
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, no. 5, November-December 2002

Cite this column as follows: Anthony J.H. Simons: The Theory of Classification, Part 4: Object
Types and Subtyping, in Journal of Object Technology, vol. 1, no. 5, November-December
2002, pages 27-35. http://www.jot.fm/issues/issue_2002_11/column2

The Theory of Classification
Part 4: Object Types and Subtyping

Anthony J H Simons, Department of Computer Science, University of
Sheffield, UK

1 INTRODUCTION

This is the fourth article in a regular series on object-oriented type theory, aimed
specifically at non-theoreticians. The "Theory of Classification" will explain the
behaviour of languages such as Smalltalk, C++, Eiffel and Java in a consistent
framework, modelling features such as classes, inheritance, polymorphism, message
passing, method combination and templates or generic parameters. So far, we have
covered the foundations of type theory and symbolic calculi. Along the way, we shall
look at some further theoretical approaches, such as F-bounds and matching. In this
article, we focus on the fundamental notion of subtyping.

Exact

Subtyping

Subclassing

Schemas Interfaces Algebras

1 2

5

8

4

7

3

6

9

Figure 1: Dimensions of Type Checking

Previous articles introduced the notion of type [1], motivated rules for constructing types
[2] and compared different formal encodings for objects [3]. We consolidate here on the
functional closure encoding of objects and object types that we intend to use in the rest of
the series. Previously, we noted how component compatibility can be judged from
different perspectives, according to representation, interface or full behavioural

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_11/column2

 THE THEORY OF CLASSIFICATION, PART 4: OBJECT TYPES AND SUBTYPING

2 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

correspondence; and type checking may be exact, or according to more flexible schemes
which we called subtyping and subclassing [1, 2]. This yields the nine possible
combinations shown again in figure 1, of which the darker shaded areas interest us the
most. In this fourth article, we shall construct syntactic subtyping rules (box 5 in figure 1)
to determine when it is safe to substitute one object in place of another, where a different
type was possibly expected.

2 OBJECTS AND OBJECT TYPES

In the following, we refer to objects and object types. Objects are modelled in the
calculus as simple records, whose fields consist of labels which map to values [2, 3]. The
values can be of any kind, for example, simple integer values, or functions (representing
methods), or indeed other objects. In the model, each object contains all of its own
methods - the calculus does not bother to represent indirection to a shared table of
methods, which is merely an implementation strategy in object-oriented languages. The
calculus only has to capture the notion of field selection, using the record selection "dot"
operator, which then works for both attribute access and method invocation [2].

In the calculus, we define things using "name = expression" to associate names with
equivalent values (or types, below). The names are simply convenient abbreviations for
the associated definitions. Simple objects may be written directly in the calculus, for
example an arbitrary instance may be defined as a literal record:

aPerson = {name a "John"; surname a "Doe"; age a 25; married a false}
The type of an object follows automatically from the types of the values used for its
fields. A suitable corresponding type for the instance above may be given as:

Person = {name : String; surname : String; age : Integer; married : Boolean}
Object types are modelled in the calculus as record types, that is, records whose fields
consist of labels which map to types (note the use of ":" to indicate "has the type", rather
than "a" meaning "maps to the value"). We always use the term object type to denote the
type of an object, to distinguish straightforward types from the more subtle notion of
class, which potentially has other interpretations.

3 RECURSIVE OBJECTS AND OBJECT TYPES

Objects are frequently recursive, where they refer to their own methods, via self.
Likewise, object types are recursive where the type signatures of their methods accept or
return objects of the same type [3]. Since recursion is not built-in as a primitive notion,
we must appeal to the fixpoint theorem to construct recursive objects and types [3]. A
conventional notation is used to denote an object that has been recursively constructed:

RECURSIVE OBJECTS AND OBJECT TYPES

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 3

aPoint = µself . {x a 2; y a 3; equal a λp.(p.x = self.x ∧ p.y = self.y)}
in which µself indicates that self is recursively bound in the record after the dot. This is
really a short-hand for defining an object generator, a function of self (note the
difference: λself):

genAPoint = λself . {x a 2; y a 3; equal a λp.(p.x = self.x ∧ p.y = self.y)}
and then constructing aPoint from this generator, using the fixpoint combinator Y (see
[3]):

aPoint = (Y genAPoint) ⇒ genAPoint(genAPoint(genAPoint(...)))
Since it is inconvenient to have to keep on appealing to this construction in every
recursive definition, we use the µ-convention to denote recursive definitions directly.
Recursive object types may also be denoted using this convention. A suitable
corresponding type for the instance above is given as:

Point = µσ . {x : Integer; y : Integer; equal : σ → Boolean}
in which µσ indicates that σ, the self-type of points, is recursively bound in the record
type after the dot. Note in passing how the type of equal is a function type (arrow type)
and that equal accepts an argument having the same self-type, which accounts for Point
being a recursive type. In type definitions, the µ-convention is a short-hand for the whole
rigmarole of defining a type generator, a type function of σ (σ is the function's type
parameter):

 GenPoint = λσ . {x : Integer; y : Integer; equal : σ → Boolean}
and then constructing the recursive Point type using Y (in a similar manner [3]):

Point = [Y GenPoint] ⇒ GenPoint[GenPoint[GenPoint[...]]]
In the rest of this article, we will use the µ-convention throughout for recursive objects
and recursive types. In later articles, object generators and type generators will acquire a
new importance in the definition of the notion of class. It is theoretically sound to use Y
to "fix" both recursive objects and recursive types in the same universe, provided that
records contain fields of functions and do not refer directly to themselves [4].

4 SIMPLE SUBTYPING

Object-oriented languages take the ambitious view that, in the universe of types, all types
are systematically related in a type hierarchy. Types lower in the hierarchy are somehow
compatible with more general types higher in the hierarchy. By contrast, older languages
like Pascal treated every type as distinct and unrelated1 The more flexible object-oriented
notion of type compatibility is based on a safe substitution property. Liskov is frequently

 THE THEORY OF CLASSIFICATION, PART 4: OBJECT TYPES AND SUBTYPING

4 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

cited as the source of this idea [5], popularly known as the Liskov Substitutability
Principle (LSP), although Cardelli and Wegner [6] deserve shared credit:

"What is wanted here is something like the following substitution property: if for
each object o1 of type S there is an object o2 of type T such that, for all programs
P defined in terms of T, the behavior of P is unchanged when o1 is substituted for
o2, then S is a subtype of T." [5]

These authors all identify substitutability with subtyping. In fact, subtyping is just one
formal approach which satisfies the principle of safe substitution - there are other more
subtle and equally formal approaches, which we shall consider in later articles.

Henceforth, we shall use "<:" to mean "is a subtype of". The notion of subtyping
derives ultimately from subsets in set theory. In exactly the same way that: x : X ("x is of
type X") can be interpreted as x ∈ X ("x is a member of the set X") in the model, so the
subtyping relationship, for example: Y <: X ("Y is a subtype of X") can be interpreted
consistently as the subset relationship Y ⊆ X ("Y is a subset of X") in the model. Objects
may belong to a hierarchy of increasingly more general types: consider that if y : Y and Y
<: X holds, then y : X is also true. The set-theoretic model supports this directly: If y ∈ Y
and Y ⊆ X, then it follows that y ∈ X, by the definition of subsets:

Y ⊆ X ::= ∀y . y ∈ Y ⇒ y ∈ X [Definition of a subset]
While this translation works immediately for primitive types, the object substitutability
principle is couched in terms of equivalent behaviour after a substitution. The behaviour
of an object is characterised by its methods; so we are obliged to consider the type-
relationships between all corresponding methods in the original and substitute objects.

5 FUNCTION SUBTYPING

For a substitute object y : Y to behave exactly like the original object x : X, then every
method of X must have a corresponding method in Y that behaves like the original
method of X. If we are only interested in syntactic compatibility [1] (that is, between
interfaces), this reduces to checking the type signatures of related pairs of methods. In
many object-oriented languages, the correspondence between the methods of X and Y is
at least partly assured by defining Y as an extension of X - in this case, Y may inherit the
majority of X's methods unchanged. However, we must cater for the general case, in
which Y substitutes different methods in place of those in X (known as method
redefinition, or overriding).

Consider a method f of X, which we shall call fX : DX → CX, to indicate that it is a
function accepting an argument of some type D and yielding a result of some other type
C. This is to be replaced by a substitute method f of Y, which we shall call fY : DY → CY,
with the intention that Y should still behave like X. Under what conditions can fY be

FUNCTION SUBTYPING

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 5

safely substituted in place of fX? From the syntactic point of view, there are two
obligations:

• fY must be able to handle at least as many argument values as fX could accept; we
express this as a constraint on the domains (argument types): DY ⊇ DX; and

• fY must deliver a result that contains no more values than the result of fX
expected; we express this as a constraint on the codomains (result types): CY ⊆
CX.

A helpful way to think about these obligations is to consider how a program might fail if
they were broken. What if fY accepted fewer argument values than fX? In this case, there
might be some valid arguments supplied to fX in the original working program that were
not recognised by fY after the substitution, causing a run-time exception. What if fY
delivered more result values than fX? In this case, the call-site expecting the result of fX
might receive a value that was outside the specified range when fY was invoked instead.

From this, we can motivate the function subtyping rule, which expresses under what
conditions a function type DY → CY is a subtype of another function type DX → CX. This
uses the same style of natural deduction rule as before [2]:

 DX <: DY, CY <: CX
 [Function Subtype]
DY → CY <: DX → CX

"If the domain (argument type) DY is larger than the domain DX, and the codomain (result
type) CY is smaller than the codomain CX, then the function type DY → CY is a subtype of
the function type DX → CX." Note how there is an assymmetry in this rule: in the subtype
function, the codomain is also a subtype, but the domain is a supertype. For this reason,
we sometimes say that the domains are contravariant (they are ordered in the opposite
direction) and the codomains are covariant (they are ordered in the same direction) with
respect to the subtyping relationship between the functions.

The function subtyping rule is expressed formally using a single argument and result
type. To extend this to methods accepting more than one argument, we recall the fact that
a single type variable in one rule may be deemed equivalent to a product type in another
rule [2]. In this case, the contravariant constraint applies to the two products as a whole,
and so we need a product subtyping rule to break this down further:

 S1 <: T1, S2 <: T2
 [Product Subtype]
S1 × S2 <: T1 × T2

"The product type S1 × S2 is a subtype of the product type T1 × T2, if the corresponding
types in the products are also in subtyping relationships: Si <: Ti." The consequence for

 THE THEORY OF CLASSIFICATION, PART 4: OBJECT TYPES AND SUBTYPING

6 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

function subtyping is that, in a multi-argument function, all of the overriding (subtype)
function's arguments must be supertypes of those in the function they replace.

6 RECORD SUBTYPING

The last piece of the subtyping jigsaw is to determine under what conditions a whole
object type Y is a subtype of another object type X. Recall that object types are basically
record types, whose fields are function types, representing the type signatures of the
object's methods. According to Cardelli and Wegner [6], one record type is a subtype of
another if it can be coerced to the other. For example, a Person type with the fields:

Person = {name : String; surname : String; age : Integer; married : Boolean}
might be considered a subtype of a DatedThing type having fewer fields:

DatedThing = {name : String; age : Integer}
because a Person can always be coerced to a DatedThing by "forgetting" the extra
surname and married fields. Intuitively, this also satisfies the LSP, since a Person
instance may always be used where a DatedThing was expected; any method invoked
through a DatedThing variable will also exist in a Person object. This motivates the first
part of the record subtyping rule (record extension):

 a1, ... ak, ... an : A
 for 1 ≤ k ≤ n [Record Extension]
 {a1 : T1, ... an : Tn} <: {a1 : T1, ... ak : Tk}

"If there are distinct labels ai, then a longer record constructed with n fields, having the
types ai : Ti, is a subtype of a shorter record constructed with only the first k fields,
provided that the common fields all have the same types." This rule basically asserts that
adding to the fields of a record creates a subtype record.

Defining new types of object by extension is clearly a common practice in object-
oriented programming languages. However, there is also the possibility of overriding
some methods in the extended object. What requirement should we place on a record type
if all of its fields were to change their types? According to the reasoning above which led
to the function subtyping rule, any replacement methods should be subtypes of the
originals. We can confirm this using a simpler example of field-type redefinition. If
PositiveInteger <: Integer, then

PositiveCoordinate = {x : PositiveInteger; y : PositiveInteger}
is intuitively a subtype of the more general:

Coordinate = {x : Integer; y : Integer}

RECORD SUBTYPING

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 7

because the set of all PositiveCoordinates is contained within the set of all Coordinates
(the positive subset occupies the upper right quadrant of the Cartesian plane). This
motivates the second part of the record subtyping rule (record overriding):

 ai : A, Si <: Ti
 for i = 1..n [Record Overriding]
 {ai : Si} <: {ai : Ti}

"A record that has n labelled fields of the types ai : Si is a subtype of a record having the
same labelled fields of the different types ai : Ti, provided that each type Si is a subtype of
the corresponding type Ti." This rule uses the index i to link the corresponding labels,
types and subtypes appropriately. Combining the record extension rule with the
overriding rule gives the complete, but more complicated looking, record subtyping rule:

 ai : A, S1 <: T1, ... Sk <: Tk
 for 1 ≤ k ≤ n [Record Subtyping]
 {a1 : S1, ... an : Sn} <: {a1 : T1, ... ak : Tk}

"A longer record type {ai : Si} with n fields is a subtype of a shorter record type {ai : Ti}
with only k fields, provided that, in the first k fields that they have in common, every type
Si is a subtype of the corresponding type Ti." The record subtyping rule generalises the
previous two rules. If Si = Ti, for i = 1..k, then it reduces to the record extension rule. If k
= n, then it reduces to the record overriding rule.

To complete the picture, we must say a little about recursion and subtyping. The
subtyping rules given above depend on having complete type information about all the
elements that make up the types. One of these elements could be the self-type, in a
recursive type. We cannot make definite assertions about subtyping between recursive
types, unless we first make some assumptions about the corresponding self-types.
Cardelli [7] expresses this (here slightly simplified, ignoring the context) as the rule:

 σ <: τ d S <: T
 σ free only in S, τ free only in T [Recursive Subtype]
 µσ.S <: µτ.T

"If assuming that σ is a subtype of τ allows you to derive that S is a subtype of T, then the
recursive type µσ.S is a subtype of the recursive type µτ.T, where S may contain
occurrences of the self-type σ and T may contain occurrences of the self-type τ." This
rule sets up the relationship between the self-type variables and the types which depend
on them. In a later article, we shall revisit the interactions between recursion and
subtyping, which proves to be quite a thorny problem for object-oriented type systems.

 THE THEORY OF CLASSIFICATION, PART 4: OBJECT TYPES AND SUBTYPING

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

7 CONCLUSION

We have reconstructed the classic set of subtyping rules for object types, including rules
for recursive types. These rules have the following impact on object-oriented languages
that wish to preserve subtyping relationships. A class or interface name may be
understood as an abbreviation for the type of an object, where the type is expressed in full
as the set of method type signatures owned by the class (or interface). A subclass or
derived interface may be understood as a subtype, if it obeys the rule of record subtyping.
In particular, the subtype may add (but not remove) methods, and it may replace methods
with subtype methods.

A method is a valid replacement for another if it obeys the function subtyping rule.
In particular, the subtype method's arguments must be of the same, or more general (but
not more restricted) types; and its result must be of the same, or a more restricted (but not
more general) type. Very few languages obey both the covariant and contravariant parts
of the function subtyping rule (Trellis [8] is one example). Languages such as Java and
C++ are less flexible than these rules allow, in that they require replacement methods to
have exactly the same types. Partly, this is due to interactions with other rules for
resolving name overloading; but also it reflects a certain weakness in the type systems of
languages based on subtyping, which we will start to explore in the next article.

REFERENCES

[1] A J H Simons, The theory of classification, part 1: Perspectives on type
compatibility, in Journal of Object Technology, vol. 1, no. 1, May-June 2002, pages
55-61. http://www.jot.fm/issues/issue_2002_05/column5.

[2] A J H Simons, The theory of classification, part 2: The scratch-built typechecker, in
Journal of Object Technology, vol. 1, no. 2, July-August 2002, pages 47-54.
http://www.jot.fm/issues/issue_2002_07/column4.

[3] A J H Simons, The theory of classification, part 3: Object encodings and recursion,
in Journal of Object Technology, vol. 1, no. 4, September-October 2002, pages 49-
57. http://www.jot.fm/issues/issue_2002_09/column4.

[4] K Bruce and J Mitchell, PER models of subtyping, recursive types and higher-order
polymorphism, Proc. 19th ACM Symp. Principles of Prog. Langs., (1992), 316-327.

[5] B Liskov, Data abstraction and hierarchy, ACM Sigplan Notices, 23(5), (1988), 17-
34.

[6] L Cardelli and P Wegner, On understanding types, data abstraction and
polymorphism, ACM Computing Surveys, 17(4), 1985, 471-521.

http://www.jot.fm/issues/issue_2002_05/column5
http://www.jot.fm/issues/issue_2002_07/column4
http://www.jot.fm/issues/issue_2002_09/column4

CONCLUSION

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 9

[7] L Cardelli, Amber, Combinators and Functional Programming Languages, LNCS,
242 (1986), 21-47.

[8] C Schaffert, T Cooper, B Bullis, M Kilian and C Wilpolt, An introduction to
Trellis/Owl, Proc. 1st ACM Conf. Object-Oriented Prog. Sys., Lang. and Appl.,
pub. ACM Sigplan Notices, 21(11), (1986), 9-16.

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Science, University of Sheffield, where he
leads object-oriented research in verification and testing, type theory
and language design, development methods and precise notations. He
can be reached at a.simons@dcs.shef.ac.uk

1 Apart from subrange types in Pascal, which were considered compatible with their base types.

mailto:a.simons@dcs.shef.ac.uk

