
UML Extensions for Design Pattern Compo-
sitions

Jing Dong
Department of Computer Science, University of Texas at Dallas, Texas, USA

Design patterns document good solutions to recurring problems in a particular con-
text. Composing design patterns may achieve higher level of reuse by solving a set
of problems. Design patterns and their compositions are usually modeled by UML
diagrams. When a design pattern is applied or composed with other patterns, the
pattern-related information may be lost because traditional UML diagrams do not
track this information. Thus, it is hard for a designer to identify a design pattern
when it is applied or composed. In this paper, we present notations to explicitly
represent each pattern in the applications and compositions of design patterns. The
notations allow us to maintain pattern-related information. Thus, a design pattern
is identifiable and traceable from its application and composition with others.

1 INTRODUCTION

Design patterns [9] capture the distilled experience of expert designers. A design
pattern systematically names, explains, and evaluates important and recurring de-
sign. The composition of design patterns [16, 10, 1, 5, 4] enable a higher level of reuse
than individual design patterns and objects. The modeling and representation of
design patterns and their compositions are usually based on object-oriented model-
ing techniques that use graphical notations such as the Unified Modeling Language
(UML) [3, 14]. UML is a general-purpose language for specifying, constructing,
visualizing, and documenting artifacts of software-intensive systems. It provides a
collection of notations to capture different aspects of the system under development.

Notations are important for conveying concepts and information. Most notations
can make complex concepts easy to understand and grasp. Nevertheless, some
notations may cause misunderstandings and confusions. Good notations and correct
uses of them can result in significant gains in terms of precision, expressiveness,
unambiguity, succinctness, simplicity, clarity and compactness [15].

There are several different kinds of notations for modeling object-oriented design,
such as diagrammatic notations and textual notations. Textual notations can be
further divided into formal text, such as logic-based, algebra-based, process-based
notations, and informal text (natural languages).

Cite this article as follows: Jing Dong: UML Extensions for Design Pattern Compositions, in
Journal of Object Technology, vol. 1, no. 5, pages 149–161.
http://www.jot.fm/issues/issue 2002 11/article3

http://www.jot.fm/issues/issue_2002_11/article3


UML EXTENSIONS FOR DESIGN PATTERN COMPOSITIONS

A diagrammatic notation can be beneficial in many ways. First, it can help
people grasp large amount of information more quickly than straight text. It can
be very compact albeit simple, especially for quantitative information (e.g., a very
large set of numbers). A use of diagrams, such as tables, bar charts and pie charts, is
usually the simplest and the most powerful method for analyzing and communicating
statistical information. Just like an old adage, “A picture is worth a thousand
words.” Second, graphics can be used for conveying complex concepts and models,
such as object-oriented design. Notations like UML are very good at communicating
designs given the fact that UML is continuously evolving for better expressiveness
as, for example, for frameworks [7, 8]. Third, as well as easy to understand, it is
normally easier to learn drawing diagrams than writing text because diagrams are
more concrete and intuitive than text written in formal or informal languages.

Unfortunately, there are yet shortcomings of graphical notations. The flip side
is that graphical notations are sometimes imprecise, ambiguous, unclear and lack
of express power. For example, the UML notations lack the express power for the
intuition and essence of design patterns and the hot-spot of frameworks. Although
improvements [11] and extensions [7, 8] to UML provide solutions to some par-
ticular problems related to the difficulties of modeling non-determinism in UML,
losing pattern-related information after the applications and compositions of design
patterns remains to be problems of UML. The modeling elements, such as classes,
operations, and attributes, in each design pattern usually play some roles that are
manifested by their names. The application of a design pattern may change the
names of its classes, operations, and attributes to the terms in the application do-
main. Thus, the role information of the pattern is lost. It is not obvious which
modeling elements participate this pattern. As a result, the designer cannot com-
municate with others about a system design in terms of design patterns used. The
benefits of using design patterns compromised. In order to retain the pattern-related
information even after the pattern is applied or composed with other patterns, we
propose some new notations that extend UML. In our notations, pattern-related
information is explicit so that a design pattern can be easily identified when it is
applied and composed. The notations are also scalable to large design containing a
number of design patterns.

In the following sections, we will first discuss some current techniques for repre-
senting the compositions of design patterns. Then, we will describe our approach to
the representation of the compositions by extending the UML notations.

2 GRAPHICAL NOTATIONS FOR THE COMPOSITION OF DESIGN
PATTERNS

In this section, we present new graphic notations (extensions to UML) to visually
represent each individual pattern within an aggregate of patterns. In this work, we

150 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 5



2 GRAPHICAL NOTATIONS FOR THE COMPOSITION OF DESIGN PATTERNS

do not make the distinction between a composite design pattern1 and an arbitrary
pattern composition. In the following discussions, we use a composition2 of the
Composite pattern [9] and the Decorator pattern [9] to illustrate our notations for
representing pattern compositions.

To explicitly represent a pattern in the composition of patterns, we provide no-
tations that are extensions of UML. In this way, each individual pattern is explicit
in design documentation so that it can be identified easily. These pattern level no-
tations are as important as (if not more important than) the graphical notations
at the class and object level. Before describing the new notations, we discuss some
previous methods for explicitly representing individual design pattern in a composi-
tion of patterns. We show the pros and cons of these methods and argue that they
do not satisfy our expectation.

Figure 1: Venn Diagram-Style Pattern Annotation

Venn Diagram-Style Pattern Annotation

The first notation for identifying patterns in a design diagram is based on Venn
diagrams [16]. Figure 1 shows the Composite pattern and the Decorator pattern

1A composite design pattern is defined as a composition of design patterns in which the resulting
composition is also considered to be a design pattern [12, 15]. A composite design pattern can be
seen as a special kind of design pattern compositions.

2This composition is actually a composite design pattern, called the Navigational Contexts
pattern in [13].

VOL 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 151



UML EXTENSIONS FOR DESIGN PATTERN COMPOSITIONS

manifested themselves in their composition. It shows that the Component, Com-
posite and Content classes participate in the Composite pattern, while Component,
Content, Context, ConcreteContextA and ConcreteContextB are participants in the
Decorator pattern. This notation works fine with a small number of patterns per
class. When a class participates in more and more patterns, the overlapping regions,
where the class resides, may become hard to distinguish, especially when different
gray levels need to be selected to represent different patterns.

Besides the scalability problem, shading in a diagram has the problem that it
may not print well on paper by different printers, nor does it for faxing and scanning.
Printers with different quality may render distinctive results when printing dissimilar
gray levels.

Another shortcoming of this notation is that it is not explicit what participant
roles a modeling element, such as a class, plays. We not only need to identify each
pattern in a design diagram, but also want to show the particular roles each modeling
element plays.

Figure 2: Dotted Bounding Pattern Annotation

Dotted Bounding Pattern Annotation

To prevent the shading problem, we propose a variation of the previous notation
that replaces shadings simply by dashed lines. Figure 2 displays the composition
of the two patterns, which is similar to Figure 1, except that the shading areas are
changed to the regions bounded by dashed lines. This change solves the problem

152 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 5



2 GRAPHICAL NOTATIONS FOR THE COMPOSITION OF DESIGN PATTERNS

caused by shading. It, yet, remains hard to identify precisely the roles a modeling
element, e.g. a class, plays.

Figure 3: UML Collaboration Notation

UML Collaboration Notation

To address the difficulty of explicit identification of the participant roles a class plays,
an alternative notation is provided in UML, called the parameterized collaboration
diagrams [14]. This notation can depict design pattern structure by representing
patterns and their participants in a class diagram as shown in Figure 3. Dashed el-
lipses with pattern names inside are used to represent patterns. Dashed lines labeled
with participant names are used to associate the patterns with their participating
classes. While this notation improves over the previous two notations with the ex-
plicit representations of pattern participants, it raises other problems. The dashed
lines appear cluttering the presentation. The pattern information is mixed with the
class structure, making both hard to distinguish.

Pattern:Role Annotations

To improve the diagrammatic presentation by removing the cluttering dashed lines,
Gamma [16] has defined a graphical notation, called “pattern:role annotations”. The
idea is to tag each class with a shaded box containing the pattern and/or participant
name(s) associated with the given class. If it will not cause any ambiguity, only the
participant name is shown for simplification. Figure 4 depicts that the pattern-
related annotations appear in shaded boxes as if they are on a different plane from

VOL 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 153



UML EXTENSIONS FOR DESIGN PATTERN COMPOSITIONS

Figure 4: Pattern:Role Annotations

the class structure. This notation is more scalable than the previous notations and
highly readable and informative according to [16].

Unfortunately, the problems related shading arise again as the first notation (see
Section 2). The gray backgrounds do not fax and scan well. In addition, they may
not print well in some printers with low resolution because the gray backgrounds
can make the words inside the shaded box illegible. Moreover, not only a class may
play some roles in a design pattern, but also an operation (or attribute) may play
some roles. This notation fails to represent the roles an operation (attribute) plays
in a design pattern.

Stereotype Annotation

Berner et al. [2] proposed a notation based on UML stereotypes, which they called
restrictive stereotype. A stereotype in UML can add new properties to elements of
the underlying language (UML), or can modify existing ones. It is a modeling lan-
guage, which has a well-formed mechanism for expressing user-definable extensions,
refinements or redefinitions of elements of the language without directly modifying
the meta-model of the language. Stereotypes provide language users with limited
meta-modeling capabilities without giving them direct access to the meta-model of
the language. This is very powerful mechanism. The restrictive stereotype is a
first-class member in UML, which is defined by rigorous syntax and semantics. The
extended stereotype is attached to a class with the pattern name and the role they
play in this pattern. Structural restrictions for the pattern language stereotype are

154 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 5



2 GRAPHICAL NOTATIONS FOR THE COMPOSITION OF DESIGN PATTERNS

defined to constrain on the elements that instantiate the pattern.

According to Berner’s classification, all previously presented pattern visualiza-
tion notations are descriptive stereotypes that are on a pure syntactic level. They
do not impose any semantic restrictions on the extended or modified syntax. Thus,
the advantage of restrictive stereotype is that it is possible to check models for their
compliance with both syntax rules and semantic restrictions. With a formal specifi-
cation, these property checks are automatable [4]. Otherwise, restrictive stereotypes
lose much of their power and finally become similar to descriptive ones.

The drawbacks of Berner’s stereotype notation include the expensiveness of de-
signing, using and maintaining the notation and the difficulty of scaling it up. Fur-
thermore, the designer of this stereotype notation needs to know, for example, the
desired properties of the stereotype to be designed, the base language, the general
principles of good language design, and the meta-language that is used to specify
the semantics of the stereotype. Ignoring these requirements may result in incom-
prehensible, contradictory or simply wrong stereotype designs. Incorrectly designed
restrictive stereotypes damage the base language rather than improve it. In ad-
dition, Berner et al. did not discuss how to extend UML stereotype notation to
represent the compositions of design patterns.

Figure 5: Tagged Pattern Annotation

Tagged Pattern Annotation

Although the Venn diagram-style notation and the dotted bounding notation can
show which classes participate a pattern in a design diagram, these notations cannot
explicitly represent the role that each class plays in the pattern. The UML collab-

VOL 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 155



UML EXTENSIONS FOR DESIGN PATTERN COMPOSITIONS

oration notation and the “pattern:role” notation improve the expressive power by
explicitly representing the role that each class plays in the pattern. However, not
only a class may play certain role in a pattern, but also an operation (or an at-
tribute) may play certain role in the pattern. None of these notations can represent
the information that an operation or an attribute participates and the roles it plays
in a pattern. Explicitly representing operation and attribute roles in a pattern is
important because many patterns are based on polymorphism, delegation and ag-
gregation, which are often presented based on the relationships among operations
and attributes. Explicit representation of the key operations and attributes can not
only help on the application (instantiation) of a pattern because the pattern impose
some restrictions through the relationships among operations and attributes, but
also assist on the traceability of a pattern since it allows us to trace back to the
design pattern from a complex design diagram.

In order to represent explicitly the roles of each class, operation, and attribute
in a pattern, we propose a new notation that is an extension to UML. The exten-
sion is defined mainly by applying the UML built-in extensibility mechanisms. This
extension forms a basis for a new UML profile [6], especially useful for representing
patterns and their participants. UML provides three language extension mecha-
nisms: stereotypes, tagged values, and constraints. The definition of stereotype can
be found in Berner’s notation described previously. Tagged values are used to extend
the properties of a modeling element with a certain kind of information. A tagged
value is basically a pair consisting of a name (the tag) and the associated value,
written as “{tag=value}”. Both tag and value are usually strings only, although the
value may have a special interpretation, such as numbers or the Boolean values. In
the case of tags with Boolean values, UML allows us to write “{tag}” as a shortcut
for “{tag=TRUE}”. A tagged value can be considered as a special kind of stereo-
type (a descriptive stereotype in the classification in [2]). Model elements can only
have one stereotype, but an unlimited number of tagged values that provide more
flexibility. We choose to use tagged values because each of the model elements (class,
operation and attribute) may participate in different patterns. Constraints may be
used to detail how a UML element may be treated. However, like stereotypes and
tagged values, constraints have a rather weak semantics and therefore can be used
(and misused).

Our new notation is called “tagged pattern annotation”. The idea is that, for
each class, we create new tagged values that are used to hold pattern and/or partici-
pant name(s) associated with this given class and its operations and attributes. If it
will not cause any ambiguity, only the participant name is shown for simplification.
Figure 5 displays the diagram based on our notation, where the Component and
the Content classes are the overlapping part of the composition of the Decorator
pattern and the Composite pattern. With tagged values, the roles that these two
classes play in each pattern are shown. In addition, the operations and attributes
are attached with tagged values showing the roles they play in each pattern. We
found that our notation scales even better than other notations without scarifying

156 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 5



2 GRAPHICAL NOTATIONS FOR THE COMPOSITION OF DESIGN PATTERNS

readability and informativeness3. The limitation of our notation is that the pattern-
related information is not as significant as the “pattern:role” notation with shading,
which is a trade-off4. For a small number of patterns, this new notation can combine
with the dotted bounding notation (see Section 2) by bounding each pattern with
dashed circles so that the pattern boundaries are explicitly depicted as shown in
Figure 7.

Figure 6: Tagged Pattern Annotation with Shading

Besides the two improvements to make pattern-related information explicit (see
Figure 6) and pattern boundaries explicit (see Figure 7), we propose another alterna-
tive improvement to extend UML by adding a new compartment in each class in the
class diagram. This new compartment of each class is used to hold pattern-related
information. Consequently, the pattern and/or participant name(s) associated with
a class are put into the new compartment of this given class. In this way, pattern-
related information is treated as first-class members in the same way as attributes
and operations of a class, as shown in Figure 8, where the roles each class plays are
displayed in a separate compartment.

We argue in favor with Berner et al. [2] on that the extension to UML for
pattern visualization should not be included in the UML base language because
patterns evolve and are frequently application-dependent. Therefore, the set of
those patterns that can be used and have to be documented in a model should be

3Although the goal of using tagged values is for making pattern-related information explicit and
for traceability, many currently available UML case tools give support to reasoning about tagged
values and could be adapted to work with our notations.

4If we do not need to worry about the shading problem because, for example, everyone has good
quality fax machines, scanners, and printers, we can still shade the pattern-related stereotypes so
that the pattern-related information appears to occupy a different plane as shown in Figure 6.

VOL 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 157



UML EXTENSIONS FOR DESIGN PATTERN COMPOSITIONS

Figure 7: Tagged Pattern Annotation with Bounding

Figure 8: Tagged Pattern Annotation with New Compartments

158 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 5



3 CONCLUSIONS

definable on the level of projects and organizations, instead of part of the UML base
language. It should only extend, rather than modify, the syntax and semantics of
the base language.

3 CONCLUSIONS

The previously described notations extend the UML class diagram with pattern-
related information. The underlying model elements are not changed. They are
only attached with some new notations that are not first-class members of the base
language. A completely different approach has been proposed by Riehle [12]. This
approach is based on role relationships. In this notation, a class, which is not a
first-class member, is replaced by a role. A role diagram takes the place of a class
diagram in role-based modeling. Role diagrams are better suited for describing
object collaboration based patterns than class diagrams, because they focus better
on the actual problem solution as a set of collaborating objects. Role diagrams are
more abstract than class diagrams, and can be mapped to several class diagrams.
A role diagram depicts some collaborating objects that play one or more roles in
design patterns. An object collaboration can be viewed as a set of overlapping
role diagrams that can be easily composed. Thus, they are attractive for describing
composite design patterns. The limitation of this role-based notation is that it is only
suitable for describing object collaboration based patterns, making it inappropriate
for class inheritance based patterns. In addition, it is not explicitly represented in
any object-oriented programming languages. Roles are new concept comparing to
classes that have long been the primary means for modeling object-oriented software
systems.

In this paper, we introduced some new notations that extend UML to explicitly
visualize design patterns. It is important for designers to describe explicitly patterns
in a design diagram because the goals of design patterns are to reuse design expe-
rience, to improve communication within and across software development teams,
to capture explicitly the design decisions made by designers, and to record design
tradeoffs and design alternatives in different applications. Currently, the application
of a design pattern may change the names of classes, operations, and attributes par-
ticipating in this pattern to the terms of the application domain. Thus, the roles that
the classes, operations, and attributes play in this pattern have lost. This pattern-
related information is important to accomplish the goals of design pattern. Without
explicitly representing this information, the designers are force to communicate at
the class and object level, instead of the pattern level. The design decisions and
tradeoffs captured in the pattern are lost too. Therefore, the notations provided in
this paper help on the explicit representation of design patterns and accomplishing
the goals of design patterns.

VOL 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 159



UML EXTENSIONS FOR DESIGN PATTERN COMPOSITIONS

REFERENCES

[1] Paulo Alencar, Donald Cowan, Jing Dong, and Carlos Lucena. A Pattern-Based
Approach to Structural Design Composition. Proceedings of the IEEE 23rd
Annual International Computer Software & Applications Conference (COMP-
SAC), Phoenix USA, pages 160–165, October 1999.

[2] Stefan Berner, Martin Glinz, and Stefan Joos. A Classification of Stereotypes
for Object-Oriented Modeling Languages. Proceedings of the Second Inter-
national Conference on the Unified Modeling Language (UML), LNCS1723,
Springer-Verlag, pages 249–264, October 1999.

[3] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Addison Wesley, 1999.

[4] Jing Dong. Design Component Contracts: Model and Analysis of Pattern-
Based Composition. Ph.D. Thesis, Computer Science Department, University
of Waterloo, June 2002.

[5] Jing Dong, Paulo Alencar, and Donald Cowan. Ensuring Structure and Behav-
ior Correctness in Design Composition. Proceedings of the 7th Annual IEEE
International Conference and Workshop on Engineering of Computer Based
Systems(ECBS), Edinburgh UK, pages 279–287, April 2000.

[6] Desmond D’Souza, Aamod Sane, and Alan Birchenough. First Class Extensi-
bility for UML – Packaging of Profiles, Stereotypes, Patterns. Proceedings of
the Second International Conference on the Unified Modeling Language (UML),
LNCS1723, Springer-Verlag, pages 265–277, October 1999.

[7] Marcus Fontoura and Carlos Lucena. Extending UML to Improve the Represen-
tation of Design Patterns. Journal of Object Oriented Programming, 13(11):12–
19, March 2001.

[8] Marcus Fontoura, Wolfgan Pree, and Bernhard Rumpe. UML-F: A Model-
ing Language for Object-Oriented Frameworks. Proceedings of the 14th Eu-
ropean Conference on Object-Oriented Programming (ECOOP), pages 63–82,
July 2000.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns, Elements of Reusable Object-Oriented Software. Addison Wesley Pub-
lishing Company, 1995.

[10] Rudolf K. Keller and Reinhard Schauer. Design Components: Towards Soft-
ware Composition at the Design Level. Proceedings of the 20th International
Conference on Software Engineering, pages 302–311, 1998.

160 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 5



3 CONCLUSIONS

[11] Anthony Lauder and Stuart Kent. Precise Visual Specification of Design Pat-
terns. Proceedings of the 12th European Conference on Object-Oriented Pro-
gramming (ECOOP), pages 114–134, July 1998.

[12] Dirk Riehle. Composite Design Patterns. Proceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages & Applications (OOP-
SLA), USA, pages 218–228, October 1997.

[13] Gustavo Rossi, Daniel Schwabe, and Alejandra Garrido. Design Reuse in Hy-
permedia Applications Development. Proceedings of the ACM International
Conference on Hypertext, pages 57–66, April 1997.

[14] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Addison Wesley, 1999.

[15] John Vlissides. Composite Design Pattern (They Aren’t What You Think).
C++ Report, June 1998.

[16] John Vlissides. Notation, Notation, Notation. C++ Report, April 1998.

ABOUT THE AUTHOR

Jing Dong is an assistant professor in the Computer Science Department at the
University of Texas at Dallas. He received a Ph.D. in Computer Science from
the University of Waterloo. His research interests include design patterns, UML,
component-based software engineering, and formal methods. He can be reached at
jdong@utdallas.edu and http://www.utdallas.edu/∼jdong.

VOL 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 161

mailto:jdong@utdallas.edu
http://www.utdallas.edu/~jdong

