
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 2, No. 1, January-February 2003

Cite this column as follows: Anthony J.H. Simons: The Theory of Classification, Part 5: Axioms,
Assertions and Suptyping, in Journal of Object Technology, vol. 2, no. 1, January-February 2003,
pages 13-21. http://www.jot.fm/issues/issue_2003_01/column2

The Theory of Classification
Part 5: Axioms, Assertions and Subtyping

Anthony J H Simons, Department of Computer Science, University of
Sheffield, UK

1 INTRODUCTION

This is the fifth article in a regular series on object-oriented type theory, aimed
specifically at non-theoreticians. The series has been investigating the notion of simple
object types and subtyping from the syntactic point of view, that is, judging type
compatibility by the type signatures of an object's methods. In terms of the dimensions of
type checking in figure 1, we have considered exact type correspondence (box 2, see
earlier article [1]) and subtyping, a more flexible kind of type correspondence (box 5, see
previous article [2]). This allows us to determine whether a given type provides enough
operations to satisfy a given interface and whether the supplied operations have suitable
type signatures.

Exact

Subtyping

Subclassing

Schemas Interfaces Algebras

1 2

5

8

4

7

3

6

9

Figure 1: Dimensions of Type Checking
However, component compatibility is not just a matter of observing the conventions on
type signatures. An object could offer all the expected operations, but still execute in a
completely perverse way (see earlier article [3]). It is equally important to know whether
a component behaves in the way expected by the program in which it is used. For this, an
approach is required which can model the semantics of object types and capture precisely
how they execute. Semiformal methods for capturing behaviour include statecharts [4]
and various assertion languages, such as OCL [5]. A means of incorporating assertions

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_01/column2

THE THEORY OF CLASSIFICATION, PART 5: AXIOMS, ASSERTIONS AND SUBTYPING

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

[6] into a practical programming language was first introduced by Eiffel [7]. This
expresses the meaning of operations in terms of the preconditions and postconditions that
they satisfy, together with invariants characterising the unchanging properties of object
types.

All of these approaches are incomplete realisations of the more fundamental
algebraic approach to defining the meaning of abstract datatypes. In this article, we
consider the exact specification of a type's behaviour (box 3 in figure 1) and also the
relationship between algebraic specification and subtyping, which will allow us to prove
when one object behaves in a subtype-conformant way to another (box 6 in figure 1).

2 INITIAL AND FINAL ALGEBRAS

Mathematicians have been experimenting with notions of abstract types and classification
since the early part of the 20th century. Much of this work falls within the remit of formal
algebra and category theory. An algebra is an abstract type definition, consisting of a set
of elements (a sort) and a collection of operations acting on the set, characterised by their
type signatures and logical axioms (see earlier article [3]). Some algebras are related to
each other, in that they have the same operations, but the properties of the operations may
vary slightly from algebra to algebra. As an example, consider that the List type, with
cons, head and tail can be mapped onto an abstract Stack type with push, top and pop.
Such a mapping relationship is called a homomorphism (literally, "same form"), and
where an inverse mapping also exists, this is called an isomorphism ("identical form").

In the universe of algebras, families of algebras exist in which elements and
operations that are distinct in one algebra become merged and indistinguishable in other
algebras. Consider that if "+" is an abstract operation with just the property of
associativity (for example, like "+" used to append Strings in Java), then "a + b" and "b +
a" will mean different things. However, if in another algebra, "+" also has the property of
commutativity (for example, like "+" used to add Integers), then "a + b" and "b + a" will
mean the same thing. In the universe of algebras, homomorphisms are arrows running
from the algebras with more distinguishable elements to the algebras with fewer
distinguishable elements. At one end of this universe, an algebra called the initial algebra
exists1, whose elements are more distinguishable than in any other. At the opposite end, a
final algebra exists, whose elements are the least distinguishable.

1 Technically, an initial algebra is one from which a unique homomorphism maps to every other algebra.
Similarly, a final algebra is one into which a unique homomorphism maps from every other algebra. By
this definition, initial and final algebras may not exist in certain semantic domains.

AXIOMATIC SEMANTICS

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 15

3 AXIOMATIC SEMANTICS

When defining an algebraic type, the first concern is to establish under what semantics
the axioms of the algebra will be interpreted. The Ordinal type2 from an earlier article [3]
was defined using final algebra semantics, in which we assume that all elements of the
type are equivalent, unless we can prove them to be distinct:

Ordinal = ∃ ord . {first: → ord; succ: ord → ord}
∀x, y : Ordinal .
 succ(x) ≠ first() (1)
 ∧ succ(x) ≠ x (2)
 ∧ succ(x) = succ(y) ⇔ x = y (3)

The onus is on showing that the first() element is distinct from any successor succ(x), that
any element x is distinct from its immediate successor succ(x), and that by induction all
the elements of the type are eventually distinct, such that Ordinal is inhabited by a series
of monotonically increasing elements: first(), succ(first()), succ(succ(first())) ...

We change our approach to define the behaviour of object types. The Stack algebra
below is defined using initial algebra semantics, in which we assume that all the
elements of the algebra are distinct, unless we can prove them to be equal. Note in
particular how axiom (6) asserts when two Stacks can be judged to be equivalent; and
how axiom (5) asserts under what conditions the element you retrieve is equivalent to the
one you previously inserted:

Stack = ∀T. µstk.{push : T → stk; pop : → stk; top : → T; empty : → Boolean;
 size : → Natural}; newStack : → Stack;
∀e : T . ∀s : Stack .
 newStack().empty() (1)
 ∧ ¬s.push(e).empty() (2)
 ∧ newStack().size() = 0 (3)
 ∧ s.push(e).size() = 1 + s.size() (4)
 ∧ s.push(e).top() = e (5)
 ∧ s.push(e).pop() = s (6)

In the signature of Stack's operations, the use of ∀T "for all types T" indicates a generic
Stack definition, since T is later used as the element-type. µ stk indicates that Stack is a
recursive record type in which stk refers to the eventual Stack type. All Stack operations

2 I am indebted to Kim Bruce for pointing out that the third Ordinal axiom is required to allow the rule of
induction to operate as intended. Originally, I missed this.

THE THEORY OF CLASSIFICATION, PART 5: AXIOMS, ASSERTIONS AND SUBTYPING

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

are defined as methods that accept and return elements of these and other types (which
we assume are defined in associated algebras). The initial constructor for a Stack is not a
member of the record, since a Stack instance does not create itself. The axioms which
define the meaning of Stack's operations are equations which refer to arbitrary stacks s :
Stack and elements e : T. Each axiom asserts a boolean expression which holds true for
the type. Axioms are combined using "∧" logical and. All other properties of Stacks can
be inferred from these axioms.

4 INDUCTIVE DEFINITIONS

The strategy for defining the behaviour of an object type uses an inductive approach,
similar to recursive function definition in a functional programming language. In the
axioms defining the meaning of size, note how there is a base case (3) for new Stacks,
and a step case (4) for arbitrary Stacks s. The step case always defines a property in terms
of something simpler that is closer to the base case (a recurrence relationship).
Thereafter, the size of any Stack can be derived using repeated application of these rules.

The equations always relate pairs of methods on the left-hand side and assert that a
nested invocation of these methods is equivalent to something else on the right-hand side
(think of Stack axioms (1) and (2) as being "equivalent to true" on the right-hand side).
How do you decide which pairs of methods to relate; and how do you know when
sufficient axioms have been defined? If too many axioms are supplied, a theorem prover
might waste time exploring redundant solutions that could be derived from other axioms.
To help with this problem, the functions of the type are sometimes divided into three
groups:

• constructors - the smallest set of functions returning the type, which, taken
together, can generate every single instance of the type;

• transformers - the remaining functions which return the type, but which are non-
primitive in the sense that they can be defined in terms of primitive constructors;

• observers - functions returning something other than the type, typically because
they inspect part of the type or compute some value from it.

Note that constructors mean more than the usual object-oriented sense of the word. In a
pure functional calculus, pushing an element onto a Stack means creating a new Stack
object onto which the extra element has been added. Accordingly, new and push are both
algebraic constructors for the Stack. With these two operations, we can create every
single possible Stack instance. Consequently, pop is a non-primitive transformer and its
result can be defined in terms of other constructors. Likewise, top, empty and size are
observers.

Thereafter, the maximum number of axioms to define is decided. You need no more
than an axiom for each constructor paired with every other non-constructor. From this,
you would expect to define at most 2 × 4 = 8 axioms for Stack. However, only 6 were
supplied above; this means that in certain contexts, some of Stack's methods are
undefined, an issue to which we shall return below.

DEDUCTIVE REASONING

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 17

5 DEDUCTIVE REASONING

Let us now assume that we wish to derive some property of Stacks. For example, what is
the size of a Stack after a sequence of push and pop operations? The problem corresponds
to simplifying a nested method expression, such as:

newStack().push(e1).push(e2).pop().size()
To simplify this, we look for axioms which relate suitable pairs of operations on their
left-hand side, and substitute the corresponding equivalent expressions on their right-hand
side. Working backwards from the end of the expression, and given ∀e : T, ∀s : Stack:

• There is no axiom for s.pop().size(); but this is not an omission, since pop is not a
primtive constructor and we can derive its meaning elsewhere. Instead, we look
further.

• There is an axiom (6) with s.push(e).pop() on the left-hand side, so if we make the
substitutions: s ← newStack().push(e1) and e ← e2, then the corresponding right-
hand side resubstitution is: s → newStack().push(e1), giving the simplification:

newStack().push(e1).push(e2).pop().size() ⇒ newStack().push(e1).size()
 [by axiom 6].

• There is an axiom (4) with s.push(e).size() on the left-hand side, so if we make the
substitutions: s ← newStack() and e ← e1, then the corresponding right-hand side
resubstitution is: 1+s.size() → 1+newStack().size(), giving the simplification:

newStack().push(e1).size() ⇒ 1+newStack().size() [by axiom 4].

• Finally, there is an axiom (3) giving newStack().size() directly:

1+newStack().size() ⇒ 1+0 [by axiom 3].
and the final answer 1+0 = 1 is obtained using the algebra for Natural numbers in a
similar fashion. This is the right answer and, hopefully, the one the reader expected!

6 ERRORS AND DEFERRED DEFINITIONS

The two axioms omitted from Stack's equations were those relating: newStack().top() and
newStack().pop(). This is because the meanings of top and pop are deliberately left
undefined for new Stacks. "Undefined" can be interpreted variously to signify that a
method's meaning has not yet been fully specified, or that the method's result is an error
in this context. In the case of top and pop, it is clear that these should always raise

THE THEORY OF CLASSIFICATION, PART 5: AXIOMS, ASSERTIONS AND SUBTYPING

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

exceptions with a new Stack. A function that is not defined in all contexts is known as a
partial function.

There may be other valid reasons for "saying less about" a type than just to specify
error cases. Consider first that a Queue type looks quite similar to a Stack, except that
some of its functions behave in a slightly different way:

Queue = ∀T. µque.{push : T → que; pop : → que; top : → T
 empty : → Boolean; size : → Natural}; newQueue : → Queue
∀e : T . ∀q : Queue .
 newQueue().empty() (1)
 ∧ ¬q.push(e).empty() (2)
 ∧ newQueue().size() = 0 (3)
 ∧ q.push(e).size() = 1 + q.size() (4)
 ∧ q.push(e).top() = e if q.empty() (5a)
 = q.top() otherwise (5b)
 ∧ q.push(e).pop() = q if q.empty() (6a)
 = q.pop().push(e) otherwise (6b)

The differences are in axioms (5) and (6), which assert FIFO properties for a Queue,
contrasting with the LIFO properties asserted above for a Stack. Queue's equations also
demonstrate how a right-hand side can be split into several cases, using if-clauses. The
reader should experiment with some examples, in the deductive style shown above, to see
that the recurrence relation in axiom 6 causes elements to be added and removed in the
right order. (The recurrence works by driving pop backwards, until it encounters a base
case).

Given that Queue and Stack are syntactically identical (their methods have identical
type signatures), it should be possible to create the type of an interface, or supertype, to
which both Stack and Queue conform. Since both of these collections dispense their
elements in a particular order, we shall call their abstract supertype Dispenser:

Dispenser = ∀T. µdsp.{push : T → dsp; pop : → dsp; top : → T;
 empty : → Boolean; size : → Natural}; newDispenser : → Dispenser
∀e : T . ∀d : Dispenser .
 newDispenser().empty() (1)
 ∧ ¬d.push(e).empty() (2)
 ∧ newDispenser().size() = 0 (3)
 ∧ d.push(e).size() = 1 + d.size() (4)

It is clear that both Stack and Queue satisfy the above definition, since they have the
identical signatures, and obey the identical axioms (1) - (4). The fact that axioms (5) and
(6) are missing means that, at the level of generality described by Dispenser, we cannot

ERRORS AND DEFERRED DEFINITIONS

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 19

yet say anything about the order in which elements are inserted, accessed and removed:
the specifications of top and pop are deferred. We say that Dispenser is underspecified.

7 UNDERSPECIFICATION AND SUBTYPING

The rules governing axioms and semantic subtyping follow from this. If a type is
underspecified, then a subtype may be created by adding suitable axioms giving the
missing meanings of the underspecified operations. Note that Stack and Queue define
mutually exclusive axioms (5) and (6), such that one could never be a subtype of the
other; yet both are semantic subtypes of Dispenser, since they only add to Dispenser's
existing axioms and do not violate any of them.

Consider now that, in just one case, Stacks and Queues actually do behave
identically in regard to push, pop and top - this is when they contain a single element. We
could add this common information to the Dispenser type by writing partial axioms:

 ∧ d.push(e).top() = e if d.empty() (5a)
 ∧ d.push(e).pop() = d if d.empty() (6a)

These two axioms express, for both Stacks and Queues, that if you push an element into
an empty container, this is the top element, and the one that is removed by pop. From
this, it is clear that some notion of axiom refinement must happen in subtypes. In the case
of Queue, we simply complete the partial axioms by adding parts (5b) and (6b). In the
case of Stack, we drop the if-condition instead, such that Stack's axioms (5) and (6) cover
more than the 1-element case. Dispenser's partial axioms are therefore still satisfied by
both Stack and Queue. If we refine an axiom in a subtype, the subtyping condition is this:
the refined axiom must logically entail the original axiom.

Finally, we can show a relationship between semantic and syntactic subtyping. Why
does adding axioms, or strengthening axioms to cover more cases, create a subtype?
Consider defining a set S by comprehension in relation to a set T, such that S contains all
those elements in T which satisfy the extra axiom p(x):

S = {∀x ∈T | p(x)}
It is clear that, if all elements of T pass the test p(x), then S = T. However, if some
elements of T fail the test, then S ⊂ T. Therefore, we can assert that: S ⊆ T, and this also
means that S is a subtype of T [2].

THE THEORY OF CLASSIFICATION, PART 5: AXIOMS, ASSERTIONS AND SUBTYPING

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

8 CONCLUSION

We have developed an algebraic calculus for reasoning about the complete behaviour of
object types, and demonstrated the effects of axioms upon subtyping. When seeking to
apply the results of this analysis to assertion languages like OCL [5] and object-oriented
languages like Eiffel [7] we have to translate from pure algebra into a piecemeal
treatment in terms of invariants, pre- and postconditions. It is useful to think in terms of
strengthening assertions:

• strengthening an invariant is identical to strengthening the axioms of an algebra,
since the invariant applies constantly to the object type as a whole;

• strengthening a method postcondition corresponds either to strengthening the
axioms on the result-type of the method, or strengthening the axioms on the object
type itself; or possibly to both of these;

• strengthening a method precondition corresponds either to strengthening the
axioms on the argument-types of the method, or strengthening the axioms on the
object type itself; or possibly to both of these.

Since there is a direct relationship between axiom strengthening and subtyping, we can
immediately apply our existing object subtyping rules [2] to derive subtyping rules
governing the strengthening, or weakening of assertions. Recall that an object type which
adds to the methods of another object type is a subtype. The subtype will define the
semantics of the extra methods, providing more axioms, which is consistent with being a
subtype. Some of these extra axioms may appear as strengthened invariants, which is also
consistent. Apart from this, an object type may sometimes replace methods, so we must
consider under what conditions this results in a subtype.

A method is a valid replacement for another if it obeys the function subtyping rule
[2]. In particular, the subtype method's arguments must be of the same, or more general
(but not more restricted) types; and its result must be of the same, or a more restricted
(but not more general) type. Translating this into assertions, the method's preconditions
may possibly be weakened (but never strengthened) and the method's postconditions may
possibly be strengthened (but never weakened). In this regard, assertions also follow the
contravariant argument-type and covariant result-type rules. Eiffel [7] obeys similar rules
regarding the weakening of its preconditions and strengthening of its postconditions. The
only area of conflict is where a precondition also affects the object type itself. To satisfy
the contravariant rule, the precondition can only be weaker, but to satisfy object
subtyping, the invariant can only be stronger. In practice, weaker preconditions can co-
exist with stronger invariants, since the same object must satisfy the stronger of the two
and doesn't care that the method would accept something less strict than itself.

CONCLUSION

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 21

REFERENCES

[1] A. J. H. Simons: The Theory of Classification, Part 2: The Scratch-Built
Typechecker, Journal of Object Technology, vol. 1, no. 2, July-August 2002,
pages 47-54. http://www.jot.fm/issues/issue_2002_07/column4

[2] A. J. H. Simons, The Theory of Classification, Part 4: Object Types and
Subtyping, Journal of Object Technology, vol. 1, no. 5, November-December
2002, pages 27-35. http://www.jot.fm/issues/issue_2002_11/column2

[3] A. J. H. Simons, The Theory of Classification, Part 1: Perspectives on Type
Compatibility, Journal of Object Technology, vol. 1, no. 1, May-June 2002,
pages 55-61. http://www.jot.fm/issues/issue_2002_05/column5

[4] D. Harel and A. Naamad, The STATEMATE semantics of statecharts, ACM
Trans. Soft. Eng. Method., 5(4), 1996, pages 293-333.

[5] J. Warmer and A. Kleppe, The Object Constraint Language: Precise
Modeling with UML, (Reading MA : Addison Wesley, 1999).

[6] C A R Hoare, Proof of correctness of data representations, Acta Informatica,
1, 1972, pages 271-281.

[7] B. Meyer, Object-Oriented Software Construction, 2nd edn., Prentice Hall,
1995.

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Science, University of Sheffield, where he
leads object-oriented research in verification and testing, type theory
and language design, development methods and precise notations. He
can be reached at a.simons@dcs.shef.ac.uk

http://www.jot.fm/issues/issue_2002_07/column4
http://www.jot.fm/issues/issue_2002_11/column2
http://www.jot.fm/issues/issue_2002_05/column5
mailto:a.simons@dcs.shef.ac.uk

