

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 2, March-April 2003

Cite this article as follows: Manuel Torres, José Samos: “Extending ODMG Metadata to Define
External Schemas”, in Journal of Object Technology, vol. 2, no. 2, March-April 2003, pp. 183-202.
http://www.jot.fm/issues/issue_2003_03/article5

Extending ODMG Metadata to Define
External Schemas

Manuel Torres, Departamento de Lenguajes y Computación. University of
Almeria, Spain
José Samos, Departamento de Lenguajes y Sistemas Informáticos. University
of Granada, Spain

Abstract
Given that ODMG 3.0 specifications do not address the definition of external schemas,
we are developing an external schema definition methodology for ODMG databases. In
this paper, an extension of ODMG metadata is proposed to support the definition of
external schemas. In particular, metadata for derived classes and derived interfaces are
defined, as well as some modifications to define inheritance relationships depending on
the schema. The extension to ODMG metadata proposed in this paper maintains the
structure of the ODMG schema repository as an object-oriented schema, and can be
used by most of the existing external schema definition methodologies. The proposed
extension is illustrated using our methodology.

1 INTRODUCTION

One of the main drawbacks of object-oriented databases (OODB) was due to a lack of a
standard for such databases, but with the emergence of the ODMG standard, this problem
started to be solved. However, ODMG specifications do not address the definition of
external schemas in ODMG databases. External schemas correspond to the view level of
the well-known ANSI/SPARC architecture. In the ANSI/SPARC architecture, a database
can be seen at three levels, known respectively as physical, logical, and view. For each
level, there is a schema: internal, conceptual, and external. The internal schema describes
the storage structures of the database. The conceptual schema describes the logical model
of the database. External schemas describe different views of a database for particular
users or groups of users, providing features such as logic independence, authorization,
and integration of heterogeneous databases [Scholl91, Bertino92, Motschnig96].

The definition of external schemas in OODBs has been studied deeply since mid
1980s, but most of the proposals are not based on a standard object model [Abiteboul91,
Scholl91, Bertino92, Rundensteiner92, Kim95, Samos95, Santos95, Guerrini97]. On the

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_03/article5

EXTENDING ODMG METADATA TO DEFINE EXTERNAL SCHEMAS

184 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

other hand, existing proposals for ODMG either do not solve the problem completely
[Dobrovnik93], or extend the object-oriented paradigm introducing a new dimension in
external schemas [Garcia02]. So, we are currently developing an external schema
definition methodolgy for ODMG databases [Torres00, Torres01a, Torres01b] without
extending the object-oriented paradigm.

The development of such a methodolgy requires the existence of mechanisms for
defining derived classes and derived interfaces to customize existing classes and
interfaces (derived or not), which are known as their base classes and base interfaces,
respectively. In addition, metadata corresponding to such concepts must also be defined.
However, ODMG specifications do not include any definition for derived classes or
derived interfaces, nor their corresponding metadata.

Besides, since several schemas may coexist in a database (the conceptual schema
and some external schemas) and, given that inheritance relationships depend on the
schema, these relationships should be stored in the repository in order to reuse them later
in other schemas. However, current specifications of ODMG metadata only represent
these relationships in a generic way, that is, without taking into account the schema
where they occur.

In this paper, an extension of ODMG metadata is proposed in order to include the
metaclasses corresponding to derived class and derived interface metadata, as well as an
extension to model inheritance relationships by schema. In addition, to illustrate our
proposal, our external schema definition mechanism is also briefly described.

The remainder of this paper is organized as follows. In Section 2, the main metadata
included in ODMG specifications related to external schema definition are summarized.
In addition, some considerations about current ODMG metadata are depicted. Section 3
summarizes briefly our proposal for defining external schemas in ODMG databases. In
Section 4, modifications of current ODMG metadata adding new metadata to support the
definition of external schemas in ODMG are presented, and an example to illustrate the
proposed extension is also provided. Section 5 defines the proposed metadata in ODL.
Finally, Section 6 summarizes the conclusions of this paper and discusses future work.

2 ODMG METADATA

In a database, metadata represent, among other information, descriptive information
about the objects that make up the different schemas of the database. In ODMG, such
information is stored in the Schema Repository [Catell00], which structure (metaschema)
is also an object-oriented schema. In this section, the different kinds of objects stored in a
database will be described. We will use this classification to describe the ODMG schema
repository, and to propose its extension in order to define external schemas. Despite the
proposed extension, we will show that our external schema definition mechanism does
not extend the object-oriented paradigm.

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 185

Metaschema, schema, and data objects

A database can be said to store three kinds of objects depending on the level where they
belong: metaschema objects, schema objects and data objects [Tresch92]:

• Metaschema level objects. These are objects that describe the database
metaschema. Each object model has a set of metaobjects that allow the definition
of database schemas. Such objects represent the different types and concepts of
the object model, and are known as metaclasses.

• Schema level objects. These are objects that describe the schema of the
application, and are the objects used to define the conceptual schema and external
schemas. These objects are instances of metaclasses (metaschema level objects).

• Data objects. These are the objects that are really stored by the users in the
database. They are instances of the classes defined at the schema level.

Objects are created top-down; initially, a database holds only metaschema level objects.
When the database administrator defines the conceptual schema and external schemas,
schema level objects are created. Finally, the user creates the data objects that are stored
in the database.

ODMG metaschema

In ODMG, all objects of the repository are subclasses of three main interfaces:
MetaObject, Specifier and Operand. In this paper, we only need to pay attention to
MetaObject and, in particular, to metadata related to the support for defining external
schemas. We will not study the metaclasses Specifier and Operand, because they
represent concepts that do not affect the definition of external schemas. Specifiers are
used to assign a name to a type in certain contexts. Operands form the base type for all
constant values in the repository. Figure 1 illustrates the extract of the ODMG
metaschema that represents the metadata we are considering in this paper. The illustration
shows that metadata take part in a schema made up of metaclasses. The instances of such
metaclasses are the different types, classes, relationships, and so on, which are used in the
definition of schemas.

The main metadata of Figure 1 are briefly described below:
MetaObject. Metaobjects represent the elements of the schema that are stored in

the repository. All the metaobjects have a name and take part in a relationship, named
definedIn, with other metaobjects that establish their defining scope (e.g. the definition
of a class in a module or the definition of an attribute in a class).

Scope. Schema objects are defined in a scope. Scopes define a name hierarchy for
the metaobjects of the repository. An instance of Scope has a list of the instances of
MetaObject (metaobjects) that are defined in its scope. Therefore, a module, which in
ODMG defines a scope for defining classes, interfaces and exceptions, contains a list of
the classes, interfaces and exceptions defined in that module.

EXTENDING ODMG METADATA TO DEFINE EXTERNAL SCHEMAS

186 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

Type

DefiningScope

Module
Interface

Class

Property

Attribute Relationship

Operation

MetaObject
Scope

traversal

inherits

derives

extender

extensions

definedIn

defines

operations

exceptions

result operations

type

properties

One
Many
ISA

Fig. 1: An extract of the ODMG metaschema

Module. In ODMG, the modules and the schema repository itself, which is a specialized
module, are defining scopes. These metaobjects include operations to add the modules,
classes and interfaces that make up the modules. Modules are used to group certain
instances of MetaObject, such as interfaces and classes. The instances of the metaclass
Module are the topmost in the name hierarchy.

Type, Interface and Class. The instances of Type are used to describe types that
are references to other objects. Instances of the metaclass Interface define the abstract
behaviour of application objects. Interfaces are linked in a multiple inheritance graph
with other interfaces by means of the inherits and derives relationships. The
metaclass Class is a subtype of Interface. Its properties define the state of the objects
stored in an OODB. Classes are linked in a single inheritance hierarchy by means of the
extender and extensions relationships so that all the state and behaviour are
inherited from the extended classes.

Property, Attribute and Relationship. The metaclass Property is an
abstract class from which the metaclasses Attribute and Relationship are defined.
Properties are defined in the scope of an interface or a class and describe the abstract state
of an application object. The metaclass Attribute represents the properties that
maintain the abstract state. The metaclass Relationship models bilateral associations
between persistent objects.

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 187

Operation and Exception. The instances of the metaclass Operation model
the abstract behaviour of application objects. Operations may raise exceptions (error
conditions) that are stored in the metaclass Exception.

Issues about the current ODMG metaschema

The ODMG metaschema represents ODMG metadata as well as their relationships.
However, in the current specifications of ODMG 3.0 the ODMG metaschema does not
represent certain relationships that have to be defined in the repository in order to
determine which classes or interfaces are included in a schema, or the relationship
existing between two classes or interfaces of a given schema. In the current specifications
of the standard, ODMG metadata only represent the schema where a class or an interface
has been defined in. However, given that a class or interface may be used in another
schema different from the one which it was initially defined in, a usedIn relationship must
be represented in the repository. Moreover, the current specifications of ODMG consider
the relationship existing between two classes (resp. interfaces) only in a generic way,
without taking into account the schema where there exists in. Then, inheritance
relationships between classes (resp. interfaces) must be stored in the repository to know
the schema where they take place in.

As can be seen in Figure 1, all the metaclasses, except Scope and DefiningScope,
are direct or indirect subclasses of MetaObject. Therefore, they inherit its state and its
behaviour. As MetaObject is related to DefiningScope by means of the definedIn
relationship, all the metaobjects of Figure 1, except Scope and DefiningScope have
this property inherited from MetaObject. In other words, all the metaobjects, except
Scope and DefiningScope, have a defining scope. This scope represents the object
where an object has been defined in, which may be a class for a property, or a module for
a class or a submodule. The definedIn relationship is 1:M. Therefore, instances of
MetaObject are defined in a unique scope, and scopes can include several instances of
MetaObject. This scope represents where the metaobjects were originally defined in,
but it does not represent the scopes where they are used in. That is, with the current
specification of ODMG metadata one can know only which module a class has been
defined in, but not which module is used in. Likewise, this fact also happens with the
properties and the operations of a class and other modules, classes and interfaces
components.

Knowing which modules a metaobject is used in is important because an external
schema definition mechanism would allow some kind of schema generation taking as
input a selection of classes carried out by the schema definer. In [Torres01a], an external
schema generation method for ODMG databases is proposed. This method uses the
information of the repository to obtain the relationships existing between the classes of
the schema. This information is used taking into account that if two classes are related by
means of inheritance in one of the schemas stored in the repository, both classes will also
be related by means of inheritance in that schema. Therefore, in order to reuse the
information of the repository in the schemas, we have to store which inheritance

EXTENDING ODMG METADATA TO DEFINE EXTERNAL SCHEMAS

188 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

relationships have a class with other classes in each schema where it is included in.
Analogously, we can do the same for interfaces.

One might think that this “used in” relationship is the definedIn relationship itself.
However, the relationship that we need is an M:N relationship, because a metaobject can
be included in several scopes, and a scope can include several metaobjects (e.g. a class
can be included in several schemas, and a schema can contain several classes).
Therefore, the definedIn relationship existing in the current ODMG metadata
specifications refers to the objects in which metaobjects are defined, but not to the
different objects that use them.

Another failing to be found in the ODMG metaschema is that subtype relationships
between interfaces, and subclass relationships between classes are established in a
generic way, regardless of the schema. With the current specification of ODMG, all the
instances of the metaclass Interface have a relationship defined, which indicates the
superinterfaces or the subinterfaces of an interface. This relationship is an M:N
relationship to support multiple inheritance between interfaces. From this relationship, we
can identify the superinterfaces or subinterfaces of an interface, but not which schema
this relationship exists in. This relationship cannot be obtained from the defining scope of
the interface, because an interface is defined in a schema (module), which establishes its
defining scope, but it does not determine all the schemas where the interface is included
in. This problem also exists in the metaclass Class, which does not represent the
subclass relationship existing between two classes in a given schema either. These
situations are due to the fact that in the ODMG standard only a single schema is
considered, but when several schemas coexist in a database, such as when external
schemas are defined, the inheritance relationships depend on the schema.

Therefore, in order to know which instances of MetaObject have been included in
a given scope as well as, which instances of Interface and Class with their respective
relationships have been included in a Module, several modifications have to be carried
out in the ODMG metaschema. This modification involves the revision of the metaclasses
MetaObject and DefiningScope for the former, and the revision of the metaclasses
Module, Interface and Class for the latter.

3 A MECHANISM FOR DEFINING EXTERNAL SCHEMAS IN
ODMG DATABASES

The mechanism we are developing is based on the ODMG 3.0 object model, and it
explicitly considers the ODMG schema repository for defining derived classes and
external schemas, making it easier the reuse of previous definitions. Derived classes are
defined using the mechanisms proposed in [Roantree99, Garcia02] because ODMG does
not address the definition of derived classes. (In fact, ODMG proposes the use of named
queries, which do not offer the expected functionalities). In our mechanism, derived
classes and derived interfaces are integrated within the repository by means of the
derivation relationship [Bertino92] as described in [Samos95]. This relationship is only

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 189

used in the repository to relate derived classes to their base classes (resp. interfaces),
making easier the integration, and avoiding the generation of intermediate unnecessary
classes as in [Scholl91, Rundensteiner92]. However, end-user schemas do not use this
kind of relationship in order to preserve the object-oriented paradigm. Therefore, existing
inheritance relationships between classes and interfaces of the schema must be obtained
when derived classes and derived interfaces are included in external schemas. For such a
purpose an external schema generation algorithm [Torres01a] is used, which obtains the
existing relationships between derived classes and the remainder set of classes of the
external schema. External schema specification is carried out by means of the language
proposed in [Torres00]. The language specifies the classes and interfaces to be included
in the external schema. From this specification, we obtain a set of isolated classes and
interfaces. Then, a closure process is applied to this set so that no references to classes or
interfaces not included in the schema exist in the schema [Torres01b].

Figure 2 illustrates a repository for an ODMG database of people. People may be
clients or employees, and both groups have vehicles. Information about temporaries is
also stored. Temporaries and employees have several common properties and behaviour,
but different from the issues common to employees and clients, that is modelled with the
interface Worker. For the sake of simplicity, attributes and operations are not depicted in
the figure. Figure 2 also illustrates an external schema (the surrounded area) which
replaces the class Employee with a derived class Employee’. Employee’ hides some
instances and properties of Employee. The figure shows that the process for integrating
derived classes is easy, and is related to connect derived classes with their base classes by
means of derivation relationships. Figure 2 also shows how the derivation relationship is
used in the repository but not in the external schema.

belongsTo has

Client

PeopleCar

Employee Temporary

Worker

Class

Interface

ISA

EXTENDS

One-To-Many Employee’

Derived c lass

Derivation

Fig. 2: Repository and external schema

Therefore, in our mechanism, unlike in [Bertino92, Kim95, Santos95, Guerrini97,
Garcia02], external schemas only use relationships that are allowed in ODMG. So that,
the object-oriented paradigm does not have to be extended, and unnecessary intermediate
classes have not to be generated. However, metadata for derived classes and derived
interfaces must be defined to define external schemas in ODMG databases.

EXTENDING ODMG METADATA TO DEFINE EXTERNAL SCHEMAS

190 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

4 EXTENSION OF THE ODMG METASCHEMA

The development of a mechanism for defining external schemas in ODMG involves the
existence of mechanisms for defining derived classes and derived interfaces to customize
existing classes and interfaces, respectively. However, the study of such mechanisms is
beyond of the scope of this paper. Such details can be found in [Roantree99, Garcia02].
In this paper, only the issues concerning to ODMG metadata to give support for defining
external schemas are studied, introducing the concepts of external schema, derived class
and derived interface in the metaschema, as well as the relationships that represent the
objects included in the schemas (classes, interfaces, and so on). In this section, the
proposed metadata for derived classes and derived interfaces, as well as the metadata for
obtaining the components of a schema are described.

Metadata for derived classes and derived interfaces

Current specifications of ODMG do not include a metaclass for storing the defined
derived classes does not exist either. Before describing the definition of a metaclass for
derived classes, a note is added to clarify the modifications proposed to ODMG metadata:
an ODMG external schema consists of interfaces, classes, and exceptions. Interfaces and
classes may be derived or not. Since in our external schema definition methodology,
derived classes are fully-featured, without loss of generality one can say that an ODMG
module consists of classes and interfaces, which can be derived or non-derived. This is an
abstraction of the class and interface concepts that we term generic class and generic
interface, which are specialized in non-derived class and derived class, and in non-
derived interface and derived interface, respectively. Figures 3.a and 3.b illustrate this
abstraction and depict the derivation relationship. With regard to classes, the derivation
relationship represents the relationship existing between derived classes and their base
classes, which can be derived or not, that is, generic classes. So, in this way is represented
the fact that a derived class may be defined from existing classes, and the fact that an
existing class may be a base class of some derived classes. Analogously, we can follow
the same approach for derived interfaces, as Figure 3.b illustrates.

Class

GenericClass
baseOf

derivedFrom

Interface

GenericInterface
baseOf

derivedFrom

a b

Fig. 3: a) Metadata for derived classes; b) Metadata for derived interfaces

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 191

As figures 3.a and 3.b show, the modification to the metaschema proposed to include
metaclasses for derived classes and derived interfaces, the new abstractions for generic
classes and generic interfaces, as well as the derivation relationship, retains the structure
of the schema repository as an object-oriented schema. Therefore, the use of the
derivation relationship in the repository to relate derived classes to their base classes, and
derived interfaces to their base interfaces, does not involve an extension of the object-
oriented paradigm. The derivation relationship is modelled in the repository by means of
an ODMG compliant relationship.

Moreover, although in this paper we are focusing on our mechanism, the proposed
extensions of ODMG metadata can also be used in most of the existing mechanisms
because the abstraction defined in this paper to generalize derived and non-derived
classes (i.e. generic classes), and to generalize derived and non-derived interfaces (i.e.
generic interfaces) can be also carried out in other methodologies. This relationship
between derived classes and their base classes, and between derived interfaces and their
base interfaces is also used implicitly in other mechanisms, because derived classes and
derived interfaces are always defined from other existing classes or interfaces (their base
classes or interfaces), and this relationship exists regardless of the methodology used. The
derivation relationship only describes how a derived class (resp. derived interface) is
defined from other existing classes (resp. interfaces), derived or non-derived, that is,
generic classes (resp. generic interfaces).

Therefore, the benefit is twofold. On the one hand, the ODMG standard is extended
to allow the definition of external schemas. On the other hand, existing mechanisms may
use the proposed extension in order to be defined on an object standard extended to allow
the definition of external schemas.

Metadata for the components of a schema

External schemas are fully featured schemas and then, they can be considered as
instances of the metaclass Module, that is, the different modules (groupings of classes,
interfaces and exceptions) defined. Therefore, unlike derived classes and interfaces, it is
not necessary to define an additional metaclass to model the concept of external schema.
However, it is necessary to modify the current definition of the metaclass Module so that
all the classes and interfaces included in a module, as well as their respective inheritance
relationships in the module, are also known. With the current specifications of ODMG
metadata, one can only know which module a class or interface has been defined in, but
not which module are used in. Conceptually, these are two ternary relationships, one for
interfaces, and one for classes. With regard to the ternary relationship concerning
interfaces, the metaclasses involved are Interface, acting as superinterface,
Interface, acting as subinterface, and Module, representing where the inheritance
relationship takes place. Thus, the inheritance relationship between two interfaces in a
schema can be determined. Similarly, this relationship has also to be established between
classes and modules in order to identify the inheritance relationship between two classes
in a module, giving rise to the other ternary relationship. To illustrate the need for this
relationship, Figure 4.a illustrates a schema made up of four classes A, B, C y D. From this

EXTENDING ODMG METADATA TO DEFINE EXTERNAL SCHEMAS

192 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

schema, two external schemas, illustrated in figures 4.b and 4.c, are defined. In Figure
4.a, D EXTENDS C, C EXTENDS B, and B EXTENDS A. However, in Figure 4.b, D
EXTENDS B, and B EXTENDS A, and in Figure 4.c, D EXTENDS A. Then, inheritance
relationships between classes (resp. interfaces) are not absolute, as can be followed from
the current ODMG specifications for metadata, but relative to modules.

D

C

B

A

D

B

A

D

A

a b c
Fig. 4: Inheritance relationships depend on schemas

However, since ODMG only allows binary relationships, the two previous ternary
relationships have to be transformed. In [Catell94, Blaha97], a transformation that can be
generalized to n-ary relationships is proposed. The transformation creates a new class for
the ternary relationship and establishes binary relationships between the new class and
the three classes that take part in the ternary relationship.

Figure 5 illustrates the proposed modifications to the metaclasses of Figure 5 to
model the interfaces and classes of a module in the schema repository, as well as the
inheritance relationships by module. For the sake of simplicity, the modifications
proposed in the previous section concerning derived classes and derived interfaces are not
depicted in the illustration. So that, in the illustration, instead of showing the metaclasses
GenericClass and GenericInterface as well as their corresponding updates, the
ODMG metaclasses Class and Interface are showed. In order to model the usedIn
relationship, the proposal also includes a new relationship between MetaObject and
DefiningScope. With this new relationship, we can identify the metaobjects included
or used in a given metaobject, as well as the objects which a certain metaobject is used in,
because with the current definedIn relationship we can only know where it was defined
in but not where it is used in, as described in Section 2.3. Likewise, Figure 5 also
illustrates how the ternary relationship between Interface (which had a reflexive
relationship in the original metaschema) and Module has been transformed, generating a
new metaclass ModuleInterfaces. The instances of this new metaclass are each of the
relationships existing between the interfaces of a module. This new metaclass has as
properties a module, an interface (acting as subinterface), and another interface (acting as
superinterface). In this way, the subinterfaces and superinterfaces of an interface in each
schema can be represented. These three properties, which are relationships, comprise a

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 193

key to express the semantics of the ternary relationship (in a module, an interface may
have several superinterfaces).

Module

Interface
correspondsToSubtypes

correspondsToSupertypes

inherits

derives

inModule

subtypessubclasses

ModuleInterfaces
keys (inModule,
correspondsToSubtypes,
correspondosToSupertypes

Class
extender

extensions

correspondsToSubclasses

correspondsToSuperclasses

inModule
ModuleClasses

keys (inModule,
correspondsToSubclasses)

DefiningScopeMetaObject
definedIn

usedIn includes

defines

Fig. 5: Modelling the components of a schema as well as their relationships by schema

A module may have several relationships with several instances of this metaclass, which
is expressed by means of the relationship subtypes-inModule existing between
Module and ModuleInterfaces. In addition, ModuleInterfaces has two
relationships with Interface to express the interface which the instances of such
metaclasses are referred to, and to represent the ternary relationship. These are the two
relationships existing between ModuleInterfaces and Interface.

Analogously, it can be seen that another metaclass has been created, named
ModuleClasses, to express the ternary relationship existing between classes, subclasses
and modules. Nevertheless, because of classes can only have single inheritance
relationships, in each module a class has only a superclass, and then, the key is comprised
of the class acting as subclass and the module where the relationship exists in.

A metaclass for inheritance and derivation relationships

If we analyse how inheritance relationships are represented in the metaschema we
conclude that it does not exist any metaclass for these relationships as in other models

EXTENDING ODMG METADATA TO DEFINE EXTERNAL SCHEMAS

194 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

[Tresch92, Saltor95]. However, in ODMG there exists a metaclass for relationships (i.e.
Relationship). This disagreement is because in ODMG, the metaclass
Relationship is considered as a subtype of MetaObject, and therefore inherits a
name and a defining scope (the name of the relationship, and the interface or class where
it is defined in). However, these characteristics are not applied to inheritance
relationships (an inheritance relationship does not have a name), and hence ODMG
decides not to create a metaclass for such relationships. In ODMG, inheritance
relationships are represented by means of the extender and extensions relationships
for classes, and by means of the inherits and derives for interfaces. These
relationships are defined in the metaclasses Class and Interface, respectively.

If we were interested in creating a metaclass for inheritance relationships and include
it in the metaschema, so that inheritance relationships of the schemas are instances of this
metaclass, as in [Tresch92, Saltor95], that metaclass would not be a subclass of
MetaObject, because it would inherit the name attribute, which does not make sense in
inheritance relationships. However, in the ODMG C++ binding there exists a metaclass
d_Inheritance. This mismatch is due to the fact that, unlike to the ODMG metaclass
Class, the metaclass d_Class of the C++ binding does not include a relationship to
model the subclass relationships between classes. Therefore, in order to model these
relationships in the binding, a metaclass d_Inheritance is defined, which instances are
the inheritance relationships existing between instances of d_Class. Nevertheless, as
stated above, in the C++ binding d_Inheritance is not considered as a subclass of
d_MetaObject (the equivalent to MetaObject in the C++ binding) because it has
neither a name nor the definedIn relationship. So, in the C++ binding
d_Inheritance is another metaclass but it is not defined from d_MetaObject.

However, since the bindings are not the scope of this paper, we follow the approach
used in ODMG metadata. Therefore, given that ODMG metadata does not include a
metaclass for the inheritance relationship, we follow the same approach for the derivation
relationship, because although it is a relationship with a different semantic, it is also a
relationship between classes that is not identified with a name either. Therefore, instead
of creating a new metaclass for derivation relationships, we have decided to create a
relationship between derived classes and their base classes following a similar approach
to the one used for inheritance relationships.

In the extension proposed in this paper to model the components of a schema, two
metaclasses, ModuleInterfaces and ModuleClasses, have been created for such a
purpose. However, this fact should not be interpreted as a mismatch between the
consideration carried out for the derivation relationship. Such classes have been created
as a result of the transformation of ternary relationships, because the ODMG object
model only allows binary relationships. Nevertheless, as in C++ binding, those
metaclasses are not defined from MetaObject, because the relationships, which their
instances represent, do not have a name.

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 195

An example

Figure 6 illustrates the external schema defined in Section 3, as well as the proposed
extension for the ODMG metaschema. In the figure, the proposed relationship between
MetaObject and DefiningScope to model the usedIn relationship is illustrated, as
well as the proposed metaclasses for derived classes and derived interfaces. Likewise,
needed classes to represent inheritance relationships by module have been also depicted
in the illustration. However, for the sake of simplicity, attributes and operations are not
depicted in the figure.

Type

DefiningScope

Module
Generic Interface

GenericClass

Property

Attribute Relationship

Operation

MetaObject
Scope

traversal

definedIn

defines

operations

exceptions

result operations

type

properties

Class

baseOf

baseOf

derivedFrom

derivedFrom

correspondsToSubtypes
correspondsToSupertypes

ModuleInterfaces
keys (inModule,
correspondsToSubtypes,
correspondosToSupertypes

inModule

inModule

subtypes

subclasses

ModuleClasses
keys (inModule,
correspondsToSubclasses)

correspondsToSubclasses
correspondsToSuperclasses

inherits
derives

extender
extensions

Employee’Clients Temporary

WorkerPeopleCar
belongsTo has

usedIn

includes

Interface

Fig. 6: Schema repository and an external schema definition

EXTENDING ODMG METADATA TO DEFINE EXTERNAL SCHEMAS

196 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

Attributes of classes and interfaces are instances of the metaclass Attribute, while
operations of classes and interfaces are instances of the metaclass Operation. The
conceptual schema and the definition of the derived classes and interfaces have not been
depicted either. However, we can imagine the schema repository as a set of layers, which
represent the schemas defined and stored in the repository. In addition, as Figure 6 shows,
each schema component (classes, interfaces, relationships, and so on) is related to its
metaclass by means of an InstanceOf relationship, which is depicted as a dashed line.

5 ODL DEFINITION OF PROPOSED METADATA

ODMG metadata are described in ODL, the object definition language proposed by
ODMG. ODL is a definition language for specifying objects, and in ODMG databases,
schemas are defined in ODL.

Once described the proposed metaclasses to define external schemas, the
corresponding ODL definitions are presented in this section, distinguishing the new
definitions from the modified ones. The modifications are depicted in italics, and only
attributes and relationships are specified, leaving out operations and exceptions.

Metadata definition is carried out in ODMG 3.0 style; therefore, metaclasses are then
defined by means of interface definitions. However, the metaclasses
ModuleInterfaces and ModuleClasses are defined as classes because they include a
key definition, and in ODMG keys are defined on classes but not on interfaces. Hence,
these metaclasses are defined using a class specification instead of an interface one.

Metaobjects and defining scopes

The metaclasses MetaObject and DefiningScope have been modified in order to
include the usedIn relationship of metaobjects in a given scope so that, one can know
which classes, interfaces and exceptions have been used in a module definition.

interface MetaObject: RepositoryObject {
 attribute string name;
 attribute string comment;
 relationship DefiningScope definedIn
 inverse DefiningScope::defines;
 relationship set<DefiningScope> usedIn
 inverse DefiningScope::includes;
 ...
} ;

Interfaces

In ODMG 3.0, the metaclass Interface is defined from the metaclass Type. However,
the modification proposed in this paper includes an abstraction of the interface concept
motivated by the introduction of the derived interface concept. Next, the current
definition existing in ODMG is shown.

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 197

interface Interface: Type, DefiningScope {
 struct ParameterSpec {
 string param_name;
 Direction param_mode;
 Type param_type;};
 relationship set<Interface> inherits
 inverse Interface::derives;
 relationship set<Interface> derives
 inverse Interface::derives;
};
The abstraction proposed for the interface concept, GenericInterface, plays the

role of the current metaclass Interface, although it modifies its inheritance
relationships in order to represent the inheritance relationships by module. However, the
definitions proposed in this section for interfaces are open to the inclusion of properties
and operations, because its definition must be guided by the derived interface definition
mechanism. Therefore, in this paper only a draft is proposed as a basis for the metadata to
be included by the definitive derived interface definition mechanism. Next, the ODL
definitions of GenericInterface, Interface and DerivedInterface are
proposed.

interface GenericInterface: Type, DefiningScope {
 struct ParameterSpec {
 string param_name;
 Direction param_mode;
 Type param_type;};
 relationship set<ModuleInterfaces> inherits
 inverse ModuleInterfaces::correspondsToSubtypes;
 relationship set<ModuleInterfaces> derives
 inverse ModuleInterfaces::correspondsToSupertypes;
 relationship set<DerivedInterface> baseOf
 inverse DerivedInterface::derivedFrom;
 ...
};

interface Interface: GenericInterface {
 ...
};

interface DerivedInterface: GenericInterface {
 relationship set<GenericInterface> derivedFrom
 inverse GenericInterface::baseOf;
 ...
};

EXTENDING ODMG METADATA TO DEFINE EXTERNAL SCHEMAS

198 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

Classes

As well as the metadata related to interfaces, metadata related to classes also include an
abstraction that allows the class concept to be generalised to represent the concepts of
derived and non-derived classes. As well as in derived interfaces, the definition proposed
is open until a consensus is reached on the definition of derived classes in ODMG. The
current metadata definition for classes is depicted as they appear in ODMG
specifications.

interface Class:Interface {
 attribute list<string> extents;
 attribute list<string> keys;
 relationship Class extender
 inverse Class::extensions;
 relationship set<Class> extensions
 inverse Class::extender;
};

The abstraction proposed in this paper, named GenericClass, has a definition

inspired in the current definition of Class, as the next definition shows. Moreover, the
proposed definition for metaclasses Class and DerivedClass is also depicted, but
must be completed when derived class definition mechanisms for ODMG are fully
developed.

interface GenericClass: GenericInterface {
 attribute list<string> extents;
 attribute list<string> keys;
 relationship set<ModuleClasses> extender
 inverse ModuleClasses::correspondsToSubclasses;
 relationship set<ModuleClasses> extensions
 inverse ModuleClasses::correspondsToSuperclasses;
 relationship set<DerivedClass> baseOf
 inverse DerivedClass::derivedFrom;
 ...
};

interface Class: GenericClass {
 ...
};

interface DerivedClass: GenericClass {
 relationship set<GenericClass> derivedFrom
 inverse GenericClass::baseOf;
 ...
};

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 199

Components of a module

Finally, the ODL definitions of the metaclasses ModuleInterfaces and
ModuleClasses are proposed, as well as the modification to the definition of the
metaclass Module. Unlike the previous definitions, ModuleInterfaces and
ModuleClasses are specified by means of class instead of being defined as an
interface. This is due to the fact that in ODMG, only types with extension (i.e.
classes) may have keys in their definition.

interface Module: MetaObject, DefiningScope {
 relationship set<ModuleInterfaces> subtypes
 inverse ModuleInterfaces::inModule;
 relationship set<ModuleClasses> subclasses
 inverse ModuleClasses::inModule;
 ...
};

class ModuleInterfaces
(extent TheModuleInterfaces) {
 relationship GenericInterface correspondsToSubtypes
 inverse GenericInterface::inherits;
 relationship GenericInterface correspondsToSupertypes
 inverse GenericInterface::derives;
 relationship Module inModule
 inverse Module::subtypes;
 keys inModule, correspondsToSubtypes, correspondsToSupertypes
 ...
};

class ModuleClasses
(extent TheModuleClasses) {
 relationship GenericClass correspondsToSubclasses
 inverse GenericClass::extender;
 relationship GenericClass correspondsToSuperclasses
 inverse GenericClass::extensions;
 relationship Module inModule
 inverse Module::subclasses;
 keys inModule, correspondsToSubclasses
 ...
};

6 CONCLUSIONS AND FUTURE WORK

In this paper, an extension of ODMG metadata to support the definition of external
schemas has been proposed. This extension is necessary because an external schema
definition mechanism for ODMG involves the existence of facilities to define derived

EXTENDING ODMG METADATA TO DEFINE EXTERNAL SCHEMAS

200 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

classes and derived interfaces that allow customizing existing classes and interfaces,
respectively, as well as the existence of the underlying metadata. This paper is only
focused on the extension of ODMG metadata to give support to the ODMG standard to
define external schemas, but it is not focused on the mechanisms for defining derived
classes and derived interfaces themselves.

The extension proposed to the ODMG metadata in this paper establishes the
necessary metadata to define derived classes and derived interfaces. Moreover, since
current ODMG specifications are focused on a unique schema, the extension needed for
metadata to represent the subclass and subtype relationships depending on the schema has
been also introduced.

The proposed extension of ODMG metadata establishes the necessary support to
represent in the metaschema the corresponding metadata for derived classes, derived
interfaces and external schemas, which are common issues that can be applied to most of
the existing mechanisms based on ODMG. Therefore, this extension can be considered as
a generic proposal that can be applied to the external schema definition mechanism we
are developing and to other mechanisms based on the ODMG standard, although other
methods for integrating derived classes and interfaces are used.

Our mechanism is characterized by the use of the derivation relationship in the
repository to relate derived classes and derived interfaces to their base classes and
interfaces, respectively. The use of the derivation relationship in the repository preserves
its structure as an object-oriented schema because it is modelled as an ODMG
relationship, so the repository schema is still an object-oriented schema. In addition,
this relationship is not used in the user schemas preserving the object-oriented paradigm
in user schemas.

In this paper, we have used existing mechanisms to define derived classes. However,
such mechanisms are not fully-featured because they allow only object-preserving
semantics and cannot define capacity-augmenting derived classes. Therefore, we are
working in the definition of such mechanisms and its utilization in schema evolution.
This requirement is necessary because if ODMG wants to promote its specifications to an
accepted standard, the definition of external schemas must be allowed, and the existence
of fully-featured mechanisms to define derived classes and derived interfaces is the basis
for such a purpose.

Currently, we are also working on the extension of the C++ binding according to the
model proposed in this paper. Similarly, other extensions for the remainder ODMG
bindings have to be defined.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish CICYT (project TIC 2000-1723-C02-02).

VOL. 2, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 201

REFERENCES

[Abite91] Abiteboul, S., Bonner, A. 'Object and Views'. In Proc. ACM SIGMOD
International Conference on Management of Data. pp. 238-247. 1991

[Berti92] E. Bertino. “A View Mechanism for Object-Oriented Databases” In Proc. of
the 3rd EDBT. pp. 136-151. 1992

[Blaha97] M. Blaha, W. Premerlani. Object-oriented Modeling and Design for Database
Applications. Prentice Hall. 1997.

[Catell94] R.G.G. Catell. Object Data Management. Addison Wesley. 1994.

[Catell00] R.G.G. Catell. The Object Database Standard: ODMG 3.0. Morgan
Kaufmann. 2000

[Dobro93] M. Dobrovnik, J. Eder. “Adding View Support to ODMG-93” In Proc. of the
1st Internat. Workshop on Advances in Databases and Information Systems.
pp. 62-73. 1994

[Garcia02] J.García Molina, M.J. Ortín Ibáñez, G. García Mateos. “Extending the
ODMG standard with views” In Information and Softare Technology. Vol 44.
pp. 161-173. 2002

[Guerr97] G. Guerrini, E. Bertino, B. Catania, J. Garcia-Molina. “A Formal View of
Object-Oriented Database Systems” TAPOS. Vol. 3(3). pp. 157-183. 1997

[Kim95] W. Kim, W. Kelley, “On View Support in Object Oriented Database
Systems”. In Modern Database Systems. pp. 108-129. 1995

[Motsch96] R. Motschnig-Pitrik, “Requirements and Comparison of View Mechanisms
for Object-Oriented Databases” In Information Systems, Vol. 21(3). pp. 229-
252. 1996

[Roant99] M. Roantree, J.B. Kennedy, P.J. Barclay. “Providing Views and Closure for
the Object Data Management Group Object Model” In Information and
Software Technology. Vol. 41. pp. 1037-1044. 1999

[Runde92] E.A. Rundensteiner. “Multiview: A Methodology for Supporting Multiple
Views in Object-Oriented Databases” In Proc. of the 18th VLDB. pp. 187-
198. 1992

[Saltor95] F. Saltor, M. Castellanos, M. Garcia-Solaco, Th. Kudrass “Modelling
Specialization as BLOOM Semilattices” In 4th European-Japanese Seminar
on Inf. Modelling and Knowledge Bases. pp. 447-467. 1995.

[Samos95] J. Samos. “Definition of External Schemas in Object Oriented Databases” In
Proc. of OOIS 1995. pp. 154-166. 1995

EXTENDING ODMG METADATA TO DEFINE EXTERNAL SCHEMAS

202 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 2

[Santos95] C.S. Santos, “Design and Implementation of Object-Oriented Views”, In
Proc. of 6th DEXA. pp. 91-102. 1995

[Scholl91] M.H. Scholl, C. Laasch, M. Tresch. “Updatable Views in Object-Oriented
Databases”, In Proc. of the 2nd DOOD. pp. 189-207. 1991

[Torres00] M. Torres, J. Samos “Definition of External Schemas in ODMG Databases”
Proc. of OOIS 2000. pp. 3-14. 2000.

[Torres01] M. Torres, J. Samos “Generation of External Schemas in ODMG Databases”
In Proc. of IDEAS 2001. pp. 89-98. 2001.

[Torres01] M. Torres, J. Samos “Closed Schemas in Object-Oriented Databases” In
Proc. of DEXA 2001. pp. 826-835. 2001.

[Tresch92] M. Tresch, M.H. Scholl “Meta Object Management and its Application to
Database Evolution” In Proc. 11th ER. pp. 299-321. 1992.

About the authors

Manuel Torres is associate lecturer at the Departamento de Lenguajes y Computación of
the University of Almeria. He recently got his Ph.D about the definition of external
schemas in ODMG databases. His interests include object-oriented databases, especially
view mechanisms and their application to schema evolution. He can be reached at
mtorres@ual.es.

José Samos is assistant teacher at the Departamento de Lenguajes y Sistemas
Informáticos of the University of Granada. He heads a research group about object-
oriented databases and data warehousing. He can be reached at jsamos@ugr.es.

mailto:mtorres@ual.es
mailto:jsamos@ugr.es

