
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 1, March-April 2003

Cite this column as follows: Donald Firesmith: “Modern Requirements Specification”, in Journal of
Object Technology, Vol. 2, No. 1, March-April 2003, pp. 53-64.
http://www.jot.fm/issues/issue_2003_03/column6

Modern Requirements Specification
Donald Firesmith, Firesmith Consulting, U.S.A.

Abstract
Requirements specification is the requirements engineering task during which analyzed
requirements are properly documented for use by their intended audiences.
Traditionally, this involved the requirements team using a word processing program to
produce a single requirements specification document during an initial requirements
phase of a project. However, trends in system development have made the numerous
problems with this approach abundantly clear. Improvements in requirements tools have
not only enabled better requirements management; they have also enabled the
automatic generation of consistent, current, audience-specific requirements
specifications that far better meet the needs of their individual audiences.

1 TRADITIONAL REQUIREMENTS SPECIFICATION

During the 1970s and 1980s, requirements specification seemed at first glance to be a
relatively simple task. During the initial requirements phase of a project, the requirements
engineers would elicit functional requirements from the various stakeholders using a
functional decomposition method such as structured analysis. Then they would use a
simple word processing program to manually document these requirements in a single
requirements specification document, which after a review and some minor iteration
would be approved, placed under configuration control (for all practical purposes frozen),
and published to its audiences. Everyone would base their work on the same requirements
specification, and everyone could rest assured that the specification would not
significantly change during the following design, coding, and testing phases. Thus,
requirements specification was a manual task that had its place during the initial phase of
the waterfall development cycle, and it was basically complete early in the project.
Requirements specification was also a paper-document-based process with little if any
real tool support. Unfortunately, many projects still use a similar approach to perform
requirements specification.

Challenges to Address

However, the previously described approach to the requirements specification task has
numerous well-known problems. Being the result of a manual process, the single
requirements specification document was time consuming and expensive to produce and

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_03/column6

MODERN REQUIREMENTS SPECIFICATION

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

was rarely maintained beyond being frozen and placed under configuration control. The
resulting requirements specification was also error prone, and thus typically incomplete,
inconsistent (both internally and externally), ambiguous, hard to read, and rarely up-to-
date. It was definitely much too expensive to create multiple versions of the requirements
specification for multiple audiences so one size had to fit all readers, providing much too
much detail for some readers (e.g., executive management) and much too little detail for
others (e.g., independent testers). The requirements specification documents also
typically did not contain any metadata about the requirements (e.g., scheduling
information, assignment to developers, status), thereby making requirements management
very difficult.

Whereas these problems were observable from the very beginning, requirements
engineers had little choice but to live with them because alternatives were either unknown
or impractical. However, over time, trends in system development have both made the
original approach infeasible as well as enabling new approaches that much better achieve
the goals of requirements engineering: the production of requirements specifications that
are correct, complete, internally and externally consistent, current, and audience-
appropriate (i.e., supportive of the role-specific tasks of its numerous audiences).

2 TRENDS IMPACTING REQUIREMENTS SPECIFICATION

Modern Development Cycles

Perhaps the most significant trend affecting the requirements specification task is the
replacement of the traditional waterfall development cycle with modern iterative,
incremental, parallel, and timeboxed development cycles. In the classic waterfall cycle,
the vast majority of the requirements were specified and frozen by the end of the
requirements phase, which occurred before significant amounts of architecting, design,
implementation, integration, and testing had occurred. However, this approach was never
very successful because it was based on false assumptions such as the requirements being
well known and stable near the beginning of the cycle. As these two preconditions are
rarely true, requirements engineering took a major leap forward when modern
development cycles were introduced. Today, the most effective development cycles have
the following characteristics:

• Iterative Requirements Engineering. A development cycle is iterative when it
recognizes that non-trivial work products (such as requirements specifications) are
tentative and will initially contain numerous defects due to human errors and
ignorance. These work products must be iterated (i.e., fixed in an ongoing
manner) as their defects are identified and corrected. Thus, parts of the
development process (e.g., the requirements elicitation, analysis, and specification
tasks) are repeated on existing work products (e.g., the requirements,
requirements models, and requirements specifications) to improve them.

• Incremental Requirements Engineering. A development cycle is incremental
when it recognizes that many work products are too large and complex to be

TRENDS IMPACTING REQUIREMENTS SPECIFICATION

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 55

produced all at once in a big-bang manner. A non-trivial application may literally
have hundreds of requirements, which take a significant amount of time to elicit,
analyze, and specify. Thus, the requirement elicitation, analysis, and specification
tasks will typically occur incrementally, with new requirements being added on a
daily or weekly basis over a significant portion of the development cycle. Thus,
incremental development means that parts of the development process are
repeated to add additional work products or more to existing work products.

• Parallel Requirements Engineering. A development cycle is parallel when it
recognizes that numerous activities and tasks must happen concurrently if the
application is to be completed within any reasonable time frame. Thus, we cannot
wait for the completion of the requirements engineering activity before starting
architecting, design, implementation (e.g., prototyping), and testing (e.g., test
planning, test case development). Similarly, we perform multiple requirements
engineering tasks such as requirements elicitation (including both discovery and
invention), analysis, specification, and management in parallel. This has the
advantage of bringing more teams, roles, and persons to bear on the problem
earlier, thereby improving overall endeavor productivity. However, this parallel
development of requirements, architectures, designs, implementations, and tests
leads to increased iteration (and thus improvement) of the requirements.

• Timeboxed Requirements Engineering. A development cycle is time-boxed
when either its tasks or its work products are scheduled so that they must be
completed by specified deadlines. Instead of the waterfall development cycle’s
traditional milestones based on the completion of major activities such as
requirements engineering, an iterative, incremental, parallel, timeboxed
development cycle tends to have new time-based milestones based on new phases
(not activities) as well as numerous, regularly-scheduled short-duration “inch-
pebbles,” possibly based on parts of work products such as parts of the
requirements specifications (e.g., specific use cases, normal paths through a single
actor’s use cases, and security requirements).

An iterative, incremental, parallel, and timeboxed development cycle significantly affects
requirements specification. Such a development cycle recognizes the need for (and
encourages) constant changes to individual requirements and requirements models, which
in turn results in constant changes (e.g., improvements, corrections, additions) to the
associated requirements specifications. And this results in significant difficulties in
keeping the requirements specification consistent and up-to-date, especially if they are
traditional manually produced paper documents.

Numerous Stakeholders with Different Needs

When requirements specifications were manually produced paper documents,
requirements specification was very labor intensive. Resources (e.g., staffing, schedule)
were inadequate to keep even a single requirements specification complete and up-to-
date. Thus, there were definitely insufficient resources to produce multiple versions of
these specifications. So every stakeholder had to read and use the same requirements

MODERN REQUIREMENTS SPECIFICATION

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

specification, no matter what his or her role and responsibilities were. The resulting
specifications were typically too large and detailed for management to read and
understand, and they were typically too incomplete and at too high of a level for the
independent testing team to use to develop adequate test cases.

It is important to recognize that the requirements specifications have many different
stakeholders and that different kinds of stakeholders have very different needs. Thus,
different stakeholders need different requirements specifications with different scopes,
amounts of formality and rigor, levels of abstraction (detail), and metadata (i.e., attributes
about the requirements). For example, the following roles have very different needs when
it comes to requirements specifications:

• Executives. Executives typically use requirements specifications as the basis for
executive decisions regarding funding and approval and to manage the scope of
programs of related projects. They need executive summary level documents that
are short, concise, and easy for non-technical readers to understand.

• Managers. Managers typically use requirements specifications to manage project
scope and to estimate endeavor schedule and required resources. They need
specifications that are somewhat more detailed than executive summaries, but still
at a level of abstraction so that they can concentrate on the requirements forest
and so avoid becoming lost among the individual requirements trees.

• Subject Matter Experts. Domain experts act both as sources of requirements
(e.g., business object models, business process models) as well as reviewers of
requirements to ensure that they are properly specified. They need requirements
specifications that concentrate on their area of subject matter expertise.

• Architects. Architects need to rapidly identify the architecturally significant
requirements. They need more information that is more detailed than managers
do, but should not be bogged down with numerous low-level requirements that do
not had any real architectural significance.

• Designers and Implementers. The actual developers need much more complete
and detailed requirements than the architects do. They also need requirements that
are organized so that they can concentrate on only those requirements that are
relevant to the components that they are developing, even when there is no one-
to-one mapping between the requirements and components which are based on
completely different kinds of abstractions (e.g., functional requirements vs.
object-oriented components). They also critically need to be notified when their
requirements of interest change (iteration) or are added to (incremental
development), possibly via some kind of “publish and subscribe” mechanism.
Note that this notification must be fine grained so that they are only notified when
relevant requirements change, not when the entire specification changes, which
will probably be on a daily basis for the first two-thirds of the endeavor.

• Testers. Like designers and implementers, testers also need the most complete
and detailed requirements if they are to produce “complete” test suites of test
cases. For example, if managers and architects may get by with use case
information and designers and implementers may get by with basic use case path

TRENDS IMPACTING REQUIREMENTS SPECIFICATION

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 57

information, testers definitely need detailed use case path information including
preconditions and post conditions.

Clearly, the preceding has demonstrated that one size does not fit all when it comes to
requirements specifications. Trying to have a single paper requirements specification
often leads to confusion and disagreement. For example, managers may request that
detailed information that is critical to developers and testers be removed because they do
not see the cost-effectiveness in producing it and they often loose track of the
requirements forest (endeavor scope) because of the overwhelming number of
requirements trees.

Increasing Application Size and Complexity

Over the last quarter century, typical applications have consistently grown larger and
more complex. Monolithic applications have been replaced by client-server applications
which in turn have been replaced by n-tier applications. Stand-alone applications have
given way to highly integrated and interoperable applications including enterprise
application integration (EAI) applications. Software has been embedded an every
conceivable type of hardware (e.g., phones, televisions, appliances, automobiles,
automated teller machines) to the point where the average person interacts with literally
dozens if not hundreds of computers each day. Applications have also increased in
criticality with, for example, simple informational websites being replaced with
eCommerce and eMarketplace websites.

As applications have become larger, more complex, more business and safety
critical, and more ubiquitous, their requirements have grown in number, complexity, and
type. Requirements engineers can no longer concentrate almost totally on functional
requirements; instead, we must also adequately address data requirements, quality
requirements, application programmer interface (API) requirements, and various types of
architectural, design, implementation, and testing constraints as well as business rules and
relevant laws and regulations. Thus, for example, increasingly stringent quality
requirements such as operational availability, performance, interoperability, scalability,
and security often have a bigger influence on architectures, cost, and schedule than the
vast majority of functional requirements.

Larger, more complex applications have also traditionally meant larger, more
complex requirements specification documents. Yet, as such documents have become
larger, they have also become more difficult to understand, review, and use. No single
documentation organization or level of abstraction scales to such large documents,
especially when all of the different audiences for such documents are considered.

Better Methods and Notations for Requirements Engineering Tasks

When I started doing requirements in the 1970s, I would not dignify what we did with the
term requirements engineering. The vast majority of requirements were inadequately
analyzed and categorized, and most requirements engineers considered themselves lucky

MODERN REQUIREMENTS SPECIFICATION

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

if they were allowed to use some Structured Analysis to do a little top-down functional
decomposition and data flow analysis.

Requirements engineering has greatly advanced since those dark ages. We now
recognize many useful requirements tasks such as business analysis, application
visioning, requirements elicitation, requirements analysis, requirements specification, and
requirements management. We have numerous requirements analysis methods, many of
which (e.g., use case analysis) are widely recognized as being significant improvements
over the older techniques. These requirements analysis methods use multiple types and
levels of abstractions that provide different views of the requirements for their different
audiences. We have more and better requirements models including more complete
hierarchies of different kinds of requirements. Although neither perfect nor complete, we
nevertheless have better modeling languages (e.g., UML), better formal and semi-formal
requirements methods, and better-standardized content for our requirements
specifications.

All of this significantly affects requirements specification by affecting the types of
information specified, their content and format, and how the requirements specifications
are organized. We must specify requirements in many forms including native language
textual requirements, requirements models in graphical modeling languages, decision
tables, formally specified requirements in specification languages, and more.

Better Requirements Tool Support

Whereas the requirements engineer’s work has become more complex and challenging,
the appearance of ever more powerful and user-friendly requirements tools has
counteracted some of the previous negative trends and even made certain approaches
feasible for the first time. Now we have integrated requirements tools that support more
of the requirements engineering tasks such as requirements elicitation, analysis,
specification, and management. These tools have been better integrated with other tools
to support other related tasks outside of the requirements engineering activity such as
scope management (management), version control and configuration control
(configuration management), and quality assurance and quality control (quality
engineering). These tools can also now support multiple, distributed users.

And perhaps, most importantly, these tools tend to be repository based (often built
on an object database or extended relational database), so that they support a finer level
of granularity. Thus, individual requirements can be entered into the requirements
repositories in an incremental manner, individual requirements can be iterated,
requirements metadata (e.g., priority, traceability information, assignment to components
and teams) can also be stored with the associated requirements, developers can be
notified when relevant individual requirements are modified, and requirements
specifications of various types, contents, and levels of detail can be automatically
generated from the requirements repository using appropriate selection criteria and
templates.

TRENDS IMPACTING REQUIREMENTS SPECIFICATION

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 59

An interesting way of looking at this trend is to see how solutions have evolved over
time to handle larger, more complex sets of requirements:

1. Word Processing Tools such as MS Word
2. Spreadsheets such as MS Excel
3. Word Processing Tools with embedded spreadsheets.
4. Databases with ad hoc report generation capabilities
5. Requirements Management Tools
6. Requirements Tools supporting more requirements engineering tasks than just

requirements management
7. Requirements Tools that are properly integrated into an Integrated Development

Environment (IDE)
Unfortunately, current requirements tools do not yet properly support all of these

activities and tasks, and the amount of support that exists varies from tool to tool. Later in
this column, I list several recommendations that can be used when evaluating
requirements tools and when determining the workarounds that are required to achieve all
of the benefits promised in this column.

3 IMPROVING THE REQUIREMENTS SPECIFICATION TASK

Based on the previously mentioned challenges to and trends affecting requirements
engineering in general (and requirements specification in particular), what should we do?
I would make the following recommendations designed to improve the requirements
specifications produced by the requirements specification task.

Requirements Repository

Store your requirements in a requirements repository instead of a paper document. Keep
the granularity of the repository small so that individual requirements can be entered,
iterated, approved, placed under configuration management, published, managed, and
traced. Thus, requirements should be considered to be individual objects and the last
thing you want to do is to store a complete requirements specification as a binary large
object (BLOB). Ensure that the requirements repository stores all kinds of requirements
related information including individual requirements, requirements metadata (the
attributes of requirements objects), and requirements models (aggregate objects)
including diagrams and tables. The requirements repository should be based on an object
database, XML database, or extended relational database. As examples, one could
evaluate the requirements tools CaliberRM and DOORS, both of which are based on
object databases. One should also not that this recommendation is critical and enables the
remaining recommendations.

MODERN REQUIREMENTS SPECIFICATION

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

Automatic Specification Generation

Do whatever it takes (within reason) to enable the automatic generation of requirements
specifications from the requirements repository. This goes beyond the simple use of
international (e.g., IEEE830-1998), industry (e.g. OPEN or RUP), or business-internal
templates for one or more requirements specifications. It also includes the creation of
arbitrary requirements reports for requirements management and other purposes. This
should also include the generation of the entire publishable requirements specification
and not just the generation of a part of the requirements specification that then requires
significant amounts of manual labor to complete. This enables the requirements
specifications to be current with the official requirements in the repository. It also enables
the generation of electronic specifications and reports that save a huge amount of paper in
an iterative development cycle in which the requirements change on essentially a daily
basis.

The first recommendation for a requirements repository as well as the current
recommendation both recognize the separation of Model and View that has been so
beneficial in the production of graphical user interfaces. They also recognize the
importance of separating the requirements (the model) from potentially multiple views
(the specifications) of the same model. Because the publication of requirements
specification ideally should involve the publication of time-critical, audience-specific,
and even personalized information, the requirements engineering community would also
be well advised to consider the content management activity made popular by
informational websites1.

Different Specifications for Different Audiences

Once you have your requirements stored in a well-organized requirements repository and
the ability to automatically generate requirements specifications from that repository,
then you have the ability to produce multiple audience-specific versions of the
requirements specifications. This is nothing more than the recognition that there is often a
need for multiple views (specifications, reports) of different parts of the same model
(requirements). This includes specifications and reports that differ in the types of
requirements viewed (e.g., functional requirements vs. interface requirements), the
different levels of requirements details (executive overview specifications vs. detailed
requirements specifications for testers), predefined specifications vs. ad hoc reports, and
specifications based on metadata (specifications or reports based on requirements due
date, status, owner, last modified date, etc.).

1 For example, look at the webpages concerning content management in my informational website at
www.donald-firesmith.com.

http://www.donald-firesmith.com

IMPROVING THE REQUIREMENTS SPECIFICATION TASK

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 61

Requirements Tools

Beyond having a repository from which requirements specifications and reports can be
automatically generated, one actually needs one (or possibly more) requirements tools
based on such a repository. Such a tool should have several critical properties:

• User Interface. The best way to enter requirements and their metadata is by using
a user-friendly graphical user interface that allows one to easily enter and
maintain individual requirements, their metadata, and requirements models
including text, diagrams, and tables, etc. Notice that this is very different from
asking requirements teams to first develop a single requirements specification
using a word processing program such as MS Word and then inputting that
specification into a database (although that is not a bad “nice to have” feature for
reuse of existing requirements specifications). The user interface should
understand the underlying requirements model including requirements types, their
common and type specific metadata, the different types of models, the different
types of diagrams, etc. The user interface should not only support requirements
input and maintenance but also requirements specification and report generation
including template creation, querying, and actual production.

• Requirements Engineering Support. The requirements tool should be complete
in that it should support all tasks of requirements engineering including business
analysis, cost/benefit analysis, application visioning, and requirements elicitation,
analysis, specification, and management. It should support multiple requirements
analysis approaches so that multiple types of models (e.g., use cases, decision
tables, state models, context models) can be specified. It should also support the
entire requirements model including all types of requirements including functional
requirements, data requirements, quality requirements (a large list), interface
requirements, and constraints (also a large list). Requirements management tools
should also include requirements traceability to architecture, design,
implementation, and testing work products and back.

• Support for Related Activities. The requirements tool should support tasks of
other activities if those tasks are related to requirements engineering. This should
include scope control, configuration management, and quality engineering. This
includes interoperability with management, configuration management, quality
engineering, modeling, and testing tools for forward and reverse engineering.
Thus, a requirements tool should not be stand-alone, but a critical component of
an integrated development environment.

• Team Development. Requirements engineering is best performed by a cross-
functional requirements team that provides an adequate experience base to capture
all of the requirements and to iterate them in a timely fashion. Although it is
useful to have a technical writer versed in requirements modeling and the use of
modeling tools to be the primary person to initially capture the requirement during
joint requirements engineering sessions, all requirements team members should be
able to work on the requirements simultaneously (another good reason for fine
granularity in the requirements repository). Similarly, other members of the

MODERN REQUIREMENTS SPECIFICATION

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

endeavor team need to have simultaneous access to the requirements for purposes
of learning, evaluation, and approval.

• Security. Requirements for many applications involve proprietary information,
trade secrets, or even national secrets. Any requirements management tool should
support the security of the requirements including the identification,
authentication, and authorization to perform role-specific tasks of its users. It
should also include privacy, integrity, and non-repudiation of requirements and
their updates.

• Other Quality Factors. A requirements tool is an application in many ways like
any other. Thus, requirements tools to be used for the specification of
requirements should also have the appropriate amounts of other quality factors
besides security and interoperability. Thus, when evaluating such tools, consider
the typical quality factors such as completeness, internationalization,
performance, scalability, usability, and user friendliness.

• Distributed Development. Today, it is not unusual for applications to be built by
numerous teams and organizations that are geographically distributed. A
requirements tool should support requirements engineering including specification
by distributed users.

• Requirements Reuse. The requirements tools should enable the easy
incorporation of existing requirements into its repository so that each endeavor
need not start from scratch. Because these requirements were probably generated
using traditional approaches, the requirements tool needs to be able to parse the
old requirements specifications, recognize potential requirements and incorporate
them in a manner that will be easy for them to be reviewed and either accepted as
is, accepted with modification, or rejected. However, the recommendation is that
all requirements (even reused requirements) be stored as individual objects at a
high-level of detail.

• Not Just a CASE Tool. An adequate requirements tool is more than just a simple
stand-alone modeling tool or requirements repository. It should be part of an
Integrated Development Environment (IDE), but it is not merely a simple
Computer Aided Software Engineering (CASE) tool in the traditional sense.

Although the subject matter of this article is modern requirements specification, it is now
clear that one cannot talk about requirements specification without addressing many other
tasks within requirements engineering. And it is senseless to talk about using a
repository-based requirement tool to support the automatic generation of role-specific
requirements specifications without addressing the many other properties of such a tool
without which it would be useless or impractical.

4 CONCLUSION

This article has addressed several problems with traditional paper-based requirements
specification approaches and how trends in software engineering have exacerbated these

CONCLUSION

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 63

problems. As illustrated in the following figure, it has also recommended a requirements
specification approach to solve these problems that is founded on the use of modern
requirements tools based on fine-graned requirements repositories. Using an appropriate
tool based on these recommendations, you can automatically, easily, and inexpensively
generate various types of high-quality requirements specifications that are tailored to
meet the individual needs of their various audiences.

Organizational
Reuse

Repository

Requirements
Reuse

Requirements
Elicitation

Endeavor
Requirements

Repository

Requirements
Team

Requirements
Analysis

Requirements
Specification

Requirements
Tools

Requirements
Specifications

Stakeholders

Requirements
Management

Requirements
Sources

Documents

analyzed
requirementsraw

requirements

reusable
requirements

reusable
requirements

raw
requirements

performs

performs
performs

use

performs

perform

produces
multiple
versions

of

use

use

perform

performs

requirements
metadata

analyzed
managed

requirements

perform

goals
raw requirements

business rules
constraints

Fig. 1: Repository-Based Requirements Specification

ACKNOWLEDGEMENTS

I would like to thank Ivars Auzins, Keith Collyer, David Gelperin, and Hiam Kilov who
reviewed this column and provided useful suggestions. Naturally, any remaining defects
are my own.

MODERN REQUIREMENTS SPECIFICATION

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

REFERENCES

Further information on requirements specification can be found in the following two
sources:
[Fires2001] Donald Firesmith and Brian Henderson-Sellers: The OPEN Process

Framework, Addison-Wesley-Longman, 2001.

 [Fires2003] Donald Firesmith: OPEN Process Framework (OPF) Website,
http://www.donald-firesmith.com.

[Gelpe2002] David Gelperin: Maybe We Shouldn’t “Write” Requirements,
StickyMinds.com, 7 October 2002,
http://www.stickyminds.com/r.asp?F=W5936.

About the author
Donald Firesmith is President of Firesmith Consulting, which provides
consulting and training in the development of software-intensive
systems. He has worked exclusively with object technology since 1984
and has written 5 books on the subject. He is currently writing a book on
requirements engineering. Most recently, he has developed a 1000+ page
informational website on the OPEN Process Framework at www.donald-

firesmith.com. He can be reached at donald_firesmith@hotmail.com.

http://www.donald-firesmith.com
http://www.donald-firesmith.com
http://www.donald-firesmith.com
http://www.stickyminds.com/r.asp?F=W5936
mailto:donald_firesmith@hotmail.com

