotated XDR Schema corresponding to the DAD in Figure 3.
The element book is mapped to the table book, and the attribute author and the element
title are respectively mapped to the columns id and title of the table book. Likewise, the
element author is mapped to the table author, and the attribute name and the element
email are respectively mapped to the columns name and email of the table author.
Besides, the relationship between the two elements book and author is mapped to the
primary key-foreign key relationship between the two tables book and author.

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes"
xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType name="book" sql:relation="book">
<element type="title" sql:field="title"/>
<element type="author" minOccurs="0" maxOccurs="*">

<sql:relationship key-relation="book" key="id"
foreign-relation="author" foreign-key="bookId"/>

</element>
<attribute type="id" sql:field="id"/>

</ElementType>

<ElementType name="title" dt:type="string"/>
<AttributeType name="id" dt:type="int"/>

<ElementType name="author" sql:relation="author">
<element type="name" sql:field="name"/>
<element type="email" sql:field="email"/>

</ElementType>

<ElementType name="name" dt:type="string"/>
<ElementType name="email" dt:type="string"/>

</Schema>

mapping the elements
book and title

mapping the relationship between
the elements book and author

mapping the attribute id

mapping the elements author,
name, and email

Fig. 4: An example of annotated XDR schema.

DESIGN OF AN XML MAPPING LANGUAGE

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 119

4 DESIGN OF AN XML MAPPING LANGUAGE

In this section we analyze the mappings from an XML document structure to a database
schema and, based on the analysis results, propose an XML structure-to-database schema
mapping language designed for OO/OR databases.

Analysis of Mapping from XML Document Structure to Database Schema

Figure 5 shows possible mappings from an XML document structure to an OO/OR
schema. The rectangle on the left side shows the components of an XML document, and
the rectangle on the right hand side shows the components of an OO/OR database schema.
The arrows denote possible mappings between the two. As shown in the arrows
numbered 1 through 4, each XML element or attribute can be mapped to either a database
class or a column. However, if XML attributes are mapped to classes, join operations are
required unnecessarily when processing queries and, therefore, we do not allow this kind
of mapping in this paper. The arrows for these disallowed mappings are distinguished
with broken lines in Figure 5.

Fig. 5: Possible mappings from an XML structure to an object-oriented/object-relational schema.

A relationship between an element and an attribute can be mapped to either a relationship
between a class and a column (i.e., arrow 5) or a relationship between a class and another
class (i.e., arrow 7). However, only the latter option applies because XML attributes are
mapped to only the database columns. The relationship between an element and another
element is mapped to either the relationship between a class and a column (i.e., arrow 6)
or the relationship between two classes (i.e., arrow 8).

We do not need to explicitly specify the mappings to a relationship between a class
and a column (i.e., arrows 5 and 6) because this relationship is already maintained in the
database schema. That is, as long as we know the mappings between XML

Structure of XML Documents
Object-oriented/object -

relational Schema

class

column

relationship between
a class and a

column

relationship between
two classes

mapping
element

attribute

relationship between
an element and an

attribute

relationship between
two elements

1

2

4

5

6

8

3

7

AN XML STORAGE SYSTEM FOR OBJECT-ORIENTED/OBJECT-RELATIONAL DBMSS

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

elements/attributes and database classes/columns (i.e., arrows 1, 2, and 4), we can find a
relationship between an XML element and an attribute or between two elements that is
mapped to to the relationship between a class and a column.

XML Mapping Language for OO/OR Databases

To specify the explicit mappings (i.e., arrows 1, 3, 4, and 8), we need the following kinds
of information: 1) information on the XML document structure, 2) information on the
database schema, and 3) information on the mappings from the XML document structure
to the database schema. We specify the XML document structure in the XML Schema
Language, and specify the database schema and the mappings by adding three new
subelements of the element appinfo in the XML Schema Language. Thus, we need only
the XML Schema Language to specify all necessary mapping information.

The first two new subelements of the three are Class and Column. The element Class
has the attribute name to specify the name of a class, and the element Column has the
attributes name and type to specify the name and the type of a column, respectively. We
use these two elements to specify the classes and columns in the database schema as well
as the mappings from elements or attributes to classes or columns (i.e., arrows 1, 3, and
4).

The third new subelement is Relationship. It specifies the mapping from a
relationship between two elements to a relationship between two classes (i.e., arrow 8). In
an OO/OR database schema, the relationship between two classes can be represented
using the reference type and the collection type.

The relationship is classified into one-to-one relationship and one-to-many
relationship based on the cardinality constraint. It is also classified into a uni-directional
relationship and a bi-directional relationship depending on whether the relationship exists
in only one direction or in both directions.

To specify the mapping of a relationship as described above, the element
Relationship has four attributes parent, child, cardinality, and isOrdered. The attribute
parent specifies a reference-type column of the table mapped from a parent element, and
the attribute child specifies a reference-type column of the table mapped from a child
element. The attribute cardinality specifies the cardinality constraint of the relationship,
and the attribute isOrdered specifies the order-preservation constraint of the relationship.
The direction of a relationship is uni-directional if the attribute child is omitted, otherwise
bi-directional.

Figure 6 shows an example of a mapping written in this proposed specification
language. It shows a portion of mapping an XML document structure in Figure 1 to an
OO/OR schema in Figure 7. The mapping information is annotated with subelements of
the element appinfo. Specifically, the database schema is specified with the elements
Class and Column on their own, and the mapping from the elements or attributes to the
database schema is specified with the two elements used as subelements of the elements
or attributes. The relationship between the class book and the class author is one-to-many

DESIGN OF AN XML MAPPING LANGUAGE

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 121

and ordered as specified with the attributes ‘cardinality=“onetoMany”’ and
‘isOrdered=“yes”’ of the Relationship element. Here, use the list type, “list(ref(author))”
instead of the set type to preserve the order of the relationship.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:annotation>
<xsd:appinfo>

<Class name="book">
<Column name="book.authors" type="list(ref(author))"/>
<Column name="book.id" type="integer"/>
<Column name="book.title" type="varchar(100)"/>

</Class>
<Class name="author">

<Column name="author.book" type="ref(book)"/>
<Column name="author.name" type="varchar(100)"/>
<Column name="author.email" type="varchar(100)"/>

</Class>
<Relationship parent="book.authors" child="author.book"

cardinality="onetoMany" isOrdered="yes"/>
</xsd:appinfo>

</xsd:annotation>
<xsd:element name="book">

<xsd:annotation>
<xsd:appinfo>

<Class name="book"/>
</xsd:appinfo>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element name="title" type="xsd:string">

<xsd:annotation>
<xsd:appinfo>

<Column name="book.title"/>
</xsd:appinfo>

</xsd:annotation>
. . .

information on the database schema

mapping the relationship between
the elements book and author

mapping the element book

mapping the element title

Fig. 6: An example mapping from the structure of XML documents to object-oriented/object-relational schema.

list(ref(author))

authors

integer

id

varchar(100)type

titlename

list(ref(author))

authors

integer

id

varchar(100)type

titlename

ref(book)

book

varchar(100)varchar(100)type

emailname name

ref(book)

book

varchar(100)varchar(100)type

emailname name

Class book Class author

Fig. 7: An example OO/OR database schema for Figure 2.

5 STORING XML DOCUMENTS BASED ON THE MAPPING

In this section we describe a set of database system catalog classes for storing user-
provided XML structure-to-database schema mapping information, and present an
algorithm for storing XML documents in an OO/OR database according to the mapping
information.

AN XML STORAGE SYSTEM FOR OBJECT-ORIENTED/OBJECT-RELATIONAL DBMSS

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

Catalog Classes for Storing the Mapping information

As mentioned in Section 4, we need to store the information on the XML document
structure, the database schema, and the mapping between them. Since the information on
the database schema is already stored in the database system catalog, we have only to
store the information on the XML document structure and the mapping.

In this paper we store the information on XML document structures and the
information on mappings in the same classes to avoid unnecessary joins. Figure 8 shows
the catalog classes used for this purpose. The class xmlSysElements is for each element
and its mapping, the class xmlSysAttributes is for each attribute and its mapping, and the
class xmlSysRelationships is for each relationship (between two XML elements) and its
mapping.

The class xmlSysElements has the columns elementId and elementName for storing
an element. Additionally, it has the columns flag, classId, and columnNo for storing the
mapping information of the element. Specifically, the column flag specifies whether the
element is mapped to a class or a column, the column classId specifies the identifier of
the class the element is mapped to, and columnNo specifies the number of the column the
element is mapped to.

The class xmlSysAttributes has the columns elementId and attributeNo, and
attributeName for storing an attibute. Additionally, it has the columns classId for storing
the identifier of the class the attribute is mapped to and the column columnNo for storing
the number of the column the attribute is mapped to.

The class xmlSysRelationships has the columns parentId, childId, and cardinality for
storing a relationship. Additionally, it has the columns flag, isOrdered, parentClassId,
parentColumnNo, childClassId, and childColumnNo for storing the mapping information
of the relationship. Specifically, the column flag specifies whether the child element is
mapped to a class or to a column of the class mapped from the parent element, the
columns parentClassId and parentColumnNo specify the class and the column the parent
element is mapped to, and the columns childClassId and childColumnNo specify those
the child element is mapped to.

STORING XML DOCUMENTS BASED ON THE MAPPING

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 123

integer

classId

integercharvarcharintegertype

columnNoflagelementNameelementIdname

integer

classId

integercharvarcharintegertype

columnNoflagelementNameelementIdname

integer

attributeNo

integerintegervarcharintegertype

columnNoclassIdattributeNameelementIdname

integer

attributeNo

integerintegervarcharintegertype

columnNoclassIdattributeNameelementIdname

char

flag

char

isOrdered

integer

parentClassId

integer

childColumnNo

integer

childClassId

integercharintegerintegertype

parentColumnNocardinalitychildIdparentIdname

char

flag

char

isOrdered

integer

parentClassId

integer

childColumnNo

integer

childClassId

integercharintegerintegertype

parentColumnNocardinalitychildIdparentIdname

xmlSysElements

xmlSysAttributes

xmlSysRelationships

Fig. 8: Catalog classes for storing the mapping information.

Algorithm for Storing XML documents in an OO/OR database

Figure 9 shows the algorithm StoreXML_ORDB for storing XML documents in an
OO/OR database. The algorithm reads each XML element E one by one and stores it in
the database. In lines 3-15, if the element E is mapped to a class, the algorithm creates an
object O of the class and forms a relationship with the object Op that stores the parent
element. Specifically, if the relationship is one-to-one, in line 9 the algorithm stores the
OID of O in the column of Op that is a reference to O. If the relationship is one-to-many,
in line 11 the algorithm stores the OID of O in the column of Op that is a collection of
references to O. Besides, if the relationship is bi-directional, in line 13 the algorithm
stores the OID of Op in the column of O that is a reference to Op. In lines 16-22, if the
element E is mapped to a column, the value of E is stored in the column. In lines 23-24,
each attribute that belongs to the element E is stored in the column of O to which E is
mapped.

6 CONCLUSION

In this paper, we proposed an XML storage system for storing and managing XML
documents efficiently in an object-oriented/object-relational (OO/OR) database. The
system offers an XML-to-database mapping language based on the standard XML
Schema Language, and provides methods usable in an OO/OR DBMS as well as a
relational DBMS. Specifically, we analyzed the mapping from an XML document
structure to an OO/OR database schema, and presented (1) a mapping specification
language based on the results of the analysis, (2) database catalog classes for storing user-
provided mapping information, and (3) an algorithm for mapping and storing XML
documents in an OO/OR database.

AN XML STORAGE SYSTEM FOR OBJECT-ORIENTED/OBJECT-RELATIONAL DBMSS

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

Algorithm StoreXML_ORDB
Input:
D : XML document

1: for (element E in the XML document D)
2: {
3: if (E is mapped to a class)
4: {
5: create an object O in the class to which E is mapped;
6: if (there exists an object Op that stores the parent element and the relationship R)
7: {
8: if (R is a one-to-one relationship)
9: store the OID of O in the column of Op that is a reference to O;
10: else if (R is a one-to-many relationship)
11: store the OID of O in the column of Op that is a collection of references to O;
12: if (R is a bi-directional relationship)
13: store the OID of Op in the column of O that is a reference to Op;
14: }
15: }
16: else if (E is mapped to a column C)
17: {
18: if (the type of C is simple)
19: store the value of E in the column of the object O to which E is mapped;
20: else if (the type of C is a simple collection)
21: store the value of E in the column of the object O to which E is mapped as a collection element;
22: }
23: for (each attribute A that belongs to E)
24: store the value of A in the column of the object O to which E is mapped;
25: }

Fig. 9: An algorithm for storing XML documents in an OO/OR database.

ACKNOWLEDGEMENT

This work was supported by the Korea Science and Engineering Foundation(KOSEF)
through the Advanced Information Technology Research Center(AITrc).

REFERENCES

[Bir01] Biron, P. and Malhotra, A.: XML Schema Part 2: Datatypes, May 2001
(available from http://www.w3.org/TR/xmlschema-2).

[Che00] Cheng, J. and Xu J.: “XML and DB2,'' In Proc. the 16th Int'l Conf. on Data
Engineering, pp. 569―573, San Diego, California, USA, 2000.

[Fal01] Fallside, D.: XML Schema Part 0: Primer, May 2001 (available from
http://www.w3.org/TR/xmlschema-0).

http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xmlschema-0

CONCLUSION

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 125

[Flo99] Florescu, D. and Kossmann, D.: A Performance Evaluation of Alternative
Mapping Schemes for Storing XML Data in a Relational Database, Technical
Report RR-3680, INRIA, May 1999.

[Mic00] Microsoft Corp.: Microsoft SQL Server 2000, 2000 (available from
http://www.microsoft.com/sql/default.asp).

[Sha99] Shanmugasundaram, J. et al.: “Relational Databases for Querying XML
Documents: Limitations and Opportunities,” In Proc. 25th Int'l Conf. on Very
Large Data Bases, pp. 302―314, Edinburgh, Scotland, UK, Sept. 1999.

[Sha01] Shanmugasundaram, J. et al.: “A General Technique for Querying XML
Documents Using a Relational Database System,'' ACM SIGMOD RECORD,
Vol. 30, No. 3, Sept. 2001.

[Sto99] Stonebraker, M. and Moore, D.: Object-Relational DBMSs: The Next Great
Wave, Morgan Kaufmann, 1999.

[Sim00] Simon, H., Strategic Analysis of XML for Web Application Development,
Computer Research Corp., 2000.

[Tho01] Thompson, H. et al.: XML Schema Part 1: Structures, May 2001 (available
from http://www.w3.org/TR/xmlschema-1).

About the authors
Wook-Shin Han received the B.S. degree in Computer Engineering
from Kyungpook National University in 1994, and the M.S. and Ph.D.
degrees in Computer Science from Korea Advanced Institute of
Science and Technology (KAIST), in 1996 and 2001, respectively. He
is currently a full-time lecturer at Kyungpook National University.
Previously, he was a postdoctoral fellow at KAIST. His research
interests include object-oriented/object-relational databases, XML
databases, and information retrieval. Email: wshan@knu.ac.kr.

Ki-Hoon Lee received the B.S. and M.S. degrees in Computer Science
from Korea Advanced Institute of Science and Technology (KAIST), in
2000 and 2002, respectively. He is currently a Ph.D. candidate at
KAIST. His research interests include object-oriented/object-relational
databases, XML databases, and query optimization. Email:
drlee@mozart.kaist.ac.kr.

http://www.microsoft.com/sql/default.asp
mailto:wshan@knu.ac.kr
mailto:drlee@mozart.kaist.ac.kr

AN XML STORAGE SYSTEM FOR OBJECT-ORIENTED/OBJECT-RELATIONAL DBMSS

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

Byung Suk Lee received the B.S. degree in Electronics Engineering
from Seoul National University in 1980, the M.S. degree in Electrical
Engineering from Korea Advanced Institute of Science and Technology
in 1982, and the Ph.D. degree through Computer Systems Laboratory in
Electrical Engineering from Stanford University in 1991. He is currently
Assistant Professor of Computer Science at the University of Vermont.
Previously he was Assistant Professor of Software Engineering at the
University of St. Thomas, Supervisor at Datacom Global

Communications, Member of Technical Staff at Bell Communications Research, and
Senior Research Engineer at Gold Star Electrical Company. His research areas include
databases, artificial intelligence, and information retrieval. Email: bslee@cs.uvm.edu.

mailto:bslee@cs.uvm.edu

