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1 INTRODUCTION 

This is a multi-part column that will appear in the next several issues of JOT. 
This first installment outlines a well known branch and bound algorithm for solving the 
Traveling Salesperson Problem (TSP). A single-threaded Java implementation of this 
algorithm is presented and discussed along with some results on several moderate sized 
potentially intractable problems. The implementation provides an opportunity to discuss 
several important Java implementation issues. 

The second column presents another well-known branch and bound algorithm and its 
single-threaded Java implementation. This implementation also provides an opportunity 
to discuss some interesting implementation issues. 

In the third column, a multi-threaded implementation will be presented based on the 
second branch and bound algorithm introduced in the second column. Its performance 
will be compared to the single-threaded implementations presented earlier. This multi-
threaded implementation sets the stage for the multi-process distributed implementation 
to be presented in the fourth column. 

This fourth column shall present a distributed implementation for solving TSP using 
remote method invocation (RMI) in Java. Results using five networked computers 
running in parallel and featuring three different operating systems will be presented and 
compared with the single and multi-threaded solutions. 

Some of the results presented in these columns might be of some value to educators 
teaching algorithm design or advanced Java or distributed computing. 

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_03/column7
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2 THE TSP PROBLEM 

As researchers in the area of algorithm design know, the Traveling Salesperson Problem 
(TSP) is one of many combinatorial optimization problems in the set NP-complete. The 
only known solutions are of exponential complexity and are therefore intractable. 

Recall that the TSP assumes that the distances between n cities are specified in a cost 
matrix that specifies the non-negative cost between any pair of cities. A salesperson is 
given the task of starting at city 1, traveling to each of the other cities and then returning 
to city 1. Each city must be visited exactly once and no cities can be skipped. The goal is 
to find the sequence of cities that starts and ends with city 1 such that the overall cost of 
the tour is minimized. 

When one first encounters this classic problem, it seems relatively easy to solve. 
Perhaps that is because the problem itself is easy to understand. But consider the fact that 
there are (n – 1)! tours in an n-city problem since each tour must start and end with city 1. 
So only for toy-size problems, say n <= 14, would a brute force evaluation of all possible 
tours and subsequent computation of the minimum tour be feasible. For a problem with 4 
cities, the 3! = 6 possible tours are: 

 
1, 2, 3, 4, 1 
1, 2, 4, 3, 1 
1, 3, 2, 4, 1 
1, 3, 4, 2, 1 
1, 4, 2, 3, 1 
1, 4, 3, 2, 1 
 
Two different fairly well known branch and bound approaches to solving the TSP will be 
explored and implemented in Java. Several moderate sized problems of sizes 20, 24 and 
33 will be used to test the implementations. 

3 BRANCH AND BOUND ALGORITHM 1 FOR TSP WITH 
SYMMETRIC COST MATRIX 

A tree of nodes is generated where each node has specified constraints regarding edges 
connecting two cities in a tour that must be present and edges connecting two cities in a 
tour that cannot be present. Based on the constraints in a given node, a lower bound is 
formulated for the given node. This lower bound represents the smallest solution that 
would be possible if a sub-tree of nodes leading eventually to leaf nodes containing legal 
tours were generated below the given node. If this lower bound is higher than the best 
known solution to-date, the node may be pruned. This pruning has the effect of sparing 
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the computational process the need to generate nodes below the given node. This could 
result in a significant saving if the pruned node were relatively near the top of the tree. 

Let us explore the mechanism for computing lower bounds for a node. 
The exact cost of a tour always equals the sum of the edges going into and out of each 
city in the tour divided by 2. For example, consider the 3 city problem shown below with 
cost matrix: 
 
0 3 3 
4 0 5 
2 0 4 
 
Consider the tour 1, 2, 3, 1. The sum of the edges going into and out of each node is: 
 
Node 1:  2 + 3 = 5 
Node 2:  3 + 5 = 8 
Node 3:  5 + 2 = 7 
Therefore the tour cost = (5 + 8 + 7) / 2 = 10 
 
For the tour 1, 3, 2, 1 the sum of the edges going into and out of each node is: 
 
Node 1: 3 + 4 = 7 
Node 2: 4 + 4 = 8 
Node 3: 3 + 4 = 7 
Therefore the tour cost = (7 + 8 + 7) / 2 = 11 
 
In general, the sum of the edges going into and out of a tour node is no less than the sum 
of the two edges of least cost going into and out of the tour node. Therefore, no tour can 
cost less than one-half the sum over all the nodes of the two lowest cost edges going into 
and out of each node. 

Construction of Solution Tree 

A solution tree is constructed by adding edges in lexicographic order. Each time we add a 
new node we employ decision tree logic regarding which nodes must be included or 
excluded from tours represented by the nodes. The rules that are used are: 

1. If excluding an edge (x, y) would make it impossible for x or y to have as many as 
two adjacent edges in the tour, then (x, y) must be included. 

2. If including (x, y) would cause x or y to have more than two edges adjacent in the 
tour, or would complete a non-tour cycle with edges already included, then (x, y) 
must be excluded. 

When the algorithm branches, and after imposing the decision logic to include or exclude 
edges, a lower bound is computed for the node. If the lower bound for a given node is as 
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high or higher than the lowest cost tour found so far, we prune the node. If neither child 
can be pruned, the algorithm descends to the node with smaller lower bound using a 
depth-first search in the tree. After considering one child, we must again consider 
whether the sibling can be pruned since a new best solution may have been found. 

Example 

Consider the six-city problem with cost matrix given as follows: 
 
0 8 5 3 1 2 
8 0 4 9 2 8 
5 4 0 9 6 7 
3 9 9 0 1 1 
1 2 6 1 0 9 
2 8 7 1 9 0 
 
Although for this toy-sized problem it would be easy to enumerate the 120 possible tours 
and compute the tour with lowest cost, we shall illustrate the branch and bound process 
by constructing a solution tree. 

To compute the lower bound for a solution to the problem for the root node that 
contains no constraints (all tours are possible): 
 
The five edges incident on node 1 are:  8, 5, 3, 1, 2. The two smallest edges are 1 and 2. 
The five edges incident on node 2 are:  8, 4, 9, 2, 8. The two smallest edges are 2 and 4. 
The five edges incident on node 3 are:  5, 4, 9, 6, 7. The two smallest edges are 4 and 5. 
The five edges incident on node 4 are:  3, 9, 9, 1, 1. The two smallest edges are 1 and 1. 
The five edges incident on node 5 are:  1, 2, 6, 1, 9. The two smallest edges are 1 and 1. 
The five edges incident on node 6 are:  2, 8, 7, 1, 9. The two smallest edges are 1 and 2. 
Therefore, twice the lower bound for this unconstrained root node is therefore:  1 + 2 + 2 
+ 4 + 4 + 5 + 1 + 1 + 1 + 1 + 1 + 2 = 25.  
 

From the root node we generate two child nodes with the constraints 12 and *12. The 
constraint 12 means that the edge 12 must be present in the tour. The constraint *12 
means that the edge 12 cannot be present in the tour. 

Let us walk through the computation of the lower bound 35 when the constraint is 
12.  

The five edges incident on node 1 are: 8, 5, 3, 1, 2. Since edge 12 must be present, 
the sum of the two smallest edges in the presence of this constraint is 1 + 8 = 9. 

The five edges incident on node 2 are: 8, 4, 9, 2, 8. Since edge 12 must be present, 
the sum of the two smallest edges in the presence of this constraint is 2 + 8 = 10. 
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The five edges incident on node 3 are:  5, 4, 9, 6, 7. The two smallest edges are 4 and 5. 
The five edges incident on node 4 are:  3, 9, 9, 1, 1. The two smallest edges are 1 and 1. 
The five edges incident on node 5 are:  1, 2, 6, 1, 9. The two smallest edges are 1 and 1. 
The five edges incident on node 6 are:  2, 8, 7, 1, 9. The two smallest edges are 1 and 2. 
 

Twice the lower bound with the constraint 12 is therefore 9 + 10 + 4 + 5 + 1 + 1 + 1 
+ 1 + 1 + 2 = 35. 

Using the same approach, it is easy to show that the lower bound on the node with 
constraint *12 is 25. 

Since the right child node has a smaller lower bound than the left child node, the best 
first algorithm constructs nodes below the right child node. 

The left child of the node with constraint *12 has the constraints *12 and 13 and the 
right child the constraints *12 and *13 (the 13 and *13 are introduced in lexicographical 
order). The reader is left to verify that twice the lower bounds under these constraints are 
28 and 26 respectively.  

The depth-first generation of the tree continues using the node with lower bound 26. 
Let us consider the right node with twice the lower bound of 26. The three 

constraints are 15, 16 and *56. These are constraints derived from the decision rules 
stated earlier. The 15 and 16 are present because of the presence of the *12, *13 and *14 
(each tour must have two edges incident from node 1). The *56 is present since a non-
tour cycle given by 1, 5, 6, 1 would be possible if the constraint *56 were not present. 

We shall perform one last lower bound computation on the node with constraints: 
*12, *13, 15, 16, *56. 
 
The five edges incident on node 1 are:  8, 5, 3, 1, 2.  Edges 1 and 2 are smallest. 
The five edges incident on node 2 are:  8, 4, 9, 2, 8.  Edges 2 and 4 are smallest. 
The five edges incident on node 3 are:  5, 4, 9, 6, 7.  Edges 4 and 6 are smallest subject to 
the constraint *13. 
The five edges incident on node 4 are:  3, 9, 9, 1, 1. Edges 1 and 1 are smallest. 
The five edges incident on node 5 are:  1, 2, 6, 1, 9. Edges 1 and 1 are smallest. 
The five edges incident on node 6 are:  2, 8, 7, 1, 9. Edges 1 and 2 are smallest. 
Therefore, twice the lower bound is the sum which equals 26. 
 

For the problem stated above and using a descriptive symbolic notation, we show the 
complete sequence of nodes generated and pruned using the best-first, branch and bound 
algorithm outlined above. We define each node by its constraints, its computed lower 
bound (actually twice the lower bound) and its left and right children, each with their 
lower bounds. The actual sequence of actions may be followed by examining the 
sequence of bold-faced lines. 

It would be instructive to sketch the entire tree based on the sequence of events 
shown below. 
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branchAndBound() – Root node with no constraints 
Twice the lower bound = 25 
leftChild = 12   with lowerBound() = 35 
rightChild = *12   with lowerBound() = 25 
 
branchAndBound(*12) – The constraints on this node are *12 
Twice the lower bound = 25 
leftChild = *12  13   with lowerBound() = 28 
rightChild = *12  *13   with lowerBound() = 26 
 
branchAndBound(*12  *13 ) – The constraints on this node are *12 and *13 
Twice the lower bound = 26 
leftChild = *12  *13  14   with lowerBound() = 29 
rightChild = *12  *13  *14  15  16  *56   with lowerBound() = 26 
 
branchAndBound(*12  *13  *14  15  16  *56) 
Twice the lower bound = 26 
leftChild = *12  *13  *14  15  16  23  *56   with lowerBound() = 26 
rightChild = *12  *13  *14  15  16  *23  *56   with lowerBound() = 33 
 
branchAndBound(*12  *13  *14  15  16  23  *56) 
Twice the lower bound = 26 
leftChild = *12  *13  *14  15  16  23  24  *25  *26  *34  *56   with lowerBound() = 41 
rightChild = *12  *13  *14  15  16  23  *24  *56   with lowerBound() = 26 
 
branchAndBound(*12  *13  *14  15  16  23  *24  *56) 
Twice the lower bound = 26 
leftChild = *12  *13  *14  15  16  23  *24  25  *26  34  *35  *36  *45  46  *56   with 
lowerBound() = 38 
rightChild = *12  *13  *14  15  16  23  *24  *25  26  34  *35  *36  45  *46  *56   with 
lowerBound() = 50 
 
branchAndBound(*12  *13  *14  15  16  23  *24  25  *26  34  *35  *36  *45  46  *56 ) 
*12  *13  *14  15  16  23  *24  25  *26  34  *35  *36  *45  46  *56   is a tour of cost 19. 
 
Prune node *12  *13  *14  15  16  23  *24  *25  26  34  *35  *36  45  *46  *56 
Prune node *12  *13  *14  15  16  23  24  *25  *26  *34  *56 
 
branchAndBound(*12  *13  *14  15  16  *23  *56 ) 
Twice the lower bound = 33 
leftChild = *12  *13  *14  15  16  *23  24  *56   with lowerBound() = 42 must be 
pruned. 
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rightChild = *12  *13  *14  15  16  *23  *24  25  26  34  *35  *36  *45  *46  *56   with 
lowerBound() = 44 must be pruned. 
 
branchAndBound(*12  *13  14 ) 
Twice the lower bound = 29 
leftChild = *12  *13  14  15  *16  *45   with lowerBound() = 35 
rightChild = *12  *13  14  *15  16  *46   with lowerBound() = 37 
 
branchAndBound(*12  *13  14  15  *16  *45 ) 
Twice the lower bound = 35 
leftChild = *12  *13  14  15  *16  23  *45   with lowerBound() = 35 
rightChild = *12  *13  14  15  *16  *23  *45   with lowerBound() = 42 must be 
pruned. 
 
branchAndBound(*12  *13  14  15  *16  23  *45 ) 
Twice the lower bound = 35 
leftChild = *12  *13  14  15  *16  23  24  *25  *26  *34  *35  36  *45  *46  56   with 
lowerBound() = 66 must be pruned. 
rightChild = *12  *13  14  15  *16  23  *24  *45   with lowerBound() = 35 
 
branchAndBound(*12  *13  14  15  *16  23  *24  *45 ) 
Twice the lower bound = 35 
leftChild = *12  *13  14  15  *16  23  *24  25  *26  *34  *35  36  *45  46  *56   with 
lowerBound() = 36 
rightChild = *12  *13  14  15  *16  23  *24  *25  26  *36  *45   with lowerBound() = 46 
must be pruned. 
 
branchAndBound(*12  *13  14  15  *16  23  *24  25  *26  *34  *35  36  *45  46  *56 ) 
*12  *13  14  15  *16  23  *24  25  *26  *34  *35  36  *45  46  *56   is a tour of cost 18. 
 
Prune node *12  *13  14  *15  16  *46 
 
branchAndBound(*12  13 ) 
Twice the lower bound = 28 
leftChild = *12  13  14  *15  *16  *34   with lowerBound() = 38 must be pruned. 
rightChild = *12  13  *14   with lowerBound() = 28 
 
branchAndBound(*12  13  *14 ) 
Twice the lower bound = 28 
leftChild = *12  13  *14  15  *16  *35   with lowerBound() = 33 
rightChild = *12  13  *14  *15  16  *36   with lowerBound() = 30 
 
branchAndBound(*12  13  *14  *15  16  *36) 
Twice the lower bound = 30 
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leftChild = *12  13  *14  *15  16  23  *26  *34  *35  *36   with lowerBound() = 30 
rightChild = *12  13  *14  *15  16  *23  *36   with lowerBound() = 36 
 
branchAndBound(*12  13  *14  *15  16  23  *26  *34  *35  *36 ) 
Twice the lower bound = 30 
leftChild = *12  13  *14  *15  16  23  24  *25  *26  *34  *35  *36  45  *46  56   with 
lowerBound() = 60 must be pruned. 
rightChild = *12  13  *14  *15  16  23  *24  25  *26  *34  *35  *36  45  46  *56   with 
lowerBound() = 30 
 
branchAndBound(*12  13  *14  *15  16  23  *24  25  *26  *34  *35  *36  45  46  *56 ) 
*12  13  *14  *15  16  23  *24  25  *26  *34  *35  *36  45  46  *56   is a tour of cost 15. 
 
Prune node *12  13  *14  *15  16  *23  *36 
Prune node *12  13  *14  15  *16  *35 
Prune node 12 

Summary Results 

Cost of optimum tour: 15 
Optimum tour: 1 3 2 5 4 6 1 
Total of nodes generated: 31 
Total number of nodes pruned: 13 
 
Even for this toy-sized problem, the number of nodes actually generated is a relatively 
small fraction of the total number of nodes that would have been required if a bounding 
algorithm were not in play. 

For larger problems, there is of course no guarantee that the number of nodes that are 
pruned would make the solution computationally tractable. There is no way (at least no 
way known to this author) to predict the success of this algorithm other than simply 
deploying it on a given problem and deciding when “enough-is-enough.” 

4 JAVA IMPLEMENTATION 

There are many challenges involved in implementing the algorithm described above. 
These include: 

1. Determining how to generate and store the correct set of constraints for each 
node. 

2. Determining how to compute the lower bound for a node given its set of 
constraints. 

3. Determining when a node represents a complete tour. 
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4. Determining a mechanism for generating nodes in the correct order and pruning 
nodes based on their computed lower bound. 

The answers to the first three questions are encapsulated in a class Node presented below. 
Among the fields defined for class Node is constraints, a two-dimensional array of 

type byte. After much experimentation it was decided to use this structure since it is 
computationally fast (as all array types are in Java) and relatively inexpensive (the byte is 
Java’s smallest unit of storage). 

The methods addRequiredEdges and addDisallowedEdges are used to formulate the 
constraints for a particular node. 

The method isCycle uses the standard class Bitset. This method is of fundamental 
importance. 

It is recommended that the interested reader “walk-through” the various methods 
using a specific node taken from the example presented above. Verify that the methods 
addRequiredEdges and addDisallowedEdges provide the answer to the first question 
given above. The method computeLowerBound provides the answer to the second 
question. The method isTour provides the answer to the third question. Each of these 
methods closely follows the algorithm discussion presented earlier. 
 
Listing 1 – Class Node 
 

/** 
  * The information contained in a tree used for solving TSP using 
  * branch and bound. 
*/ 
 
import java.util.*; 
import java.awt.*; 
 
public class Node { 
    // Fields 
    private int lowerBound; 
    private int numRows, numCols; 
    private byte [][] constraint; 
            // -1 indicates no edge from row to column allowed, 
            //  1 indicates that edge from row to column required, 
            //  0 indicates that edge from row to column allowed 
 
    private short [] nodeCosts; // Used to compute smallest and  
                                // nexSmallest 
    private int edges;          // Used by isTour query 
    private int tourCost;       // Used by isTour query 
    private byte [] trip; 
    private String nodeAsString; // Used by isTour query 
    private boolean isLoop = false; 
    static BitSet b; // Used by isCycle and initialized in TSPUI 
 
    // Constructor 
    public Node (int numRows, int numCols) { 
        this.numRows = numRows; 
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        this.numCols = numCols; 
        nodeCosts = new short[numCols + 1]; // Natural indexing 
        constraint = new byte[numRows + 1][numCols + 1]; // Natural  
                                                         // indexing 
        trip = new byte[numRows + 1]; 
    } 
 
    // Commands 
    public void assignConstraint (byte value, int row, 
                                  int col) { 
        constraint[row][col] = value; 
        constraint[col][row] = value; 
    } 
 
    public int assignPoint (Point p, int edgeIndex) { 
        // Advance edgeIndex until edge that is unconstrained is found 
        Point pt = p; 
        while (edgeIndex < TSP.newEdge.size() && 
                constraint[(int) Math.abs(pt.getX())][(int)  
       Math.abs(pt.getY())] 
                != 0) { 
            edgeIndex++; 
            if (edgeIndex < TSP.newEdge.size()) { 
                pt = (Point) TSP.newEdge.get(edgeIndex); 
            } 
        } 
        if (edgeIndex < TSP.newEdge.size()) { 
            if (pt.getX() < 0) { 
                assignConstraint((byte) -1, (int) Math.abs(pt.getX()), 
                                 (int) Math.abs(pt.getY())); 
            } else { 
                assignConstraint((byte) 1, (int) pt.getX(),  
                                  (int) pt.getY()); 
            } 
        } 
        return edgeIndex; 
    } 
 
    public void setConstraint (byte [][] constraint) { 
        this.constraint = constraint; 
    } 
 
    public void addDisallowedEdges () { 
        for (int row = 1; row <= numRows; row++) { 
            // Count the number of paths from row. 
 
            // If the count exceeds one then disallow all other paths  
            // from row 
            int count = 0; 
            for (int col = 1; col <= numCols; col++) { 
                if (row != col && constraint[row][col] == 1) { 
                    count++; 
                } 
            } 
            if (count >= 2) { 
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                for (int col = 1; col <= numCols; col++) { 
                    if (row != col && constraint[row][col] == 0) { 
                        constraint[row][col] = -1; 
                        constraint[col][row] = -1; 
                    } 
                } 
            } 
        } 
 
        // Check to see whether the presence of a col causes a premature  
        // circuit 
        for (int row = 1; row <= numRows; row++) { 
            for (int col = 1; col <= numCols; col++) { 
                if (row != col && isCycle(row, col) && 
                        numCities(b) < numRows) { 
                    if (constraint[row][col] == 0) { 
                        constraint[row][col] = -1; 
                        constraint[col][row] = -1; 
                    } 
                } 
            } 
        } 
    } 
 
 
 
    public void addRequiredEdges () { 
        for (int row = 1; row <= numRows; row++) { 
            // Count the number of paths excluded from row 
 
            // If the count equals numCols - 3, include all remaining   
            // paths 
            int count = 0; 
            for (int col = 1; col <= numCols; col++) { 
                if (row != col && constraint[row][col] == -1) { 
                    count++; 
                } 
            } 
            if (count >= numRows - 3) { 
                for (int col = 1; col <= numCols; col++) { 
                    if (row != col && constraint[row][col] == 0) { 
                        constraint[row][col] = 1; 
                        constraint[col][row] = 1; 
                    } 
                } 
            } 
        } 
    } 
 
    public void computeLowerBound () { 
        int lowB = 0; 
        for (int row = 1; row <= numRows; row++) { 
            for (int col = 1; col <= numCols; col++) { 
                nodeCosts[col] = TSP.c.cost(row, col); 
            } 
            nodeCosts[row] = Short.MAX_VALUE; 
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            // Eliminate edges that are not allowed 
            for (int col = 1; col <= numCols; col++) { 
                if (constraint[row][col] == -1) { 
                    nodeCosts[col] = Short.MAX_VALUE; // Taken out of  
                                                      // contention 
                } 
            } 
            int [] required = new int[numCols - 1]; // Natural indexing 
            int numRequired = 0; 
 
            // Determine whether an edge is required 
            for (int col = 1; col <= numCols; col++) { 
                if (constraint[row][col] == 1) { 
                    numRequired++; 
                    required[numRequired] = nodeCosts[col]; 
                    nodeCosts[col] = Short.MAX_VALUE; // Taken out of  
                                                      // contention 
                } 
            } 
            int smallest = 0, nextSmallest = 0; 
            if (numRequired == 0) { 
                smallest = smallest(); 
                nextSmallest = nextSmallest(); 
            } else if (numRequired == 1) { 
                smallest = required[1]; 
                nextSmallest = smallest(); 
            } else if (numRequired == 2) { 
                smallest = required[1]; 
                nextSmallest = required[2]; 
            } 
            if (smallest == Short.MAX_VALUE) { 
                smallest = 0; 
            } 
            if (nextSmallest == Short.MAX_VALUE) { 
                nextSmallest = 0; 
            } 
            lowB += smallest + nextSmallest; 
        } 
        lowerBound = lowB; // This is twice the actual lower bound 
    } 
 
    public void setTour () { 
        byte path = 0; 
        for (int col = 2; col <= numCols; col++) { 
            if (constraint[1][col] == 1) { 
                path = (byte) col; 
                break; 
            } 
        } 
        tourCost = TSP.c.cost(1, path); 
        trip[1] = path; 
        int row = 1; 
        int col = path; 
        int from = row; 
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        byte pos = path; 
        nodeAsString = "" + row + " " + col; 
        while (pos != row) { 
            for (byte column = 1; column <= numCols; column++) { 
                if (column != from && constraint[pos][column] == 1) { 
                    from = pos; 
                    pos = column; 
                    nodeAsString += " " + pos; 
                    tourCost += TSP.c.cost(from, pos); 
                    trip[from] = pos; 
                    break; 
                } 
            } 
        } 
    } 
 
    // Queries 
    public int tourCost () { 
        return tourCost; 
    } 
 
    public byte [] trip () { 
        return trip; 
    } 
 
    public byte constraint (int row, int col) { 
        return constraint[row][col]; 
    } 
 
    public byte [][] constraint () { 
        return constraint; 
    } 
 
    public int lowerBound () { 
        return lowerBound; 
    } 
 
    public boolean isTour () { 
        // Determine path from 1 
        int path = 0; 
        for (int col = 2; col <= numCols; col++) { 
            if (constraint[1][col] == 1) { 
                path = col; 
                break; 
            } 
        } 
        if (path > 0) { 
            boolean cycle = isCycle(1, path); 
            return cycle && numCities(b) == numRows; 
        } else { 
            return false; 
        } 
    } 
 
    public boolean isCycle (int row, int col) { 
        // b = new BitSet(numRows + 1); 
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        for (int i = 0; i < numRows + 1; i++) { 
            b.clear(i); 
        } 
 
        b.set(row); 
        b.set(col); 
        int from = row; 
        int pos = col; 
        int edges = 1; 
        boolean quit = false; 
        while (pos != row && edges <= numCols && 
                !quit) { 
            quit = true; 
            for (int column = 1; column <= numCols; column++) { 
                if (column != from && constraint[pos][column] == 1) { 
                    edges++; 
                    from = pos; 
                    pos = column; 
                    b.set(pos); 
                    quit = false; 
                    break; 
                } 
            } 
        } 
        return pos == row || edges >= numCols; 
    } 
 
    public String tour () { 
        return nodeAsString; 
    } 
 
    public String toString () { 
        // String representation of constraint matrix 
        String returnString = ""; 
        for (int row = 1; row <= numRows; row++) { 
            for (int col = row + 1; col <= numCols; col++) { 
                if (constraint[row][col] == 1) { 
                    returnString += "" + row + col + "  "; 
                } else if (constraint[row][col] == -1) { 
                    returnString += "*" + row + col + "  "; 
                } 
            } 
        } 
        return returnString; 
    } 
 
    // Internal methods 
    private int smallest () { 
        int s = nodeCosts[1]; 
        int index = 1; 
        for (int i = 2; i <= numCols; i++) { 
            if (nodeCosts[i] < s) { 
                s = nodeCosts[i]; 
                index = i; 
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            } 
        } 
        short temp = nodeCosts[1]; 
        nodeCosts[1] = nodeCosts[index]; 
        nodeCosts[index] = temp; 
        return nodeCosts[1]; 
    } 
 
    private int nextSmallest () { 
        int ns = nodeCosts[2]; 
        int index = 2; 
        for (int i = 2; i <= numCols; i++) { 
            if (nodeCosts[i] < ns) { 
                ns = nodeCosts[i]; 
                index = i; 
            } 
        } 
        short temp = nodeCosts[2]; 
        nodeCosts[2] = nodeCosts[index]; 
        nodeCosts[index] = temp; 
        return nodeCosts[2]; 
    } 
 
    private int numCities (BitSet b) { 
        int num = 0; 
        for (int i = 1; i <= numRows; i++) { 
            if (b.get(i)) { 
                num++; 
            } 
        } 
        return num; 
    } 
} 

 

The fourth question is embedded in the next class TSP presented below. 
The methods generateSolution and its supporting private method branchAndBound 

answer this fourth question. Although these methods are voluminous, they are straight-
forward. Numerous comments throughout the code indicate the purpose of each segment. 
The generation of nodes follows the algorithm description given earlier. 
 
Listing 2 – Class TSP 
 

/** 
  * TSP Branch and Bound 
*/ 
 
import java.awt.*; 
import java.util.*; 
 
public class TSP { 
    // Fields 
 
    private final int numRows; 
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    private final int numCols; 
    private TimeInterval t = new TimeInterval(); 
 
    private int bestTour = Integer.MAX_VALUE / 4; 
 
    private Node bestNode; 
    public static Cost c; 
    public static ArrayList newEdge = new ArrayList();  
         // Contains objects of type Point 
 
    private int newNodeCount = 0; 
    private int numberPrunedNodes = 0; 
    private Random rnd = new Random(); 
 
    public TSP (short [][] costMatrix, int size, int bestTour) { 
        this.bestTour = bestTour; 
        numRows = numCols = size; 
        c = new Cost(numRows, numCols); 
        for (int row = 1; row <= size; row++) { 
            for (int col = 1; col <= size; col++) { 
                c.assignCost(costMatrix[row][col], row, 
                             col); 
            } 
        } 
    } 
 
    public TSP (short [][] costMatrix, int size) { 
        numRows = numCols = size; 
        c = new Cost(numRows, numCols); 
        for (int row = 1; row <= size; row++) { 
            for (int col = 1; col <= size; col++) { 
                c.assignCost(costMatrix[row][col], row, 
                             col); 
            } 
        } 
    } 
 
    public void generateSolution () { 
        Point pt; 
 
        // Load newEdge Vector of edge points 
        for (int row = 1; row <= numRows; row++) { 
            for (int col = row + 1; col <= numCols; col++) { 
                pt = new Point(row, col); 
                newEdge.add(pt); 
                pt = new Point(-row, -col); 
                newEdge.add(pt); 
            } 
        } 
 
        // Create root node 
        Node root = new Node(numRows, numCols); 
        newNodeCount++; 
        root.computeLowerBound(); 
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        System.out.println( 
           "Twice the lower bound for root node (no constraints): " + 
            root.lowerBound()); 
 
        // Apply the branch and bound algorithm 
        t.startTiming(); 
        branchAndBound(root, -1); 
        t.endTiming(); 
        if (bestNode != null) { 
            System.out.println("\n\nCost of optimum tour: " + 
                    bestTour + "\nOptimum tour: " + bestNode.tour() + 
                    "\nTotal of nodes generated: " + newNodeCount + 
                    "\nTotal number of nodes pruned: " + 
                    numberPrunedNodes); 
        } else { 
            System.out.println( 
                    "Tour obtained heuristically is the best tour."); 
        } 
        System.out.println("Elapsed time for entire algorithm: " + t 
                .getElapsedTime() + " seconds."); 
        System.out.println(); 
    } 
 
    // Queries 
    public int nodesCreated () { 
        return newNodeCount; 
    } 
 
    public int nodesPruned () { 
        return numberPrunedNodes; 
    } 
 
    public String tour () { 
        if (bestNode != null) { 
            return bestNode.tour(); 
        } else { 
            return ""; 
        } 
    } 
 
    public int tourCost () { 
        return bestTour; 
    } 
 
    public byte [] trip () { 
        if (bestNode != null) { 
            return bestNode.trip(); 
        } else { 
            return null; 
        } 
    } 
 
 
 
    private void branchAndBound (Node node, int edgeIndex) { 
        if (node != null && edgeIndex < newEdge.size()) { 
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            Node leftChild, rightChild; 
            int leftEdgeIndex = 0, rightEdgeIndex = 0; 
            if (node.isTour()) { 
                node.setTour(); 
                if (node.tourCost() < bestTour) { 
                    bestTour = node.tourCost(); 
                    bestNode = node; 
                    System.out.println("\n\nBest tour cost so far: " + 
                      bestTour + "\nBest tour so far: " + 
                      bestNode.tour() + 
                      "\nNumber of nodes generated so far: " + 
                      newNodeCount + 
                      "\nTotal number of nodes pruned so far: " + 
                      numberPrunedNodes + 
                      "\nElapsed time to date for branch and bound: " + 
                            t.getElapsedTime() + " seconds.\n"); 
                } 
            } else { 
                if (node.lowerBound() < 2 * bestTour) { 
                    // Create left child node 
                    leftChild = new Node(numRows, numCols); 
                    newNodeCount++; 
                    if (newNodeCount % 1000 == 0) { 
                      Point p = (Point) newEdge.get(edgeIndex); 
                      t.endTiming(); 
                      System.out.println( 
                       "\nTotal number of nodes created so far: " + 
                       newNodeCount + 
                       "\nTotal number of nodes pruned so far: " + 
                       numberPrunedNodes + 
                       "\nElapsed time to date for branch and bound: " + 
                                t.getElapsedTime() + " seconds."); 
                    } else if (newNodeCount % 25 == 0) { 
                        System.out.print("."); 
                    } 
                    if (newNodeCount % 10000 == 0 && 
                            bestNode != null) { 
                        System.out.println( 
                                "\n\nBest tour cost so far: " + 
                                bestTour + "\nBest tour so far: " + 
                                bestNode.tour()); 
                    } 
                    leftChild.setConstraint(copy(node.constraint())); 
                    if (edgeIndex != -1 &&  
                        ((Point) newEdge.get(edgeIndex)).getX() > 0) { 
                        edgeIndex += 2; 
                    } else { 
                        edgeIndex++; 
                    } 
                    if (edgeIndex >= newEdge.size()) { 
                        return; 
                    } 
                    Point p = (Point) newEdge.get(edgeIndex); 
                    leftEdgeIndex = 
                        leftChild.assignPoint(p, edgeIndex); 
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                    leftChild.addDisallowedEdges(); 
                    leftChild.addRequiredEdges(); 
                    leftChild.addDisallowedEdges(); 
                    leftChild.addRequiredEdges(); 
                    leftChild.computeLowerBound(); 
                    if (leftChild.lowerBound() >= 2 * bestTour) {  
                        leftChild = null; 
                        numberPrunedNodes++; 
                    } 
 
                    // Create right child node 
                    rightChild = new Node(numRows, numCols); 
                    newNodeCount++; 
                    if (newNodeCount % 1000 == 0) { 
                      System.out.println( 
                      "\nTotal number of nodes created so far: " + 
                      newNodeCount + 
                      "\nTotal number of nodes pruned so far: " + 
                                numberPrunedNodes); 
                    } else if (newNodeCount % 25 == 0) { 
                        System.out.print("."); 
                    } 
                    rightChild.setConstraint(copy(node.constraint())); 
                    if (leftEdgeIndex >= newEdge.size()) { 
                        return; 
                    } 
                    p = (Point) newEdge.get(leftEdgeIndex + 1); 
                    rightEdgeIndex = 
                        rightChild.assignPoint(p, leftEdgeIndex + 
                                               1); 
                    rightChild.addDisallowedEdges(); 
                    rightChild.addRequiredEdges(); 
                    rightChild.addDisallowedEdges(); 
                    rightChild.addRequiredEdges(); 
                    rightChild.computeLowerBound(); 
                    if (rightChild.lowerBound() > 2 * bestTour) { 
                        rightChild = null; 
                        numberPrunedNodes++; 
                    } 
 
                    if (leftChild != null && rightChild == null) { 
                        branchAndBound(leftChild, leftEdgeIndex); 
                    } else if (leftChild == null && 
                            rightChild != null) { 
                        branchAndBound(rightChild, rightEdgeIndex); 
                    } else if (leftChild != null && 
                            rightChild != null && 
                            leftChild.lowerBound() <= rightChild. 
                            lowerBound()) { 
                        if (leftChild.lowerBound() < 2 * bestTour) { 
                            branchAndBound(leftChild, 
                                           leftEdgeIndex); 
                        } else { 
                            leftChild = null; 
                            numberPrunedNodes++; 
                        } 



 
BRANCH AND BOUND IMPLEMENTATIONS FOR THE TRAVELING SALESPERSON 

PROBLEM - PART 1 
 
 
 
 

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2 

                        if (rightChild.lowerBound() < 2 * bestTour) { 
                            branchAndBound(rightChild, 
                                           rightEdgeIndex); 
                        } else { 
                            rightChild = null; 
                            numberPrunedNodes++; 
                        } 
                    } else if (rightChild != null) { 
                        if (rightChild.lowerBound() < 2 * bestTour) { 
                            branchAndBound(rightChild, 
                                           rightEdgeIndex); 
                        } else { 
                            rightChild = null; 
                            numberPrunedNodes++; 
                        } 
                        if (leftChild.lowerBound() < 2 * bestTour) { 
                            branchAndBound(leftChild, 
                                           leftEdgeIndex); 
                        } else { 
                            leftChild = null; 
                            numberPrunedNodes++; 
                        } 
                    } 
                } 
            } 
        } 
    } 
 
    private byte [][] copy (byte [][] constraint) { 
        byte [][] toReturn = new byte[numRows + 1][numCols + 1]; 
        for (int row = 1; row <= numRows; row++) { 
            for (int col = 1; col <= numCols; col++) { 
                toReturn[row][col] = constraint[row][col]; 
            } 
        } 
        return toReturn; 
    } 
}

5 EMPIRICAL RESULTS 

The process of generating nodes is relatively expensive both in computational as well as 
memory resources. A tree containing millions, if not billions, of nodes may need to be 
generated in solving even a moderate sized TSP problem. As nodes are pruned (and 
hopefully there will be many of these), the facilities of automatic garbage collection is 
critically important. Storage for these nodes must be reclaimed by the garbage collector. 
Earlier attempts using languages without automatic garbage collection were not as 
successful because of heap overflow problems as well as other memory-related problems. 

A GUI application was constructed that enables the user to specify the size of a TSP 
problem and either enter the cost matrix by hand or load an external text file that contains 
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one number per line (c11, c12, …, c1n, c21…, c2n, …) or have the cost matrix determined 
using random numbers. 

A screen shot of the GUI using the 6 city problem discussed earlier is shown below. 
The entries in each row that comprise a solution are shown in red. 

The Console window provides a running account of the progress of the algorithm as 
well as a useful history that may be reviewed later. 

 

 
The most challenging problem solved to-date using this implementation is a 33 city 
problem that utilizes real data taken from the Rand McNally Road Atlas for 33 US cities. 
Running on a 1.7 GHz Pentium 4 machine under Windows 2000 with 256Mbytes of 
RAM, it took 5637 seconds (1.57 hours) to find the optimum solution of 10861 after 
generating 872,000 nodes of which 435,729 were pruned. It should be clear from the 
number of nodes generated on this relatively fast processor that the generation of nodes is 
computationally expensive. The average number of nodes generated per second was 
about 154 nodes per second. This is very slow. 

The reader must again be reminded that although a 33 city problem may sound like a 
small problem, there are 32! tours possible so such a problem qualifies as a 
computationally hard (perhaps intractable) combinatorial optimization problem. It is 
rather remarkable that any solution at all was found in reasonable time. It should be 
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mentioned that the optimum solution of 10,861 was determined rather early in the 
computation process (reported in the system Console) even though it took almost two 
hours to finalize the solution. One might therefore be tempted to use this algorithm as a 
heuristic approximation in cases where a solution is not finalized in a reasonable period 
of time. This author has little experience in doing this for larger problem with known 
solutions. This suggests an area of potentially fruitful research. 
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