
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, no. 4, September-October 2002

Cite this column as follows: Patrick Chisan Hew: Streamlined Algorithm Deployment via
JavaBeans, in Journal of Object Technology, vol. 1, no. 4, September-October 2002, pages 75-
91. http://www.jot.fm/issues/issue_2002_09/column6

Streamlined Algorithm Deployment via
JavaBeans

Patrick Chisan Hew, Defence Systems Analysis Division, Defence Science
and Technology Organisation, Canberra, Australia

Abstract
This paper introduces JavaBean Calculation Engines (JBCEs), a procedure for
deploying algorithms in a standard JavaBean framework. For the algorithm developer,
JBCEs are a finishing point for deploying an algorithm as a “qualified product”. For the
GUI developer, JBCEs shield internal computations behind a JavaBean interface. By
standardising the interface between computational and GUI code, JBCEs improve
reusability and maintainability.

1 INTRODUCTION

It is increasingly attractive to use Java for software deployment. Unfortunately, the
expertise for developing algorithms need not be coupled to an expertise in software
engineering or Graphical User Interface (GUI) development, and this can result in
software where the computational code is intertwined with the code for the user interface.
The reuse, therefore, of computational code may well be impossible without extensive
“reverse engineering”, and the maintenance of GUI code may require an understanding of
the computations. Both situations are unattractive.

This paper introduces JavaBean Calculation Engines (JBCEs), a procedure for
deploying Java computational code as reusable modules, ready for GUI integration. For
the algorithm developer, JBCEs are a finishing point for deploying an algorithm as a
“qualified product”. For the GUI developer, JBCEs shield internal computations behind a
JavaBean interface. JBCEs could thus streamline software development, by standardising
the interaction between “research” algorithm code and “deployment” GUI code, and
having algorithms packaged for reuse.

This paper formulates the Calculation Engine concept, and then demonstrates the
construction of a JBCE through a simple example. It then discusses how the JBCE
functionality is implemented.

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_09/column6

STREAMLINED ALGORITHM DEPLOYMENT VIA JAVABEANS

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

2 BACKGROUND

Motivation

This work arose out of the needs of the Theatre Operations Branch (TOB) at the Defence
Science and Technology Organisation. TOB supplied operational analysis support to the
Australian Defence Force, motivating a software toolkit that deployed algorithms in a
user-friendly form.

While skilled practitioners, TOB developers were not professional “code cutters”;
moreover, the GUI needed to be developed in an evolutionary fashion. The algorithms
themselves, however, were expected to be relatively “stable” as reusable assets (Schmidt
1999a). Hence, and in order to get the best value out of contractor support, algorithms
needed to be packaged for streamlined deployment into a GUI, while maintaining “black
box” isolation.

JavaBeans

JavaBeans1 are a popular commercial standard for software components (Doherty et al
2000). The most visible examples of JavaBeans are GUI libraries like Swing, and
JavaBeans can be further wrapped into Enterprise JavaBeans2, enabling distributed
applications (Asbury et al 1999).

JavaBeans are characterised by their standardised interaction with the outside world.
The specification defines how properties are accessed, and how we can be informed of
changed properties; to summarise: access to property XXX is provided through a method
getXXX(), change via a method setXXX(), and when a property is changed, the
JavaBean is expected to transmit a PropertyChange event to registered listeners.
JavaBeans must also handle registration of listeners, and self-storage for later re-use.

We thus see that our goal of wrapping algorithms into JavaBeans is highly desirable
– it makes an algorithm accessible to Java developers with “mainstream” skills, rather
than just its inventors. The problem, then, is in building a generic procedure for
packaging an algorithm in a JavaBean. This requires some assumptions about the
algorithms, but we shall see that these are weak.

1 http://java.sun.com/beans/
2 http://java.sun.com/products/ejb/

http://java.sun.com/beans/
http://java.sun.com/products/ejb/

Concept

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 77

3 CONCEPT

We first formulate Calculation Engines (CEs), and then consider implementation via
JavaBeans.

Calculation Engines – Key Principles

The key principles behind CEs are:
1. Input-Output Algorithm.

An Input-Output Algorithm is a process that takes Inputs and returns Outputs. The
term emphasises the responsibility of the algorithm designer to fully specify the
inputs to the algorithm, and the outputs that are returned.

2. Equilibrium
A Calculation Engine is set up as an object that maintains equilibrium between the
Inputs and Outputs of the internal Algorithm. In essence, the CE keeps itself in a
“solved state”, and is only out of equilibrium when recalculating.

The basic chain of events is illustrated by Figure 1. As shown, we have an Input-Output
Algorithm fully enclosed by the Calculation Engine, and a number of subscribing Clients
outside. When a Client modifies an Input, the CE calls the Algorithm to recalculate the
Outputs, and communicates the changed Input and Outputs to all subscribing Clients. The
CE is “out of equilibrium” in the time between receiving the modified Input and
communicating the change.

Figure 1 Basic chain of events.

The interaction between CE and Clients is basically the Observer (Model-View-
Controller) design pattern (Gamma et al 1995). The point, however, is in streamlining the
construction to this pattern – setting up the dashed lines of Figure 1 for an arbitrary
Input-Output Algorithm.

Time

Modify
Input

Client

Transmit
updates

Client
Client
Client

Algorithm

Input

Output

Calculation Engine

STREAMLINED ALGORITHM DEPLOYMENT VIA JAVABEANS

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

The abstract Input-Output Algorithm could be regarded as the “true” reusable
element (Krueger 1992), with the CE being an artifact (Mili et al 1995). Input-Output
form is useful in its own right (Kühne 1997), however the CE concept goes beyond the
provision of high-level access to low-level code (Schmidt 1999b) (Novak 1997) – it
enables multiple Clients to “gather around” a problem. We shall see the benefits to GUI
programming.

Using the JavaBean Framework

To implement a CE as a JavaBean, the Inputs and Outputs are declared to be properties of
the JavaBean; specifically, the Inputs are set up as bound and constrained properties, with
get and set methods, and the Output is a bound property with a get method. The
remaining work lies in connecting Input to Output through the enclosed Algorithm.

The JBCE functionality has been coded into a package javabeancalcengines,
the use and construction of which will be discussed. Since Java can wrap native code,
JBCEs can package algorithms written in languages other than Java. The Calculation
Engine concept could also be applied in other Object Oriented Programming languages,
using equivalents to the PropertyChange mechanism (Larman 1999).

4 EXAMPLE

To illustrate the construction and use of JBCEs, we work through Adding Applet, a
screenshot of which is shown in Figure 2. We show how the JBCE is constructed to
deploy the algorithm, and then how the JBCE can be used from the GUI.

Figure 2 Adding Applet.

Algorithm in Input-Output Form

The starting point is to have the algorithm fully specified in Input-Output form. Here, we
do this through a class AddingAlgorithm and a method with signature –

public static double addingalgorithm(double num1, double num2)

Example

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 79

The static declaration reflects the fact that addingalgorithm() is only the process
for transforming num1 and num2 to the output; the actual instance of a solution is held by
the overarching JBCE. We note that the Output from an algorithm may require a return
class of some kind, particularly for multiple outputs.

To build the JBCE, we do not need to know anything about how
addingalgorithm() works. Furthermore, we can actually build the JBCE with some
resistance to run-time errors in the algorithm.

Wrapping into a Calculation Engine

We are now able to produce the JBCE, AddingBean. In the description that follows, we
assume the use of the javabeancalcengines package, though the focus will be on
how this package fulfills the Calculation Engine concept.

Setting Up
A JBCE is a JavaBean, so we need to import this behaviour –

import java.beans.*;
import javabeancalcengines.*;

public class AddingBean extends DefaultJavaBeanCalcEngine {

The use of DefaultJavaBeanCalcEngine is not compulsory, but it gives us access to
utility methods that will simplify construction.

Input Properties
We recall that the inputs to addingalgorithm() were num1 and num2. To formulate
num1 as a property, we have –

/**
 * @serial the first number to add
 */
public double Num1;

/**
 * Set the first number to add.
 *
 * @param num1 the new first number to add
 */
public void setNum1(double newNum1) throws PropertyVetoException {
 setJavaBeanEngineInput("Num1", "Num1", newNum1);
} // setNum1(double)

STREAMLINED ALGORITHM DEPLOYMENT VIA JAVABEANS

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

/**
 * Get the first number to add.
 *
 * @return the first number to add
 */
public double getNum1() {
 return Num1;
} // getNum1()

The Input parameter num1 is mapped to the field Num1. The setNum1() method
leverages setJavaBeanEngineInput(), details of which will follow; to summarise,
the method:

1. Provides Clients the opportunity to veto the impending change to Num1.
2. Calls addingalgorithm() to recalculate3.
3. Assigns Num1 the new value of newNum1, informing Clients of the change.

Parameter num2 is handled in a similar fashion. It is worth noting that the Clients are
given the opportunity to veto before any changes are made. This means that when Clients
do react to a change, they can do so without having to allow for rollback.

Output Property
With the Inputs in place, we can set up the code for the Output –

/**
 * @serial the Adding Algorithm result
 */
private double AddingResult;

/**
 * Recalculate after an input has been specified.
 */
public void doRecalculate() {
 doCalcAddingResult();
} // doRecalculate()

/**
 * Force a calculation now.
 */
public void doCalculateNow() {
 doCalcAddingResult();
} // doCalculateNow()

/**
 * Calculate the Adding result.
 */

3 If automatic recalculation is active. If not, the AddingBean notes that it is out of equilibrium.

Example

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 81

private void doCalcAddingResult() {
 double oldAddingResult = AddingResult;
 double newAddingResult = Double.NaN;

 startCalculating();
 newAddingResult = AddingAlgorithm.addingalgorithm(Num1,Num2);
 stopCalculating();

 AddingResult = newAddingResult;
 firePropertyChange("AddingResult",
 new Double(oldAddingResult), new Double(newAddingResult));
} // doCalcAddingResult()

/**
 * Return the Adding result.
 *
 * @return the Adding result
 */
public double getAddingResult() {
 return(AddingResult);
} // getAddingResult()

The Output is mapped to the field AddingResult. The calls in
doCalcAddingResult() preserve AddingResult until addingalgorithm() is
finished, and the enclosing startCalculating() – stopCalculating() pair keeps
Clients informed about the AddingBean’s equilibrium state.

Initialisation
When initialising the AddingBean, we must ensure that it is in equilibrium –

public AddingBean() {
 super();
 initSafeState();
} // AddingBean()

private void initSafeState() {

 // Input.

 Num1 = 0;
 Num2 = 0;

 // Output.

 AddingResult = AddingAlgorithm.addingalgorithm(Num1,Num2);
} // initSafeState()

STREAMLINED ALGORITHM DEPLOYMENT VIA JAVABEANS

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

The call to initSafeState() ensures that the AddingBean is in a “solved” state.

GUI Development

In developing the GUI for AddingApplet, we will see its compartmentalisation from
the AddingBean. Furthermore, while GUI development is very specific to the interface
being built, the mechanisms for working with a JBCE like AddingBean parallel those
for GUI components.

Obtaining a Calculation Engine
We start by having AddingApplet set up an AddingBean for use –

 // Start the applet.
 public void start() {
 getAddingBeanInstance();
 …
 }

…

 AddingBean itsAddingBean;

 public AddingBean getAddingBean() {
 return(itsAddingBean);
 } // getAddingBean()

 private void getAddingBeanInstance() {
 itsAddingBean = new AddingBean();
 } // getAddingBeanInstance()

The call to getAddingBeanInstance() instantiated an AddingBean directly. We
could, however, have created the AddingBean elsewhere and supplied it to the
AddingApplet; indeed, the AddingBean might even have been packaged as an
Enterprise JavaBean and supplied off a server.

Identifying the Clients
Referring back to the screenshot in Figure 2, we notionally have 5 Clients:

1. A slider and textfield for Num1.
2. A slider and textfield for Num2.
3. A label field displaying AddingResult.

A rigorous analysis would establish the correct implementation of these notional Clients.
However, for illustration, we will do the following:

Example

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 83

1. Create Num1Listener and Num2Listener to listen to the sliders and
AddingBean.

2. Equip the textfield to forward user input to the AddingBean.
3. Configure the applet to forward AddingBean changes to components.

Figure 3 illustrates these communication responsibilities, to be discussed below. It is
worth comparing Figure 3 with the basic chain of events schematic of Figure 1 – we see
the User calls to set AddingBean Inputs, and the propertyChange() update events
that are sent back to the Clients in turn.

Figure 3 GUI Communication with the AddingBean.

Equipping a JSlider – Live Control

The listeners Num1Listener and Num2Listener listen to the sliders for user changes
to Num1 and Num2, and to the AddingBean for external changes. For user input, we
implement the ChangeListener interface, defining a stateChange() method –

public void stateChanged(ChangeEvent evt) {
 if(!isExternallyForcedChange() & !isAlreadyTryingToReact()) {

 JSlider source = (JSlider) evt.getSource();
 double theNewValue = (double) source.getValue();

 startReacting();

Slider

Textfield

Display

X+Y

AddingBean

User Input

User Input actionPerformed()

NumListener

AddingApplet

propertyChange()

stateChanged()

STREAMLINED ALGORITHM DEPLOYMENT VIA JAVABEANS

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

 try {
 setdoubleInput(theNewValue);
 } catch(
 PropertyVetoException ePV) {

 PropertyChangeEvent ePC = ePV.getPropertyChangeEvent();
 double restoreValue = ((Double)
 ePC.getOldValue()).doubleValue();

 // The following causes a recursive call that is caught by
 // isAlreadyTryingToReact().

 source.setValue((int) restoreValue);
 source.updateUI();

 } // catch(...)

 stopReacting();
 } // if
} // stateChanged(ChangeEvent)

The listeners Num1Listener and Num2Listener provide the final link to the
AddingBean by implementing setdoubleInput(); for Num1 –

/**
 * Set the first number to add.
 *
 * @param aFromSliderValue is the value on the JSlider control.
 */
public void setdoubleInput(double aFromSliderValue)
 throws PropertyVetoException {
 getParent().getAddingBean().setNum1(aFromSliderValue);
} // setdoubleInput(double)

If we look again at stateChanged(), we can see why the sliders could be called “live”
– changes by the user are immediately forwarded to the AddingBean. We note that this
requires the internal doCalcAddingResult() algorithm to be fast enough to take
advantage of this immediate input.

If an exception is thrown, the catch handler users the PropertyVetoException
to restore a safe value. Since this requires that the slider be set to a value, we need to trap
the infinite recursion by testing for “already reacting to the user”. This is handled through
isAlreadyTryingToReact() and the startReacting()-stopReacting() pair.

In a similar vein, if the AddingBean is setting the value of the slider on behalf of
another client, we need to know not to react. We thus have
isExternallyForcedChange(), the code for which has been omitted, but it suffices
to say that it interrogates a flag stored by the AddingBean. With this in place, we can

Example

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 85

listen for changes coming from the AddingBean, through the
PropertyChangeListener and VetoableChangeListener interfaces –

 public void propertyChange(PropertyChangeEvent evt) {
 double newVal = ((Double) evt.getNewValue()).doubleValue();
 itsJSlider.setValue((int) newVal);
 } // propertyChange(...)

…

 public void vetoableChange(PropertyChangeEvent evt)
 throws PropertyVetoException {

 double newVal = ((Double) evt.getNewValue()).doubleValue();
 if(newVal > itsJSlider.getMaximum()) {
 throw new PropertyVetoException("Too Big.", evt);
 } // if
 else if(newVal < itsJSlider.getMinimum()) {
 throw new PropertyVetoException("Too Small.", evt);
 } // else if
 } // vetoableChange(...)

It is worth emphasising the roles of the two methods. The AddingBean will call
vetoableChange() first, providing the opportunity to veto a proposed change, as seen
in the tests for exceeding the bounds of the slider. The call to propertyChange() is
made later, at which time the slider’s value can be set.

The final step is to instantiate the listeners and supply them to the sliders. This is
discussed later.

Equipping a JTextField – Action on Return

The model for the textfield was for the user to type in what they wanted, with the
contents being sent to the AddingBean when they press Enter4. The textfield is thus
equipped with an actionPerformed() handler, implemented5 as below for Num1 –

void jTextFieldNum1_actionPerformed(ActionEvent e) {

 String inputText = jTextFieldNum1.getText();

 try {
 double parsedValue = Double.parseDouble(inputText);
 getAddingBean().setNum1(parsedValue);
 } catch(Exception x) {

4 We note that until the user presses Enter, the textfield is not synchronized with the AddingBean.
5 The implementation used Borland JBuilder Pro Ver3.00, so the code reflects the automatic generation
idioms.

STREAMLINED ALGORITHM DEPLOYMENT VIA JAVABEANS

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

 // Something went wrong. Take value from Engine.

 jTextFieldNum1.setText(Double.toString(getAddingBean().
 getNum1()));
 } // catch(Exception)
} // actionPerformed()

The exception handler deals with bad user input and external vetoes in the same way –
restoring from the current value in the AddingBean.

Farming Out Updates to Components

Although the textfields forward user input to the AddingBean, they are not equipped to
handle changes coming the other way. Similarly, the label displaying the AddingResult
needs to be kept up to date. Rather than building listeners for each of these components,
we make the overarching applet do the work. We thus implement the AddingApplet
against PropertyChangeListener –

public void propertyChange(PropertyChangeEvent evt) {

 String propName = evt.getPropertyName();

 if(propName == "AddingResult") {
 jLabelAddingResult.setText(evt.getNewValue().toString());
 } // if
 else if(propName == "Num1") {
 jTextFieldNum1.setText(evt.getNewValue().toString());
 } // else if
 else if(propName == "Num2") {
 jTextFieldNum2.setText(evt.getNewValue().toString());
 } // else if
} // propertyChange(...)

Registering the Listeners

With the AddingBean instantiated and the listeners defined, we may now connect them
all up. This is done in AddingApplet in the start() method –

 // Start the applet.
 public void start() {
 getAddingBeanInstance();
 registerComponents();
 }

…

 private void registerComponents() {

Example

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 87

 // Initialise initial values for controls.

 double theNum1 = getAddingBean().getNum1();
 jSliderNum1.setValue((int) theNum1);
 jTextFieldNum1.setText(Double.toString(theNum1));

 double theNum2 = getAddingBean().getNum2();
 jSliderNum2.setValue((int) theNum2);
 jTextFieldNum2.setText(Double.toString(theNum2));

 double theAddingResult = getAddingBean().getAddingResult();
 jLabelAddingResult.setText(Double.toString(theAddingResult));

 // Register listeners.

 getAddingBean().addPropertyChangeListener(this);

 Num1Listener lisNum1 = new Num1Listener(this, jSliderNum1);
 jSliderNum1.addChangeListener(lisNum1);
 getAddingBean().addPropertyChangeListener("Num1", lisNum1);
 getAddingBean().addVetoableChangeListener("Num1", lisNum1);

 Num2Listener lisNum2 = new Num2Listener(this, jSliderNum2);
 jSliderNum2.addChangeListener(lisNum2);
 getAddingBean().addPropertyChangeListener("Num2", lisNum2);
 getAddingBean().addVetoableChangeListener("Num2", lisNum2);

 } // registerComponents()

We can see the importance of ensuring that the AddingBean starts in equilibrium, for we
have used its initial values as the initial values of the controls. We also see that the
overarching applet will receive all PropertyChange events posted by the AddingBean,
but that the listeners for Num1 and Num2 will only receive PropertyChange events for
their respective properties6.

The User Experience

The user will be able to use the sliders or textfields to specify the numbers to be added,
and will see the result in the bottom-right corner. Changes on the slider will be
automatically forwarded to the textfield, and vice-versa.

The components in the GUI – JSlider, JTextField and JLabel – constitute
multiple Clients to the AddingBean. The fact that they were all co-located within the
single AddingApplet, and instantiated all at once, simplified the GUI side, but as far as

6 propertyChange() methods often check the source of the event. Since we have controlled the registration
process, this is source checking is unnecessary.

STREAMLINED ALGORITHM DEPLOYMENT VIA JAVABEANS

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

the JBCE is concerned, the Clients could be anywhere, and register at any time. This aids
incremental GUI development, and opens up possibilities for distributed collaborative
applications.

5 IMPLEMENTING JBCE FUNCTIONALITY

The AddingBean-AddingApplet example used the javabeancalcengines package to
implement the JBCE functionality. We now discuss key aspects of this package, to see
how the functionality is met.

Maintaining Clients

Since a JBCE is just a JavaBean, Clients are maintained through the support objects
supplied by the JavaBean API for PropertyChange and VetoableChange events.

Calculation Engine Properties

A JBCE needs to maintain 3 boolean properties:
1. Being in equilibrium.
2. Automatic recalculation on/off.
3. Forcing updates.

These properties are used by subscribing Clients to distinguish user-initiated changes
from those coming from the JBCE, or to control behaviour under those changes. The
auto-recalculation property allows multiple JBCE Inputs to be changed before a
calculation is undertaken.

Setting Inputs

The main services from the javabeancalcengines package, and
DefaultJavaBeanCalcEngine in particular, are to do with setting Input properties.
We saw this in AddingBean when setting num1, for which we used
setJavaBeanEngineInput() –

public void setJavaBeanEngineInput(String inputProp, String
 fieldName, double newInput)
 throws PropertyVetoException {
 // Get the field corresponding the property.
 Field thePropField = getFieldKnownToExist(fieldName);

 // Check for external vetoes, then change locally.
 double oldInput = getKnownFieldValueDouble(thePropField);
 fireVetoableChange(inputProp,
 new Double(oldInput), new Double(newInput));
 setKnownFieldValueDouble(thePropField, newInput);

Implementing JBCE Functionality

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 89

 // Recalculate from the new field value.
 if(isAutoRecalc()) {
 try {
 doRecalculate();
 } catch (Exception e) {
 // If we have a run-time error, we generically trap it and throw a
 // PropertyVetoException .
 // Clients can thus restore a safe value.

 setKnownFieldValueDouble(thePropField, oldInput);
 PropertyChangeEvent ePC =
 new PropertyChangeEvent(this, inputProp,
 new Double(oldInput), new Double(newInput));
 throw new PropertyVetoException("doRecalculate", ePC);
 } // catch(Exception)
 } // if
 else {
 setNewInputNoRecalc();
 } // else

 // Can finally inform listeners of the change.
 fireForcingPropertyChange(inputProp,
 new Double(oldInput), new Double(newInput));
} // setJavaBeanEngineInput(...)

The calls to getFieldKnownToExist(), getKnownFieldValueDouble() and
setKnownFieldValueDouble() translate the external property inputProp into the
internal field fieldName. These methods use introspection, so the target field named
fieldName must be declared public. This goes against usual JavaBean practice, in
which the fields would be declared as private, but it does allow the set method for a
JBCE input to be written as a single call to setJavaBeanEngineInput(). If fields do
need to be declared as private, then the functionality can be replicated manually.

We note the calling order of fireVetoableChange(), doRecalculate() and
fireForcingPropertyChange(). This order gives Clients the opportunity to veto the
proposed change, and the enclosed algorithm the chance to execute, before informing
Clients that a change is to be made. As a result, when the change is actually made, Clients
can act without having to allow for rollback.

The try-catch handler will trap exceptions from the internal algorithm, posting a
PropertyVetoException that enables the calling Client to restore a safe value.
Unfortunately, this presupposes the automatic calculation is active. The problem here is
that, typically, automatic recalculation would be turned off if a set of inputs were to be
supplied to the JBCE en masse, with the JBCE calculating on the new set as a whole. In
this situation, if the algorithm encounters an error, it is difficult to know which of the
inputs are problematic.

STREAMLINED ALGORITHM DEPLOYMENT VIA JAVABEANS

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

6 SUMMARY

This paper introduced JavaBean Calculation Engines for deploying Java computational
code as reusable modules, ready for GUI integration. For the algorithm developer, JBCEs
are a finishing point for deploying an algorithm as a “qualified product”. For the GUI
developer, JBCEs shield internal computations behind a JavaBean interface. JBCEs thus
standardise the interaction between custom, computational code and external, GUI code.

The only requirement on the algorithm developer is to fully specify the Inputs to, and
Outputs from, their algorithm. The Inputs and Outputs become properties of the JBCE,
and the JBCE maintains equilibrium between Inputs and Outputs on the behalf of
subscribing Clients. As the example showed, subsequent use of a JBCE follows patterns
used in other Java GUI software, and this can aid evolutionary development of GUI
products.

ACKNOWLEDGMENTS

The author thanks Matthew Phillips, Defence Science and Technology Organisation, and
Don Weiss, Step 1 Inc, for their constructive comments and suggestions.

REFERENCES

Asbury, S. and Weiner, S.R. Developing Java Enterprise Applications. Wiley Computer
Publishing, New York, 1999.

Doherty, D., Leinecker, R. et al. JavaBeans Unleashed. Sams Publishing, USA, 2000.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley Publishing Company, Reading
Massachusetts, 1995.

Krueger, C.W. “Software Reuse”. ACM Computing Surveys. Vol 24, Num 2, June 1992,
pp 131-183.

Kühne, T. “The Function Object Pattern”. C++ Report. Vol 9, Num 9, October 1997, pp
32-42.

Larman, C. “Implementing the Java Delegation Event Model and JavaBean Events in
C++”. C++ Report. Vol 11, Num 4, April 1999, pp 34-43.

Mili, H., Mili, F., Mili, A. “Reusing Software: Issues and Research Directions”. IEEE
Transactions on Software Engineering. Vol 21, Num 6, June 1995, pp 528-
562.

Summary

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 91

Novak, G.S. “Software Reuse by Specialization of Generic Procedures through Views”.
IEEE Transactions on Software Engineering. Vol 23, Num 7, July 1997, pp
401-417.

Schmidt, D.C. “How to Make Software Reuse Work for You”. C++ Report. Vol 11, Num
1, January 1999, pp 46-52,57.

Schmidt, D.C. “Wrapper Facade: A Structural Pattern for Encapsulated Functions within
Classes”. C++ Report. Vol 11, Num 2, February 1999, pp 40-50.

About the author

Patrick Chisan Hew is an analyst with the Defence Systems Analysis
Division of the Defence Science and Technology Organisation. His
current work is in operational and strategic analysis, with an ongoing
interest in software engineering/management. He holds a PhD in
Mathematics and Intelligent Information Processing Systems from the
University of Western Australia, the focus of which was in pattern

recognition and image understanding. He can be reached at
Patrick.Hew@dsto.defence.gov.au.

mailto:Patrick.Hew@dsto.defence.gov.au

