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Encapsulation and modularity are supported by various static access control mecha-
nisms that manage implementation hiding and define interfaces adapted to different
client profiles. Programming languages use a broad range of different mechanisms,
that are sometimes confusing and hard to predict when cumulatively applied. Fur-
thermore, understanding and reasoning about access control independently from the
programming languages is quite difficult. We introduce a notation for static access
control that we think is adapted for modeling, characterizing, evaluating, comparing
and translating access control. Examples of practical applications of access graphs
are given. This notation is supported by AGATE, a set of tools designed for access
control handling.

1 INTRODUCTION

As noted by [15], “Access control is actually a complex topic that aids in defining
well-structured software and therefore in reasoning about correct software”. Access
control mechanisms indeed play a key role in modular and encapsulated software
organizations [16]. The definition of appropriate access rights helps in managing
implementation hiding and defining interfaces adapted to different client profiles. In
object-oriented programming languages a great share of the mechanisms are static,
which is an important feature because many accesses are thus checked at compile
time, and class-based, and should not be confused with object-based security [15].

Object-oriented programming languages offer the most varied static access con-
trol mechanisms, and have quite different philosophies. While a language like Fiffel
[17] essentially requires the explicit naming of client classes, other languages like Java
[5] or C++ [22] give greater importance to the definition of categories of clients for a
class, e.g. subclasses or classes of the same package. C++ also provides adornment
of inheritance links and a friend-based mechanism that allows a class to grant special
rights to explicitly named classes and methods. Another divergence concerns the
granularity of the encapsulated component: the encapsulated item is the instance
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for Eiffel or Smalltalk [11] (e.g. attributes can be written only by the receiver’s
methods), while it is the class for C+4 or Java (e.g. a method of a class C has
access to private properties of any other instance of C'). There is a good remark
about this profusion of mechanisms in [15]: “Access control is a good case study of
generalization and how a single mechanism or at least a small number of mechanisms
can replace multiple mechanisms”.

Besides the variety of mechanisms, access control has several other question-
able aspects that hinder its understanding and use: languages are evolving fast and
documentation is often so informal that several interpretations are possible!; com-
piler and language versions offer subtle variations on important themes; mechanism
intrication can lead to access rights that are really difficult to understand and pre-
dict; modularity and inheritance have conflicting rules concerning access control,
as observed by [20]; there is no general language, independent from the syntax of
programming languages, that allows modeling and expression of any access control
situation; CASE tools and design methodologies generally propose a rough schema
of access control modeling essentially based on the public/private separation.

We believe that addressing these issues requires a language-independent notation,
with clear semantics, allowing expression of any set of access rights, and easy to read.
Such a formalism should help to express design decisions as well as being an aid in
understanding and reasoning about programs. To this end, we introduce access
graphs, a graph-based notation, that explicitly shows a set of access rights, and
that is, from our point of view, adapted for modeling, characterizing, evaluating,
comparing and translating sets of access rights.

Section 2 reviews and details several issues raised by access control mechanisms
which prompted us to define a general notation. Access Graphs are presented and
illustrated in Section 3. Examples where the notation is put into practice are pre-
sented in Section 4. We close Section 5 by discussing several perspectives.

2 ISSUES IN STATIC ACCESS CONTROL

As previously mentioned, static access control raises two categories of problems: a
deep understanding requires more attention than supposed in a first approach; its
use for modeling and programming could be enhanced.

Understanding Static Access Control

This section describes a few cases where readability of static access control is ques-
tionable.

'See Java Spec Report http://www.ergnosis.com/java-spec-report, Sections 15.11.12, 8.2, or
6.6.2.1 for ambiguities in Java access control description.
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Intricate mechanisms FEven though basic access control mechanisms are usually
intelligible when they are considered separately, their intrication often results in
access rights that are sometimes hard to foresee. C++ mechanisms that provide
access control on properties and on inheritance links are a mine of such examples.
Consider the C++ class hierarchy outlined in Figure 1 (left) with a UML-like presen-
tation. Following [21] and its implementation in the GNU2.95 compiler, a method
m declared by Rpro has access to the inherited protected member a of a Rpropub
instance? (m can contain Rpropub instl; ... instl.a), but not to the member a of
a Rpropri instance, which is rather logical: private inheritance makes a a private
property of Rpropri for subclasses as well as for superclasses of Rpropri. But what
about access inside m to the inherited protected member a of a Rpropro instance?
Which semantics have really protected inheritance with regard to access from su-
perclasses towards subclasses? The answer could be to consider that a remains
protected in Rpropro like in Rpropub, but actually another choice seems to have
been made, and Rpropro inst2; ... inst2.a is an illegal access inside m (thus Rpro
has lost access to a on Rpropro). One interpretation is that protected inheritance
acts as a cut for accesses from the superclass involved in the protected link. This
is not very natural in a first approach, and previous versions of C++ compilers (as
GNU2.91) allowed the access inst2.a inside m. It is debatable to what extent such
subtle rules must be known by the average C++ programmer and for which design
situations they are useful.

. with subtle variations Variations on protected inheritance and packages in
Java is another example where subtle changes between versions can disturb pro-
grammers. Let’s consider a protected method m declared in a class Al of the
package P1, and overridden in A2, a subclass of Al located in another package P2
(see Figure 1 right). Method p of class B shows accesses to the name m within
package P1. Access on al of static type Al is legal in all JDKs, but access on a2
depends on the JDK version. In JDK 1.2 and 1.4, accesses from P1 to m on an
object of static type A2 are indeed illegal whereas they can be achieved in the JDK
1.1.8 and JDK 1.3 versions. Such changes can invalidate code and are difficult to
track.

Non-unicity of encoding Programming languages usually provide different ways
to get a specific set of access rights. In Figure 2, two C++ hierarchies with equivalent
allowed accesses are proposed. The trick is to combine friend and private/public
inheritance in such a way that allowed accesses are restricted to accesses to m from
instances of A on instances of A, B or C'. This feature, i.e. achieving a same effect
thanks to different syntactic means is quite normal for a language, but unfortunately
results in complicating encoding choices and program understanding. Furthermore,
despite the equivalence of allowed accesses in the first step of this hierarchy con-
struction, the access control choices made have very different consequences when
the hierarchy is extended.

2To be more precise, an instance whose static type is Rpropub. This remark also applies below.
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Package P1
Al B
R . .
protected a protected void m(); private void p()
Alali; ali.m();
A2 a2i; a2i.m();
protected A }
Rpropub instl; instla; 1- Rpro
Rpropro inst2; ind2<t =m0
Package P2
public protected private
\ A2
Rpropub Rpropro Rpropri prOteCted void mo;

Figure 1: C++ (Left) and Java (Right) hierarchies

A A
private void m() privatevoid m()
public private
D D B
B friend A
private public
C
friend A ¢

Figure 2: Equivalent allowed accesses in C++

Comparing different policies A problem raised by the variety of access control
policies and syntactic structures is that it hides similarities and differences between
languages. We propose an example based on three hierarchies (Figure 3), written
respectively in C++4, Eiffel and Java, which highlights a connection between mech-
anisms like friend (C++), package visibility in Java and access rights associated
with the feature clause in Eiffel. In the figure, the package visibility is mentioned
explicitly, even though there is no keyword in Java for it (it is considered the default
visibility). f is supposed to be a method. In the Eiffel hierarchy, f is exported to
A and C. This also allows B, which is a subclass of A, to have access to f. In the
C++ hierarchy, the same accesses are obtained by declaring f protected or private
(the figure shows the private case), and A and B friends of C'. In the Java hierarchy,
a package including A, B and C'is created to restrict the access to f to these three
classes. f is now declared with protected or package visibility (the figure shows the
package case). Clearly understanding the different access control policies would give
a more abstract view and encourage better practice. For example, understanding
that friend is not just an unrecommended trick, but a way to get a package-like
visibility (provided that the programmer pays attention to the fact that friendship is
neither inherited nor transitive [21]) is useful for getting a better code. Another ben-
efit of establishing connections is to provide actual help for translating hierarchies
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from one language to another, as the issue approached by [14].

=

i) i)

C C

c
E feature f {A C} E privatef || [ PL]
friend A packagef
friend B D

o]

Eiffel C++ Java

Figure 3: Three close access controls

Modeling and Programming with Static Access Control

Limitations of current modeling languages As we have seen, the very specific
idioms of the different languages do not allow designers and programmers to have a
clear language-independent representation of allowed accesses. In spite of its claims
that “the UML’s visibility property matches the semantics common among most
programming languages, including C++, Java, Ada and FEiffel” [8], UML mainly
borrows syntactic features from C++ or Java, quite far from Eiffel or Ada [23]
principles. Four symbols are indeed proposed in UML (+, #, ~, and —) which
indicate that the concerned property is public, protected, package-level, or private.
Unfortunately, the semantics of protected visibility is not the same in C++ and
Java, and differs in the successive Java versions. The viewpoint of UML is that
the semantics depend on the programming language [18]. The way UML considers
access control is very damaging because design as well as documentation require
expression of any form of access control, with clear semantics.

Issues in access control design Access Control is unanimously recognized as
being an important problem which is not confined to programming phases but has
to be considered from the design step [9, 19]: “If a designer encapsulates the parts of
the analysis effort that are most volatile, then the inevitably changing requirements
become less of a threat” [9]. In particular, access control elements are useful in
design pattern specification and verification [7]. Most usual recommendations are
quite general [19, 8]: separate interface and implementation (mask the latter), and do
not cross associations not directly connected to the current class. A few well-known
design rules have an impact on access control policies, for instance the “specialization
inheritance rule” requires the access control not to be strengthened when using
specialization inheritance. This rule was enforced in Java 1.3 (but unfortunately
not in Java 1.2 and 1.4), while it is left to the programmer’s skills in C++ and
Eiffel. Apart from these generalities, very specific guidelines are associated with
(or imposed by) particular constructs of programming languages: to have private
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attributes provided with accessor methods; to use private/protected inheritance
(in C++) for implementation reasons; to use protected methods but preferably
not protected attributes [22]. An intermediate level of advice, that would ensure
continuity between general ideas and specific constructs of programming languages
is missing. This is perhaps explained by the lack of notation supporting such a level.

3 TOWARDS A NOTATION FOR STATIC ACCESS CONTROL

The previous section highlighted the need for a notation independent from program-
ming languages, with clear semantics, and easy to read. To this end, we propose
below a graph-based notation which explicitly shows effective or allowed accesses
and which we think is well adapted for handling access control in various design and
programming situations.

What static access is and isn't

We focus on the main access control policies found in standard languages like Java,
C++ or Eiffel. In this framework, static access is basically the fact that a piece of
code, part of a method m applied to an object or a class e, has access to a property p
of e via a name (or signature) x. The property p can be an attribute, a method or
a type (class, primitive or constructed type). The access also involves applying to p
an operation o that achieves a kind of access such as read/write if p is an attribute,
call if p is a method, and name if p is a type of variable.

The mechanism is class-based: in the case of access to a property p of an object e,
the mechanism only considers the static type (class) of the object e, and ignores the
dynamic type and the identity of e. In particular, in a method m, if a variable v
is set to the receiver (denoted by this or self following the language), later in the
code of m, an access v.p will not be statically considered like an access this.p, i.e.
an access to p on the receiver through the special variable this. Access control can
differ: this.p can be legal, while v.p is forbidden.

A few examples of static accesses are shown Figure 4. The four first accesses
are class-level accesses, that are accesses between different instances and accesses
from or to class (static) properties. Access A; is a write-access from m to the
instance attribute = of inst. Whether access is allowed or not mainly depends on
the class C; where m is declared, and on the class Cy which is the static type of
inst. Access Aj is a call-access to a class (static) method = of Cy. Aj involves
using, inside the static method m, the name of (5 as a type name. Ay is a classical
call-access to an instance method x on inst, which here has the same type as the
method receiver. The two next accesses are instance-level accesses, namely accesses
via special variables (sometimes implicit) that designate the method receiver (this,
self, super, etc.). As is a read-access to the attribute x, while Ag is a call-access to
the method z. In instance-level accesses, m is necessarily an instance method.
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Although the respective roles of the properties and their names (in the broad
sense, signatures) are not always clearly identified in the definition of access control
mechanisms, the main idea is that (static) access control applies to names [21] and
not to entities. This is partly due to the fact that, from the static point of view we
are not aware of the result of dynamic binding.

C1 c2 C1 c2 c
.| inst:C2 | inst:C2 17 i=thisx
-7 | instx=2 -7 | instx=2 ) m -
m - x:int m - x:int

x:int
Al- instance attribute access A3— class name access A5— instance attribute access
c1 C2 c _| inst:C c B
. v inst.x v this.x
P C2.x() 0 m - 0 m - 0
m - X
- X0 X0
A2— class (static) method access A4— instance method access A6— instance method access
Class level access Instance level access

Figure 4: Examples of static access situations

An intuitive graph-based representation

We aim to help intuition and reasoning on static access by providing an easy-to-
read representation, giving access control a visual notation with precise semantics.
The idea is to provide access control with the same readability that given by UML
[8] to other aspects of design (classes, associations, collaborations, etc.). Accesses
presented in Figure 4 are highlighted by the diagrams shown in Figure 5. Nodes
are labelled by classes, while edges correspond to accesses. A 3-tuple (m, sa, z) on
an edge (C1,Cs) represents the fact that C; has access through its method m to
the property called =, with the access kind sa (read, write, call, name). Assuming
that accesses of Figure 4 are buried in the code, access graphs bring even more
readability.

This representation may evoke call graphs and collaboration diagrams, but there
are significant differences. As opposed to call graphs®, we take access to attributes
into account, and we do not focus on the sequential aspect of the calls in our effective
access graphs. We only need to know that a call is effective, not how many times
it happened, so we can factorize access information at a class level. Hence, access
graphs nodes are classes and not methods. Access graphs are closer to collaboration
diagrams* of UML, but note that our notation focuses on access to various entities,
including (but not reduced to) methods, and nodes correspond to classes rather than

34A call graph (CG) describes the relationship between routines. Its nodes represent routines,
its edges represent routine calls and returns”[24].
4 UML diagrams that show the structural organization of objects that send and receive messages

8]
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instances. Besides, contrary to collaboration diagrams, our point of view is static
and not dynamic.

: m,read,X

(m,write,x) (m,name,C2) ( )

cL 2 ci— BN el
Access A1 Access A3 Access A5

(mgall ) (mgall x) (moall x)

cr e S O
e o

Access A2 Access A4 Access A6

Figure 5: A graph-based representation of accesses

Nevertheless, the main target is not effective accesses, but rather legal accesses,
which are encoded into syntactic access control constructs as well as in implicit
language rules, with a significant loss of clarity. Let us take for example the following
Eiffel program (and recall that Eiffel is one of the most explicit languages concerning
access control):

class A class B class C

feature {NONE} inherit A feature {NONE} r is
fO:INTEGER; rename p as q do inst:A;
m is do n end; redefine m —-- create inst as a B
n is do end; export{C} n .

feature {A} f1:INTEGER; feature {NONE} m is do end; inst.q;

feature{C} p is do end; end -- B end

end ——- A end —- C

The corresponding effective accesses and legal accesses are appropriately repre-
sented in the graph-based notation in Figure 6. Instance-level accesses are gathered
into sets called I, while class-level accesses are gathered into sets called C,. The
principle is the same as in Figure 5, except that we have simplified edge labels in
the graph which represents legal accesses: when an access to a property z is allowed
for all methods of a class and with all possible access kinds (e.g. read and write
for an attribute), the 3-tuple representing the access is reduced to x. In the graph
associated with legal accesses, class name accesses are all supposed to be allowed
and are not represented for the sake of simplicity.

Notations

Several useful notations are now introduced in order to formalize the notion of static
access control. Notations are shortened when there is no ambiguity.

e The set of classes is denoted by C and ordered by the inheritance order <y.
In this order, B <y A if B is a subclass of A.
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la={f0,f1,m,n,p}
la={(A::m,call,n)} Ca~{ (rqagltl)}
70T \; r\\ /
‘o 4 A
A g

i T cap)
Ca={(C:r,call,g)(Cr,name,A)} Ca={ (read f1)} ! Tl

\ o Ca{(readfD} -G ey
‘/\Bi‘rl/rl/r Ca:{nvq}
B V: <\
Ia:{}é),fl,m,n,q}
Ca={ (read,f1)}

Figure 6: Effective and legal (allowed) accesses in Eiffel

staticType : V — C, associates with each variable the static type given when
the variable is declared, in any hypothetic code, which contains variables of a
set V.

The set of properties is denoted by P and contains all syntactically declared
properties. An attribute or a method will be denoted by its declaring signature,
where the name is prefixed by the declaring class name and the characters
“.:”. The name of a class C' will be denoted by name(C). P is decomposed
into: N, the class or type names (for nested classes or type declarations),
Ps = PcaUP;a, the set of class and instance attributes, and Py = PoyUPrr,
the set of class and instance methods.

The map properties : C — 27, associates with a class C' its property set,
while the map declared : C — 27, associates with a class C' the properties it
syntactically declares. The set properties(C') contains the properties the lan-
guage assigns to a class C, which are (in a first approximation) the properties
declared by C' and the properties inherited by C' (declared by a superclass and
not overridden).

A map sig : C x P — S associates a signature with each pair (C,p), where
p € properties(C). S is defined as the signatures in a UML-like notation
name ( [parameter-type-list]) [:return-type] (simplifications are made
when there is no ambiguity). We suppose that a property has a unique signa-
ture in a class (otherwise the model can be extended without difficulty).

accessKinds = {read, write, call,name} denotes the set of access kinds that
are considered here. read, write are possible access kinds for attributes, while
call is used for methods, and name for the use of type names. This set
is extensible, for example if there is a need to differentiate between using a
type name and instantiating a class, or between specializations of call access
(e.g. in Eiffel to make a distinction between calling a creation method at the
instantiation or calling it like a normal method).
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e We consider the set O(x) of operations (assignments, functions, operators or
methods) that may be applied to z. O(z) can be decomposed into Or(z)
(operations Transforming z), and Onr(x) (operations Not Transforming ).

Definition of static access

First instance-level accesses are defined, that are, for a given instance method m,
accesses inside m to properties of the receiver of m wia this, self and super
variables (or implicitly).

Definition 3.1 (Instance-level Access)

A well-formed instance-level access is a 4-tuple (C},m, sa, x) € C X Py xaccessKindsx
S such that the following conditions are satisfied:

> dp € properties(Cy), sig(Cy,p) = x,

> m € declared(C)),

> p € PraUPrum,

> appears® inside the code of m in an access expression X where x is applied to
the receiver, implicitly or explicitly like in: X = super.x or X = self.x,

> one of the three following conditions is true: p € Pra, sa = read, and an opera-
tion o € Onr(x) is applied to X; p € Pra, sa = write, and an operation o € Op(x)
1s applied to X ; p € Pry and sa = call.

For example, the set of effective instance-level accesses in the Eiffel example
is Aie = {(A,A : m,call,n)}. The set of allowed instance-level accesses for A
through the method n is Asy = {(A, A :: n,read, fo), (A, A 2 n,read, f1), (A, A =
n,write, fo), (A, A = nywrite, f1), (A, A 2 n,call,m), (A, A 2 n,call,n), (A, A =
n,call, p), }.

The next definition describes class-level accesses, that are accesses between (stat-
ically) different instances and accesses from or to class (static) properties.

Definition 3.2 (Class-level access)

A well-formed class-level access is a 5-tuple (C1,C2,m,sa,x) € C X C X Py X
accessKinds x S such that:

> dp € properties(C2), sig(C2,p) = x,

> m € declared(C1),

> x appears inside the code of m in the access expression X detailed below,

> if p € PraUPra, X has the formv.x, where v is a variable such that staticType(v) =
C2 (v is neither self, nor super),

> if p € PoaUPon, X has the form C2.2°,

> if p € Pa, an operation o € Op(x) (resp. Onr(z)) is applied to X if sa = write
(resp. sa = read),

5In fact, an invocation of .
5We do not consider degenerated invocation forms like v.z, where v refers to an instance.
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> if p € Py, sa = call,
> if p € Ng, sa = name, and x appears as a type name.

The set of effective class-level accesses in the Eiffel example is A.. = {(C, A, C ::
r,call,q), (C, A, C :: r,name,name(A))} and contains an access which is not legal
in Eiffel: the set of allowed class-level accesses from C' to properties of A is indeed
Aca = {(C, A, C :: r,name,name(A)), (C, A,C :: r,call,p)} and does not contain
(C,A,C :: rycall,q). This set indicates in particular that C' :: r can call A :: p
on an object of static type A via the name p (but not via the name ¢). The set
of class-level accesses allowed from C' to properties of B is Acp = {(C,B,C ::
r,name,name(B)), (C,B,C :: r,call,n),(C,B,C :: r,call,q)}. Tt indicates that
C ::r can call A :: p on an object of static type B, and in this case only via the
name q.

Access Graphs

The graph-based representation of accesses associates nodes with classes and edges
with accesses.

Definition 3.3 Let (C,<p) be an inheritance hierarchy, the access graph associated
with the class-level access set Ao and the instance-level access set Ay is the graph
(C,&) such that (C1,C2) € & if there is a 5-tuple (C1,C2,m,sa,x) in Ac or a
4-tuple (C1 = C2,m, sa,x) in Aj.

Edges are labelled by the following maps:
> Ia: & — 27DIM XaccessKindsxS

(Cy, Cy) — {(m, sa,x)/(C;,m, sa,x) € A}

> Ca: €& — 279M><accessKind5><S
(C1,02) — {(m, sa,x)/(C1,02,m, sa,z) € Ac}

Figures 5 and 6 gave examples of access graphs with simplifications of labels as
explained above.

4 ACCESS GRAPHS IN USE

This view of static access control offers many prospects for improving specifica-
tion, understanding and use of static access control mechanisms. In this section,
we show application of access graphs in access control mechanism formalization or
understanding, and how they help in reasoning and modeling. Finally AGATE (Ac-
cess Graph Based Tools for Encapsulation), a set of tools dedicated to static access
control management is described.
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Formalizing Static Access Policies

A first application of access graphs is to give a description of access control mecha-
nisms available in a programming language. The result (the family of access graphs
allowed by the rules of the language) has the advantage of being easy to understand
and independent of the source languages. Below we give several rules that partially
show how Eiffel and Java access control mechanisms can be expressed through access
graphs.

Access Graphs for Eiffel Access Control The main access control mechanisms
of Eiffel [17] are simple enough to be described by the six following rules, excluding
only descriptions of class variable, class method, and class name accessibility, as well
as specificities of constructor methods.These rules define the sets A; and Ag of le-
gal (allowed) accesses associated with a given Eiffel hierarchy (C, <g). A simplified
view of rules is given in Figure 7.

Rule 4.1

“ Attributes can be read through instance-level access.”

For all C € C, a € properties(C) N 'Pra, meth € declared(C) N Prar,
we have (C,meth,read, sig(C,a)) € A;.

Rule 4.2

“Attributes can be written through instance-level access.”

For all C € C, a € properties(C) N 'Pra, meth € declared(C) N Py,
we have (C, meth, write, sig(C,a)) € Ar.

Rule 4.3

“Methods can always be called through instance-level access.”

For all C € C, m € properties(C) N Prar, meth € declared(C) N Pray,
we have (C, meth, call, sig(C,m)) € Aj.

Rule 4.4

“A property accessible by a class is also accessible by its subclasses.”

For oll C1,C2,C3 € C,C2 # C1,C3 <y C1, if there are sa € accessKinds, methl €
(declared(C1) NPyr) and x € S such that (C1,C2, methl, sa,x) € Ac,

then Ymeth2 € (declared(C3) NPar) (C3,C2,meth2, sa,x) € Ac

Export and feature clauses are translated in our formalism according to the follow-
ing two rules. The first rule describes the strict application of the export mechanism.

Rule 4.5 (class C1 contains export {X1, ..Xn} m or feature {X1, ..Xn} m)
implies:

Let L = {X1,X2,..Xn}, for all Xi € L, meth € declared(Xi) N Py, and let
m = sig(C1,C1 :: m) we have (Xi,C1,meth,call,m) € Ac if C1 :: m € Py, and
(Xi,C1, meth,read,m) € Ac if C1::m € Pra.
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The second rule states that if a class C'3 has access to a property m named pl in
a class C'1 and if C'1 has a subclass C2 which knows the same property with the
name p2 (we may have pl=p2), if m has been exported explicitly neither by C2 nor
by a subclass of C'1 which is also a superclass of C'2, then C'3 also has access to m
in C2 (through the name p2).

Rule 4.6 Let C1 € C, m € properties(C1), with pl = sig(C1,m), letC2 € C, C2 <y C1,
with p2 = sig(C2,m), if m has been exported explicitly neither by C2 nor by a subclass of
C'1 which is also a superclass of C2 (through an ezport clause), then for all C3 € C, and
for all meth € declared(C3) NPrar, such that (C3,C1, meth, sa,pl) € Ac, we also have
(C3,C2, meth, sa,p2) € Ac.

C C1
; .
: ¢ / c1
meth | | ¢ .. (methreada) (methwrite.d)..} methl - . Col (methlsax) .}
Rules4.1and 4.2 N c2
X B 7
H e _-~ Ca={... (meth2,5a,x) ...}
C : e
m ,
meth la={ ... (eth,call,m)...} meth2
Rule4.3 Rule4.4
Xi
c3
meth c1 ct "
o1 ol met
c1
Xi o .c1
feature{X1X2, .. Xn} M| ot (methyreadm) ...} C1- Ca={... (methsap1) ..}
c1 c2 c2 L B
export{ X1,X2, .. Xny m| Xi-----------------= Cl |/ |rename pl asp2 C2*"Ca={... (meth,sa,p2) ..}
Ca={... (meth,call,m) ...} p2=pl
Rule4.5 Rule 4.6

Figure 7: Translation of Eiffel rules into Access Graphs

Access Graphs for Java Access Control In order to show how access graph
notation fits Java mechanisms, a few Java rules are extracted from the Java language
Specification. Here these rules partially define the set A¢ of legal (allowed) accesses
associated with a given Java hierarchy (C, <p).

A first rule establishes that “a member (class, interface, field, or method) of a
reference (class, interface, or array) type or a constructor of a class type is accessible
only if the type is accessible.”[12]

Rule 4.7 VC1,C2 € C,Vmeth € declared(C1) N Py,
(C1,C2, meth, name,name(C2)) ¢ Ac = A(sa,z) € accessKinds x S s.t.
(C1,C2,meth, sa,z) € Ac
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“If the member or constructor is declared public, then access is permitted.”[12]

Rule 4.8 class C2 {public m} implies:
VC1 € C,VYmeth € declared(C1) N Py, (C1,C2, meth, name,name(C2)) € Ac = Vsa
possible access kind for m, (C1,C2, meth, sa, sig(C2,m)) € Ac

“If the member or constructor is declared private, then access is permitted if and only
if it occurs within the body of the top level class (7.6) that encloses the declaration
of the member.”[12]

Rule 4.9 (private member) class C2 {private m} implies:
VC1 € C, C1 = C2 & Vmeth € declared(C1) N Py, Vsa possible access kind for m,
(C1,C2,meth, sa, sig(C2,m)) € Ac

For the next rules, we introduce the map package which associates with each
class C' the smallest package which contains C'.

“Default access, (...) is permitted only when access occurs from within the package
in which the type is declared.”[12]

Rule 4.10 (default member) class C2 { m} implies:
VC1 € C, package(C1l) = package(C2) < Vmeth € declared(C1) N Pas, Vsa possible
access kind for m,(C1,C2,meth, sa, sig(C2,m)) € Ac

When inheritance is not concerned, protected visibility is reduced to package vis-
ibility.

Rule 4.11 (protected member (reduced)) class C2 {protected m} and there is
no inheritance relation between C1 and C2 implies:

VC1 € C, package(C1l) = package(C2) < Vmeth € declared(C1) N Par, Vsa possible
access kind for m, (C1,C2, meth, sa, sig(C2,m)) € Ac

Help in Understanding

Examples of Section 2 are revisited to show how access graphs make them more
readable. Figure 8 (left) shows for Figure 1 (left) differences between the compilers
GNU2.91 and GNU2.95 (following the standard ANSI/ISO C++ in this situation)
in a more efficient way than a lengthy textual description. Figure 8 (center) gives a
straightforward overview of the accesses allowed in the two hierarchies of Figure 2.
Figure 8 (right) highlights the allowed accesses in the three hierarchies of Figure 3.

The differences shown in Figure 1 (right) between the JDK versions are also
better explained with the graph of allowed accesses, as in Figure 9. Thanks to its
readability, this notation was found to be very useful for teaching students access
control mechanisms [4].
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Figure 8: Access graph associated with Figures 1 (left), 2 and 3
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A2 {m}
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la=Ca={m} = ====-= = accessdisalowed in JDK 1.2 and 1.4

Figure 9: Access graph showing an oddity of the JDK

Reasoning with access graphs

Access graph notation is a good common framework for reasoning about access

control.

As an example, we show its suitability for establishing that Eiffel and

Java have uncomparable access control mechanisms: each language can express an
access graph that the other cannot. We restrict comparison to cases where neither
the property sets of classes, nor the inheritance relations, nor the nesting relations
between classes can be changed. For simplicity, we do not mention the accessing

method.

Figure 10 shows two simple hierarchies together with their associated access
graphs. The hierarchy and the access graph on the left of the figure are admitted

by Eiffel, with the following schematic code:

class A
end —— A

class B
feature {A,B} x is do end;

feature {B,C} y is do end;
end —— B

class C
end - C
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Reasoning on the access graph, we show that there is no Java code giving the
same access rights. Let us consider the method B :: z of class B such that sig(B, B ::
z) = x. In Java, B :: x could be either public, private, protected or default.
Since there are no inheritance links between classes in this example, only Rules 4.8,
4.9, 4.11, or 4.10 have to be considered.

e If B :: z would be public, as for any m € declared(C), (C, B,m,call, x) ¢ Ac
Rule 4.8 implies that we should have (C, B, m,name, name(B)) ¢ Ac. Using
Rule 4.7, we would have Ca(C,B) = (). This contradicts the access graph
since it establishes that Vm € declared(C), (C, B,m,call,y) € Ac. By similar
reasoning, B :: y cannot be public.

e If B :: x would be private, as for any m € declared(A), (A, B,m,call,x) €
Ac we should have by Rule 4.9 A = B. Contradiction. By similar reasoning,
B ::y cannot be private.

e The above points imply that B :: x and B :: y can only be protected or
package (default). B ::y protected or default and (C, B, meth, call,y) € Ac
for any meth € declared(C) implies by Rules 4.11 or 4.10 that module(B) =
module(C'). Now B :: x protected or default and module(B) = module(C')
implies, by the same rules 4.11 or 4.10, that (C, B, meth, call,x) € Ac. Con-
tradiction with the access graph.

In the second example (at the right of Figure 10), the hierarchy and access graph
may be encoded in Java, for example with the following code:

package P1; package P1; package P2;
public class A public class B {} public class C extends B {}
{protected void xO{} }

On the access graph we can firstly see that (B, A, meth, call, ) € Ac, Ymeth €
declared(B), secondly that (C, A, meth,call,z) ¢ Ac,Vmeth € declared(C) and
also that C' <y B. This clearly contradicts Eiffel Rule 4.4 and therefore this example
has no possible translation in Eiffel.

)

] H a Ca={x}

A c

A/ b B% C
y

Con
C

IazCaz{ >/<,y}

Figure 10: Comparing Java and Eiffel mechanisms

Under the same hypotheses, we have also shown that the C++ access control
mechanisms are not comparable with Java or Eiffel mechanisms.
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Support for modeling

We illustrate, through a short example, the role that access graphs can play in the
design of static accesses. Let us consider the class diagram of Figure 11, which de-
scribes suppliers, retailers and persons. The class Supplier provides two methods,
supply which is intended for retailers to obtain a given quantity of products of a
given reference, and retailerList which is designed for persons that would like to
know the retailers approved by the supplier. The class Retailer offers the method
sell, which is intended for persons who buy products. Retailer admits two sub-
classes that respectively represent retailers of alcohol and retailers of candies. A
subclass Child of Person has the right to buy only specific products, namely can-
dies, so can have access to sell only on RetailerOfCandies. Access graph notation
can express requirements in terms of access rights, as in Figure 12 (left). We think
that this representation (maybe simplified or considered from different views) is the
right support for elaborating encoding choices.

For simplicity, and since Ia and C'a on loops do not pose actual problems in this
example, the discussion only deals with cross accesses: loops are not considered in
the access graph and its encoding.

Supplier Retailer Person
supply(String ref, int qty):list of Product sell(String ref, int qty):list of Product
retailerList():list of Retailer

RN

RetailerOfAlcohol| | RetailerOf Candies Child

Figure 11: Suppliers, Retailers and Persons

Encoding the access rights determined at the design step requires finding, in the
target language, access controls that will ensure the required set of accesses, and as
few additional (not required) accesses as possible.

The required access rights can be approximated in Eiffel with the clauses out-

Ca={/rjet>8!|§[|_il§t<}; Caz{zrjegaliliegltlg};
T 77 Person T 77~ Person
. Cas{sell}. "/ . Castsll).”
Caz{supply} . ,/{ /,} ; Ca—{supply} ,/{ /,} ;
SupplierZ Retailer Ca¢/{/sell} SupplierZ RetallerV Ca#/{/sell}
TTe~o e Te-o_ N <
/ﬁ Ca={retailerList} . / Aﬂ Ca={retailerLis} .~ ~~< _ /Ca={sdll}
Ca—{supply} A Ca:{supply} T PRENY
Ca’{se”} , - child oty ol S - Child
Ca—{ supply} o S Cas{sdl} Ca:{ supply} R / Caz{sell}
;/ RN ~z Aé“ R
RetailerOf Alcohol RetailerOf Candies RetailerOfAlcohol RetailerOf Candies

Figure 12: left Required accesses; right Least access set in Eiffel
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lined in Figure 13. Clause feature{Retailer} supply provides only accesses re-
quired for supply: access is allowed explicitly to Retailer, and Rule 4.4 extends
it to its subclasses Retailer0OfAlcohol and RetailerOfCandies. For similar rea-
sons, Clause feature{Person} retailerList provides only accesses required for
retailerList. Applied to clause feature{Person} sell, Rule 4.4 gives unfor-
tunately access for Child to sell on RetailerOfAlcohol. The associated access
graph is shown in Figure 12 (right): the two edges added by the adaptation to Eiffel
are thickened.

Retailer Person

Supplier

) feature{Person} sell
feature{Retailer} supply

feature{Person} retailerList /\

RetailerOf Alcohol| | RetailerOf Candies Child

Figure 13: A solution in Eiffel

Let us now consider the case of Java encoding. Note that we are in a situation
quite close to that in Figure 10: if we do not accept to modify the design of classes,
the best choice is to include all classes in the same package, and to make package
(default) the three methods supply, retailerList and sell. Indeed, making them
private is impossible, public seems too liberal and protected does not make sense
here since the rights we want to adapt do not concern access from classes to their
own (possibly inherited) properties. The associated access graph is not represented
but is simple to design, as it contains all possible cross accesses within the package
Trade.

In this example, Eiffel access rights allow an encapsulation closer to the initial
design. Dynamic checking of instance type can be used afterward in order to avoid
children, for example, to buy alcohol.

Trade

Retailer

Supplier

package sell

package supply

package retailerList /\

RetailerOfAlcohol| | RetailerOf Candies Child

Figure 14: A solution in Java

As the access graph can rapidly increase as other classes are added, we think
it is beneficial to have an automatic help for choosing a suitable encoding among
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several possibilities, and for tracing which alterations the encoding brings to the
initial design. Such help is one of the functions of AGATE, i.e. a set of tools which
are presented in the next section.

AGATE, Access Graph Based Tools for Encapsulation

Object-Oriented Case tools, being mainly based on UML, are not sufficient to handle
properly access control design. In order to test new strategies in access control
handling, we devised AGATE [2, 13] a prototype developed to help in design,
understanding and managing static access.

e The Access Graph Editor/Viewer is a graphical tool for helping designers and
programmers to understand and specify access control in a simple way [3, 13].
In a future work, some accesses will be generated automatically according to
general rules and could be filtered out to keep only relevant accesses.

e The Access Graph Eztractor is currently used to extract the graph representing
the allowed accesses from Java and Eiffel source code. Extracting required ac-
cess graphs from collaboration diagrams and extracting effective access graphs
from source code are under way.

e The Access Graph Adapter takes an access graph and adapts it to a specific
language. It is currently fully automated and implemented for Eiffel. Java
will require user interaction, especially for adapting packages. It can help in
preserving access control when translating from one language to another, a
difficult task as shown in [1].

e The Access Graph Design Checker can show differences between a design and
either the adaptation to a specific language (and thus, help to choose a target
language) or the implementation. It can also give advice and warnings, even
concerning restrictions not expressible in the target language.

e The Access Graph Rule Checker will check if access control policies are ad-
dressed by a program, as for example the specialization inheritance rule pre-
viously presented.

e The Code Generator produces the code (currently Eiffel code) corresponding
to an access graph in a specific language, provided the access graph can be
expressed in this language.

5 CONCLUSION

Access Graphs, a graph-based notation for static access control in object-oriented
languages has been presented. We believe it should help in reasoning about access
control in the different steps of object-oriented development: modeling, characteriz-
ing, evaluating, comparing sets of accesses, as well as preserving access control when
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translating from one language to another. We also presented AGATE, the kernel of
a framework dedicated to access control handling.

Even though this approach encounters difficulties due to intrication of access con-
trol with other features of languages (status of accessor methods, calling an inherited
method via super vs. explicit class naming), we think that most situations can be
fruitfully encoded in access graphs. In the future, we plan to study the usefulness
of our approach in broader issues concerning access control, for instance evaluating
the interaction between encapsulation and immutability, two closely related topics,
as shown in [6].

Design is concerned about both access control and implementation [9, 19] and
adds its own problems, such as defining specific access control for whole-part associ-
ations [10]. One of our prospects is to study integration of access graphs with UML
diagrams. One goal is to define a UML profile based on access graphs, adapted to
static access control design and which could be proposed as an extension in UML-
based Case Tools. Simplified views on access graphs and extension of the access
graph notation to denote patterns of accesses would further improve their interest
and handling.

We also plan to develop a simple and general model for static access control in
the object-oriented framework. We think access graphs could help in such research
work by providing simple and intuitive support.
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