
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 2, No. 1, January-February 2003

Cite this column as follows: Dave Thomas: Unified or Universal Modeling Language?, in Journal
of Object Technology, vol. 2, no. 1, January-February 2003, pages 7-12.
http://www.jot.fm/issues/issue_2003_01/column1

UML - Unified or Universal Modeling
Language?

UML2, OCL, MOF, EDOC - The Emperor Has Too Many Clothes

Dave Thomas,
Bedarra Corp., Carleton University and University of Queensland

1 UML – A MODERN SOFTWARE PARABLE

In the early 90s, the rival OO methodologists developed their own separate and
competing visions and their followers were at war with each other. Each armed with their
own notation and their sacred books, they preached to their fanatic followers. This
methodology warfare caused discontent in the major corporations whose managers felt
that there should be only one way to draw a class! It also upset the case tool vendors who
didn’t want to have to support different notations. Rational led the way out of the morass:
after having corralled the “Three Amigos”, they then conjured up “Rational Modeling
Language” as a way for all rational people to see the world of objects. Ivar Jacobson
cleverly perceived that the world would reject RML if pushed into it by Rational, so he
prevailed upon Rational and the OMG through Richard Soley to launder RML into an
open standard called UML. UML found an ideal home at OMG. The language seemed so
simple that there was no need to worry if there were already working implementations.
Since it was clearly defined in pictures and familiar concepts, no semantic account was
required.

It all seemed so innocent and so simple and so obvious – standardize OO modeling
notations so that methodologists and developers would not have to fight with each other
over which symbol should stand for a class, a method etc. Most of us gave a sigh of relief
that such a stupid and ill-considered debate about notation was over and few of us
worried about whether we had in fact found the right answer.

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_01/column1

UML – UNIFIED OR UNIVERSAL MODELING LANGUAGE?

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

2 LET THEM EAT PICTURES - DRAW THEM, BUT DON’T TYPE
THEM OR SHARE THEM

We assumed that OMG would do its job as a standards body and quickly come up with a
UML interchange standard so that tools could easily exchange diagrams. Despite appeals
for a syntax and semantics for diagrams, none was forthcoming. But clearly this was
neither in the interests of the vendors, nor the methodologists who had much bigger
plans. Only when they appeared to be threatened from above by XML did they finally
adopt XMI, which still provides no written syntax for the language. Doesn’t it seem odd
that a language intended to help developers whose most productive tools are textual
editors, outliners, and IDEs has no nice syntactic expression?

3 UML – MELTING POT FOR ALL MODELING IDEAS

Little did we know that OMG had attracted a hotbed of methodologists determined to put
an end to programming, as we know it, through a single powerful meta-modeling
language. We should have been on our guard with the first release of UML that already
showed the bloat and inconsistency of a committee language – activity diagrams being
one of the most obvious examples. For most developers, the fact that UML said little
about behavior was a blessing. Our tools could easily consume or produce the structural
diagrams of UML.

We have no successful example in which language design by committee resulted in a
simple clean language with a clear semantic account. Sadly, we do however have many
examples of committee approaches to language design and standardization which have
produced complex, bloated languages that reflect the compromise of committee lobbying
to reach consensus. UML2, OCL and Action semantics coupled with the MOF seem
destined to be sucked into yet another committee attempt to unify the world in a single
grand language – the vain quest for a “computer Esperanto”.

This new suite of standards proves that if you heat anything to a high enough
temperature, you can make it into a single liquid (at the risk of boiling away all the useful
content!). What we have is a baroque, strongly typed, OO language that mixes up the
ideas of requirements, models, meta-models, structural and behavioral semantics as well
as several specialized execution semantics such as state charts and activities. If you
thought UML was complicated, just wait until you see UML2, which is shaping up to be
a modern day PL/I or ADA. One can only hope that UML2, like Ada, will just rust away.

It is indeed unfortunate that so many good programming language designers have
been excluded, one way or another, from the UML effort. Otherwise, surely someone
would have insisted that the language have a simple consistent syntax and a textual
presentation that is easy to read. But the major concern about UML and the language for
everything is the lack of a reasonable semantic account! It would be wonderful to have an

UML – Melting Pot For All Modeling Ideas MELTING POT FOR ALL MODELING IDEAS

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 9

informal and formal semantic account using semantic machinery that has been well
developed in the programming language community. A nice meta-circular interpreter and
a denotational semantic account would be most welcome for such an important and
complex language.

4 GOING META OFTEN DEFERS RATHER THAN SOLVING ALL
PROBLEMS

The classic solution for all problems in computer science is to “add one level of
indirection”. The UML folks found an even more powerful way to deal with very difficult
incompatible ideas. They used Meta level facilities. This allows them to levitate above
the problem at whatever level of abstraction they choose. UML Profiles and the
associated MOF effectively make UML completely open-ended in terms of what it is and
can describe. The good news, as we all know, is that with sufficiently powerful Meta
level facilities one can describe anything at some level of abstraction. The real question
is: does the existence of a meta-model in UML for many abstractions really provide any
leverage or is it just an academic exercise?

5 UML ALL THE WAY DOWN – ONWARD TO EXECUTABLE
MODELS

In the beginning we thought UML was just about modeling. We didn’t appreciate that the
iCase crowd saw this as the ultimate chance to change the world of software from low
level programming to high-level modeling. Away with those hackers using C, Java, C#,
Python, SQL - xUML will provide the solution. You just draw the pictures; mix in a few
textual specifications, and model-driven code generators will eliminate the need for low-
level programming (and programmers!).

Those of us who have spent many years building executable models and associated
tools, have learned that abstractions such as ER models and state diagrams are all very
powerful in specific domains but are extremely difficult to generalize into full scale
languages. The problem becomes even more difficult when trying to build a super
language that unifies all of these notions. There are not many interesting algorithms, for
example, that are clearly and concisely described with UML. We should be celebrating
the usefulness of alternative partial specifications not insisting that everything should be
done in a single language.

MDA promises a solution to the middleware wars by building above the OO
middleware and by using smart code generation and tailoring technology to produce
complete applications. MDA may be the solution, but where is the problem? In practice
most middleware solutions are constrained to common application patterns that have been
handled for years via 4GLs or rule systems. The only difference that I can see is that the
generated code is now immersed in a large tar ball of OO middleware.

UML – UNIFIED OR UNIVERSAL MODELING LANGUAGE?

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

If the OO middle tier folks don’t already hear the footsteps from simple messaging
and Xquery competitors, they soon will. Most eBusiness applications simply federate
data and are best solved with simple 4GLs or scripts that select, extract and merge data
from multiple legacy systems.

6 VISUAL LANGUAGES - USEFUL BUT NOT GENERIC

Visual Languages are inherently domain specific. They allow domain knowledgeable
developers to quickly assemble programs from existing components and well-defined
operations. Visual languages offer great leverage when there is a close match between the
visual abstraction and the system being modeled. Lab View is an outstanding example in
the process control domain. ER models provide data modelers a powerful visual notation
for conceptual modeling of the schema. Unfortunately, when one attempts to move
beyond the domain level abstraction, one quickly creates large complex visual spaghetti
that is impossible to comprehend or debug. This accidental complexity is particularly
apparent when one mixes metaphors such as visual data flow and events.

However, there are many useful application abstractions that are better modeled as
functions, logic rules, differential equations, or set operations. In these areas, the textual
functional, logic and procedural languages have proven to be the most expressive
solutions. Furthermore most humans have much higher skill levels in using textual
languages and the associated tool support such as IDEs, Text Editors, and Outliners. Even
in the area of hardware design, developers have moved from using schematics first to
using VHDL/HDL first.

7 DIFFERENT PROBLEMS REQUIRE DIFFERENT
ABSTRACTIONS WHICH NEED DIFFERENT LANGUAGES

The reason that languages such as Fortran, Cobol, APL, Lisp/Scheme, Simula, Simscript,
Smalltalk, Logo, Prolog, VisiCalc, MatLab, and LabView were developed was to provide
a close match between a specific domain and associated domain models and notations.
When using these languages, one always had a model, which was executable because the
language had a well-defined semantics that mapped domain abstractions to underlying
computational structures.

The emphasis during the development of these languages was not on their
universality so much as on their modeling power and (at least in the early years before
they entered standardization) their consistency and simplicity. It is difficult to see how
UML profiles can hope to provide the expressive power needed to be useful in many
application domains. Will there be a UML profile for spreadsheets, option trading or
ladder logic? Finally, even if it is possible to express all required concepts in some sort of
generic meta-model, how does this provide any leverage for end users and application
developers?

DIFFERENT PROBLEMS REQUIRE DIFFERENT ABSTRACTIONS WHICH NEED DIFFERENT
LANGUAGES

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 11

While in the early days a one-language culture may be a competitive advantage,
every major software vendor has learned that forcing all software professionals to use a
single language isn’t likely to be useful or successful. We need the OMG to have a
broader perspective of Model Driven Architecture, in which UML is one of a family of
languages for expressing models. Model/Language interoperability, guided through
shared meta-models, can provide a powerful story to accommodate legitimately different
modeling perspectives.

8 UML - SOMETIMES A LITTLE LESS IS A LOT MORE

UML is a good and useful contribution to OO software engineering. Unfortunately, like
many other standards activities, UML is suffering from the Fred Brooks “second system
effect”. Well-intended people often operating at a distance from the IT/SE trenches can
easily become ambitious and expand the scope of UML until it becomes much more
complex than required to be useful for most IT/SE professionals. This happens when
standards are developed outside the crucible of practice. It is further compounded when
the inclusion or exclusion of a feature has impact on the corporate and personal brands of
the contributors.

We need to seek simpler solutions to adding yet another layer of meta-stuff to an
already bloated stack of technology driven middleware. We need to ensure that important
new languages for programming and design have actually been used and tested in real
applications before they are foisted on programmers. Standards groups can then play their
proper role, which is to develop language standards that are based on real-world best
practices.

9 SUMMARY

We hope that the current discussions surrounding UML2, OCL, MDA, MOF will
simplify and clarify the syntax and semantics of UML. Given the potential impact of
these discussions on our software engineering practices and tools I encourage more
language designers, tool developers and most importantly application engineers to
become more proactively involved with these OMG activities. Finally we need to
encourage a wide spectrum view of modeling and not limit the expressive power of
models to a single paradigm no matter how useful that paradigm may be.

UML – UNIFIED OR UNIVERSAL MODELING LANGUAGE?

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

About the author
Dave Thomas is CEO of Bedarra Corp., Adjunct Professor at Carleton
University, Canada and University of Queensland, Australia, founding
Director of AgileAlliance.com, and founder of Object Technology
International. Bedarra works with research labs and commercial partners
to transition innovations into products and practices.

